Causal Data Science: Estimating Identifiable Causal Effects

Department of Computer Science

Purdue University

www.yonghanjung.me

Yonghan Jung

KAIST | Apr. 25, 2025

Causal Data Science: Estimating Identifiable Causal Effects

Yonghan Jung

- **Department of Computer Science**
 - Purdue University
 - www.yonghanjung.me

- Overview
- Less Technical
- Introduction at a broad & intuitive level

KAIST | Apr. 25, 2025

Clinical Infectious Diseases, 2019

Content Content Content

Remdesivir becomes first Covid-19 treatment to receive FDA approval

<u>CNN</u>, 2020

Remdesivir use is associated with lower mortality in patients with COVID Clinical Infectious Diseases, 2019

Remdesivir becomes first Covid-19 treatment to receive FDA approval

WHO recommends against use of Remdesivir for COVID patients

<u>CNN</u>, 2020

What's going on?

Observational Study (FDA)

	Mortality Rate
Remdesivir	11%
Non Remdesivir	20%

Positive Correlation with Lower Mortality

VS.

Randomized Trial (WHO)

	Mortality Rate
Remdesivir	15%
Non Remdesivir	15%

Since Remdesivir costs over \$2000, wealthier patients are more likely to receive it.

Observational Study (FDA)

	Mortality Rate
Remdesivir	11%
Non Remdesivir	20%

Positive Correlation with Lower Mortality

Randomized Trial (WHO)

Mortality RateRemdesivir15%Non Remdesivir15%

No Causal Effect to Lower Mortality

VS.

Observational Study (FDA)

VS.

Randomized Trial (WHO)

	Mortality Rate
Remdesivir	15%
Non Remdesivir	15%

Observational Study (FDA)

VS.

Randomized Trial (WHO)

	Mortality Rate
Remdesivir	15%
Non Remdesivir	15%

Observational Study (FDA)

VS.

Randomized Trial (WHO)

	Mortality Rate
Remdesivir	15%
Non Remdesivir	15%

Observational Study (FDA)

Randomized Trial (WHO)

VS.

Observational Study (FDA)

Confounding bias

VS.

Randomized Trial (WHO)

Expensive, Infeasible

Observational Study (FDA)

	Mortality Rate	"C
Remdesivir	11%	
Non Remdesivir	20%	

Causal Inference Pipeline"

Causal Effect

	Mortality Rate
Remdesivir	15%
Non Remdesivir	15%

Input

Graph

Samples

D from a distribution P

Encode a story (or assumptions) behind the dataset

Input

Identification

"When is the causal effect computable from available data?"

Graph

Samples

D from a distribution P

Causal graph on acute respiratory distress syndrome (ARDS)

• Goal: Estimate $\mathbb{E}[Y \mid do(x_1, x_2)]$ from single interventions $do(x_1)$ and $do(x_2)$.

- Goal: Estimate $\mathbb{E}[Y \mid do(x_1, x_2)]$ from single interventions $do(x_1)$ and $do(x_2)$.
- Drug interactions between X_1 and X_2

- Goal: Estimate $\mathbb{E}[Y \mid do(x_1, x_2)]$ from single interventions $do(x_1)$ and $do(x_2)$.
- Drug interactions between X_1 and X_2
- Not identifiable from observations

(Fairness) Salary (*Y*) a man (X = x) would earn if he is given the opportunities (*M*) that other genders ($X \neq x$) had received

(Fairness) Salary (*Y*) a man (X = x) would earn if he is given the opportunities (*M*) that other genders ($X \neq x$) had received

$$\mathbb{E}[Y_{x,M_{\neg x}}]$$

(Fairness) Salary (*Y*) a man (X = x) would earn if he is given the opportunities (*M*) that other genders ($X \neq x$) had received

Tasks

Challenges

1 Complicated dependences

2 Data fusion(observations + experiments)

3 More general scenarios

Tasks

2 Data fusion(observations + experiments)

3 More general scenarios

Tasks

Estimating causal effects from observations

Challenges

Tasks

Estimating causal effects from observations

Estimating causal effects from data fusion

Unified causal effect estimation method

Task 3: Unified Estimation Methods

The headache intensity for patients who took aspirin, had they not taken it

Offline Policy Evaluation

Recovery rate of a drug dosage policy given baseline characteristics

 $\mathbb{E}[Y \mid do(x), S = NY]$

The effect of a treatment in NY identifiable from trials in Chicago

Task 3: Unified Estimation Methods

Task 3: Unified Estimation Methods

Unified causal effect estimation method

1 Estimating causal effects from observations

+ its application in healthcare & explainable AI

Estimating causal effects from observations

+ its application in healthcare & explainable Al

Estimating causal effects from observations

+ its application in healthcare & explainable Al

Estimating causal effects from observations

+ its application in healthcare & explainable Al

2 Estimating causal effects from data fusion

3 Unified causal effect estimation method

Summary & Future direction

• Estimating causal effects from observations + its application in healthcare & explainable Al

Back-door Criterion

Spurious paths between (treatments, outcome) are blocked by observed variables (i.e., *no unmeasured confounders*)

(Rubin 74,, Robins 86, Pearl, 95)

Back-door Criterion

Spurious paths between (treatments, outcome) are blocked by observed variables (i.e., *no unmeasured confounders*)

(Rubin 74,, Robins 86, Pearl, 95)

Spurious paths between (treatments, outcome) are blocked by observed variables (i.e., *no unmeasured confounders*)

"Back-door adjustment (BD)"

 $\mathbb{E}[Y \mid do(x)] = \mathsf{BD} \triangleq \sum_{c} \mathbb{E}[Y \mid x, c] P(c)$

Back-door Criterion

(Rubin 74,, Robins 86, Pearl, 95)

1 $BD(\mu,\pi) = \mathbb{E}[\mu \times \pi]$, where $\mu(XC) \triangleq \mathbb{E}[Y \mid X, C]$ and $\pi(XC) \triangleq \frac{\mathbb{I}_{x}(X)}{P(X \mid C)}$

"Double Machine Learning Estimator for Back-door Adjustment" (Chernozhukov et al., 2018) **2** DML-BD($\hat{\mu}, \hat{\pi}$) is a robust estimator:

 $\operatorname{Error}(\mathsf{DML}-\mathsf{BD}(\widehat{\mu},\widehat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\widehat{\mu},\mu) \times \operatorname{Error}(\widehat{\pi},\pi)$

2 DML-BD($\hat{\mu}, \hat{\pi}$) is a robust estimator: $\operatorname{Error}(\operatorname{DML-BD}(\hat{\mu},\hat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\hat{\mu},\mu) \times \operatorname{Error}(\hat{\pi},\pi)$

• Double Robustness: Error = 0 if either $\hat{\mu} = \mu$ or $\hat{\pi} = \pi$

2 DML-BD($\hat{\mu}, \hat{\pi}$) is a robust estimator: Error(DML-BD($\hat{\mu}, \hat{\pi}$), BD(μ, π)) = Error($\hat{\mu}, \mu$) × Error($\hat{\pi}, \pi$)

- Double Robustness: Error = 0 if either $\hat{\mu} = \mu$ or $\hat{\pi} = \pi$
- Fast Convergence: Error $\rightarrow 0$ fast even when $\hat{\mu} \rightarrow \mu$ and $\hat{\pi} \rightarrow \pi$ slowly.

DML-BD: Robust Estimator for BD

$\operatorname{Error}(\mathsf{DML}-\mathsf{BD}(\widehat{\mu},\widehat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\widehat{\mu},\mu) \times \operatorname{Error}(\widehat{\pi},\pi)$ $n^{-1/4}$ $n^{-1/4}$

• Fast Convergence: Error $\rightarrow 0$ fast even when $\hat{\mu} \rightarrow \mu$ and $\hat{\pi} \rightarrow \pi$ slowly.

DML-BD: Robust Estimator for BD

 $n^{-1/2}$

$\operatorname{Error}(\operatorname{DML-BD}(\hat{\mu},\hat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\hat{\mu},\mu) \times \operatorname{Error}(\hat{\pi},\pi)$ $n^{-1/4}$ $n^{-1/4}$

• Fast Convergence: Error $\rightarrow 0$ fast even when $\hat{\mu} \rightarrow \mu$ and $\hat{\pi} \rightarrow \pi$ slowly.

DML-BD: Robust Estimator for BD

 $n^{-1/2}$

$\operatorname{Error}(\operatorname{DML-BD}(\hat{\mu},\hat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\hat{\mu},\mu) \times \operatorname{Error}(\hat{\pi},\pi)$ $n^{-1/4}$ $n^{-1/4}$

• Fast Convergence: Error $\rightarrow 0$ fast even when $\hat{\mu} \rightarrow \mu$ and $\hat{\pi} \rightarrow \pi$ slowly.

Property of modern ML models

Identification

$\mathbb{E}[\boldsymbol{Y} \mid do(\boldsymbol{x})] = \frac{\sum_{c} \mathbb{E}[\boldsymbol{Y} \mid \boldsymbol{x}, \boldsymbol{z}, \boldsymbol{c}] P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}{\sum_{c} P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}$

Identification

$\mathbb{E}[\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{x})] = \frac{\sum_{c} \mathbb{E}[\boldsymbol{Y} \mid \boldsymbol{x}, \boldsymbol{z}, \boldsymbol{c}] P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}{\sum_{c} P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}$

Estimation

Data	Scenario	Ide
$D \sim P$ Observational	Back-door (BD)	
	Non-BD	

entification Estimation

Data	Scenario	Ide
$D \sim P$ Observational	Back-door (BD)	
	Non-BD	

Data	Scenario	Ide
$D \sim P$ Observational	Back-door (BD)	
	Non-BD	

Data	Scenario	Ide
$D \sim P$ Observational	Back-door (BD)	
	Non-BD	

f $\mathbb{E}[Y | do(x)]$ is expressible as a function of BDs (i.e., $\mathbb{E}[Y | do(x)] = g(\{BD\}))$,

f $\mathbb{E}[Y \mid do(x)]$ is expressible as a function of BDs (i.e., $\mathbb{E}[Y \mid do(x)] = g(\{BD\}))$,

then, a general estimator for $\mathbb{E}[Y \mid do(x)]$ can be constructed

$\mathbb{E}[Y \mid do(x)]$ is expressible as a function of BDs (i.e., $\mathbb{E}[Y \mid do(x)] = g(\{BD\}))$, It.

then, a general estimator for $\mathbb{E}[Y \mid do(x)]$ can be constructed

strategically combining DML-BD estimators.

Identification

- spanning a tree from $P(\mathbf{V})$
- to reach to causal distribution $P(Y \mid do(X))$ through factorization & marginalization of
- distributions

Identification

- spanning a *tree* from $P(\mathbf{V})$
- to reach to causal distribution $P(Y \mid do(X))$ through factorization & marginalization of
- distributions

" $P(Y \mid do(X))$ is a function of P(V) via factorizations & marginalizations"

Identification

- spanning a *tree* from $P(\mathbf{V})$
- to reach to causal distribution $P(Y \mid do(X))$
- through factorization & marginalization of distributions

Identification

- spanning a *tree* from $P(\mathbf{V})$
- to reach to causal distribution $P(Y \mid do(X))$
- through factorization & marginalization of distributions

Identification

- spanning a *tree* from $P(\mathbf{V})$
- to reach to causal distribution $P(Y \mid do(X))$
- through factorization & marginalization of distributions

Identification

- spanning a *tree* from $P(\mathbf{V})$
- to reach to causal distribution $P(Y \mid do(X))$
- through factorization & marginalization of distributions

$$\xrightarrow{\text{ion}} P_{\text{do}(Z)}(XY)$$

$$\sum_{c} P(c)P(XY \mid Zc)$$

- distributions

So far,
Back-door adjustment (BD) car
The computation tree for cause of interventional distributions.

Back-door adjustment (BD) can be computed through DML-BD

The computation tree for *causal effect identification* composes of interventional distributions.

To connect BD & Identification,

To connect BD & Identification,

Check if each interventional distribution on the tree is expressible as BD

To connect BD & Identification,

Express causal effects as a function of BD

Check if each interventional distribution on the tree is expressible as BD

To connect BD & Identification,

3

Construct robust estimators by combining DML-BD

Check if each interventional distribution on the tree is expressible as BD

Check if each interventional distribution on the tree is expressible as BD

Check if each interventional distribution on the tree is expressible as BD

Check if each interventional distribution on the tree is expressible as BD

Interventional Distribution $P_{do(a)}(B)$

Check if each interventional distribution on the tree is expressible as BD

Jung et al., AAAI 2021 Jung et al., NeurIPS 2024 CheckBD

Check if each interventional distribution on the tree is expressible as BD

Check if each interventional distribution on the tree is expressible as BD

Theorem

- $P_{do(a)}(B)$ is expressible through BD
 - if and only if
 - $P_{do(a)}(B)$ passes CheckBD

 $= BD(\mu, \pi)$ if **xpressible**

Express causal effects as a function of BD

- Theorem
- Causal effect is identifiable
 - If and only if
- It's expressible as a *function of BD*

 $BD_1(\mu, \pi)$

 $\mathsf{BD}_2(\mu,\pi)$

3 Construct robust estimators by combining DML-BD

3 Construct robust estimators by combining DML-BD

 $\mathbb{E}[Y \mid \operatorname{do}(\mathbf{x})] = g(\{\mathsf{BD}(\mu_1, \pi_1), \mathsf{BD}(\mu_2, \pi_2), \cdots, \mathsf{BD}(\mu_m, \pi_m)\})$

"DML-ID" E

3 Construct robust estimators by combining DML-BD

 $\mathbb{E}[Y \mid \operatorname{do}(\mathbf{x})] = g(\{\mathsf{BD}(\mu_1, \pi_1), \mathsf{BD}(\mu_2, \pi_2), \cdots, \mathsf{BD}(\mu_m, \pi_m)\})$

$\mathbb{E}[Y \mid do(\mathbf{x})] = g(\{\mathsf{BD}(\mu_1, \pi_1), \mathsf{BD}(\mu_2, \pi_2), \cdots, \mathsf{BD}(\mu_m, \pi_m)\})$

"DML-ID" $\mathbb{E}[\widehat{Y \mid \mathrm{do}(\mathbf{x})}] \stackrel{\Delta}{=} g(\{$

3 Construct robust estimators by combining DML-BD

Construct robust estimators by combining DML-BD

Robustness of DML-ID

Theorem

Error(DML-ID, $\mathbb{E}[Y \mid do(x)]) = \sum_{i=1}^{m} \operatorname{Error}(\hat{\mu}_{i}, \mu_{i}) \times \operatorname{Error}(\hat{\pi}_{i}, \pi_{i})$

• Double Robustness: Error = 0 if either $\hat{\mu}_i = \mu_i$ or $\hat{\pi}_i = \pi_i$ for all $i = 1, \dots, m$.

• **Fast Convergence:** Error $\rightarrow 0$ fast even when $\hat{\mu}_i \rightarrow \mu_i$ and $\hat{\pi}_i \rightarrow \pi_i$ slow.

DML-ID converges fast, even when $(\hat{\mu}, \hat{\pi})$ converge slowly

DML-ID converges fast, even when $(\hat{\mu}, \hat{\pi})$ converge slowly

Double Robustness

DML-ID converges fast, even when $(\hat{\mu}, \hat{\pi})$ converge slowly

Double Robustness

DML-ID converges to the true causal effect even when $\hat{\mu}$ or $\hat{\pi}$ are misspecified.

Identification

"When is the causal effect computable from data?"

Estimation

"How do we compute the effect from available data?"

Identification

"When is the causal effect computable from data?"

Whenever computable from data, We can compute sample-efficiently.

Estimation

"How do we compute the effect from available data?"

Identification

"When is the causal effect computable from data?"

Whenever computable from data, We can compute sample-efficiently.

Econ Professor at MIT, who developed DML

Victor Chernozhukov @VC31415

Replying to @YonghanJung @PHuenermund

This is really a fantastic work and is a major contribution. (Incidentally, our DML work was meant to be a service paper to help applied researchers use ML for causal inference, and I don't view our work as a major contribution, certainly not seminal :-) .)

Estimation

"How do we compute the effect from available data?"

Turing Award winner, pioneer of causal inference

Judea Pearl

Follow) ~

the do-calculus. The answer, surprisingly and pleasingly is YES. This recent paper causalai.net/r62.pdf shows that EVERY identifiable causal effect can be estimated by a "Weighted Empirical Risk Minimization" method, a fancy name for IPW-like estimation. Worth keeping in mind.

Talk Outline

Estimating causal effects from observations + its application in healthcare & explainable Al

Talk Outline

+ its application in healthcare & explainable Al

RCT

RCT

EHR MIMIC-IV, OpenMRS eICU, ...

Easy to collect

RCT

Emulating RCT from EHR

EHR MIMIC-IV, OpenMRS elCU, ...

Generalizable

Best of Both Worlds –

Input

EHR D from P

Input

Graph Discovery

Graph Discovery

Identification

Application 1. Emulating RCT from EHR

Causal graph on Acute Respiratory Distress Syndrome (ARDS)

Application 1. Emulating RCT from EHR

Y

Causal graph on Acute Respiratory Distress Syndrome (ARDS)

Jung et al., American Thoracic Society, 2018

Result

For seminal RCTs, Our treatment recommendation = Trials' treatment recommendation

Application 1. Emulating RCT from EHR

Y

Causal graph on Acute Respiratory Distress Syndrome (ARDS)

Jung et al., American Thoracic Society, 2018

Result

For seminal RCTs,

Our treatment recommendation

= Trials' treatment recommendation

Impact

Our method can be used to construct an initial hypothesis before conducting trials.

Contribution of **Discount** to the **Retention**?

Contribution of **Discount** to the **Retention**?

Contribution of **Discount** to the **Retention**?

• SHAP value: one of the most cited measure for the feature importance

Contribution of **Discount** to the **Retention**?

- SHAP value: one of the most cited measure for the feature importance
- Larger discounts contribute less to retention?

Contribution of **Discount** to the **Retention**?

- SHAP value: one of the most cited measure for the feature importance
- Larger discounts contribute less to retention?
- Mismatch with human intuition is due to computing the importance based on correlation
 (e.g. E[retention[discount])

Contribution of **Discount** to the **Retention**?

- SHAP value: one of the most cited measure for the feature importance
- Larger discounts contribute less to retention?
- Mismatch with human intuition is due to computing the importance based on correlation (e.g. E[retention|discount])

Causality-based feature importance measure is essential

Input

$$\phi_i = \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \binom{n-1}{|S|}^{-1} \{ \mathbb{E}[Y | do(\mathbf{x}_S, x_i)] - \mathbb{E}[Y | do(\mathbf{x}_S)] \}$$

Simulation: Better Interpretability

n with ICes	Implication

Simulation: Better Interpretability

n with Ices	Implication	
	Estimated feature importance ranking = True ranking of feature importance	

Simulation: Better Interpretability

n with ces	Implication	
	Estimated feature importance ranking = True ranking of feature importance	
	High true importance ranking = Low estimated ranks	

Impact on Explainable AI

Impact on Explainable AI

Unique causality-based feature importance measure that aligns with human intuition:

Impact on Explainable Al

- **Unique** causality-based feature importance measure that aligns with human intuition:
- Two features receive equal contributions whenever their causal effects are the same.

Impact on Explainable Al

- Two features receive equal contributions whenever their causal effects are the same. • Feature's contribution = 0 if it has no causal effect

Unique causality-based feature importance measure that aligns with human intuition:

Impact on Explainable AI

- Two features receive equal contributions whenever their causal effects are the same. • Feature's contribution = 0 if it has no causal effect
- Feature contributions closely approximate their causal effects on the outcome

Unique causality-based feature importance measure that aligns with human intuition:

Impact on Explainable AI

- Two features receive equal contributions whenever their causal effects are the same. • Feature's contribution = 0 if it has no causal effect
- Feature contributions closely approximate their causal effects on the outcome
- The sum of feature contributions = The outcome $f(X_1, \dots, X_m)$

Unique causality-based feature importance measure that aligns with human intuition:

Talk Outline

2 Estimating causal effects from data fusion

Talk Outline

Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

• BD is not applicable

Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

- BD is not applicable
- Not identifiable from observations $P(\mathbf{V})$.

Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

- BD is not applicable
- Not identifiable from observations $P(\mathbf{V})$.
- Can't run experiments $do(x_1, x_2)$ due to drug-interactions

Motivation: Joint Treatment Effect Estimation

Can $\mathbb{E}[Y \mid do(x_1, x_2)]$ be estimated from two trials $P_{do(x_1)}(V)$ and $P_{do(x_2)}(V)$?

Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

- BD is not applicable
- Not identifiable from observations $P(\mathbf{V})$.
- Can't run experiments $do(x_1, x_2)$ due to drug-interactions

 $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

$\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

Back-door (BD) [Pearl, 95]

Spurious paths between (treatments, outcome) are blocked by observed variables

$\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

Back-door (BD) [Pearl, 95]

Spurious paths between (treatments, outcome) are blocked by observed variables

$\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

- BD for Fusion (BD+) Jung et al., ICML 2023
- For (treatment₁, treatment₂) partitioning treatments,
- spurious paths between (treatment₁, outcome) are blocked by observed variables
- in the experiments for $do(treatment_2)$.

$\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

- BD for Fusion (BD+) Jung et al., ICML 2023
- For (treatment₁, treatment₂) partitioning treatments,
- spurious paths between (treatment₁, outcome) are blocked by observed variables
- in the experiments for $do(treatment_2)$.

$\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

BD for Fusion (BD+) Jung et al., ICML 2023

• For (treatment₁, treatment₂) partitioning treatments,

 spurious paths between (treatment₁, outcome) are blocked by observed variables

• in the experiments for $do(treatment_2)$.

 $\mathbb{E}[Y \mid do(x_1, x_2)] = \sum_{w} \mathbb{E}_{do(x_2)}[Y \mid x_1, w] P_{do(x_1)}(w)$

- BD for Fusion (BD+) Jung et al., ICML 2023
- For (treatment₁, treatment₂) partitioning treatments,
- spurious paths between (treatment₁, outcome) are blocked by observed variables
- in the experiments for $do(treatment_2)$.

 $\mathbb{E}[Y \mid do(x_1, x_2)] = \sum_{w} \mathbb{E}_{do(x_2)}[Y \mid x_1, w] P_{do(x_1)}(w)$

- Jung et al., ICML 2023 **BD** for Fusion (**BD**+)
- For (treatment₁, treatment₂) partitioning treatments,
- spurious paths between (treatment₁, outcome) are blocked by observed variables
- in the experiments for $do(treatment_2)$.

Doubly Robust Estimator for BD+

Doubly Robust Estimator for BD+

BD+ Parametrization

$$\mathsf{BD}^+(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_{\mathrm{do}(x_2)}}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

•
$$\mu(X_1W) \triangleq \mathbb{E}_{P_{\operatorname{do}(x_2)}}[Y \mid X_1, W]$$

• $\pi(X_1W) \triangleq \frac{\mathbb{I}_{X_1}(X_1)}{P_{\operatorname{do}(x_2)}(X_1 \mid W)} \frac{P_{\operatorname{do}(x_1)}(W)}{P_{\operatorname{do}(x_2)}(W)}$

Doubly Robust Estimator for BD+

BD+ Parametrization

$$\mathsf{BD}^+(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_{\mathrm{do}(x_2)}}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

•
$$\mu(X_1W) \triangleq \mathbb{E}_{P_{\operatorname{do}(x_2)}}[Y \mid X_1, W]$$

• $\pi(X_1W) \triangleq \frac{\mathbb{I}_{X_1}(X_1)}{P_{\operatorname{do}(x_2)}(X_1 \mid W)} \frac{P_{\operatorname{do}(x_1)}(W)}{P_{\operatorname{do}(x_2)}(W)}$

Theorem

DML-BD+($\hat{\mu}, \hat{\pi}$) achieves the followings:

- Double Robustness: Error = 0 if either $\hat{\mu} = \mu$ or $\hat{\pi} = \pi$
- Fast Convergence: Error $\to 0$ fast even when $\hat{\mu} \to \mu$ and $\hat{\pi} \to \pi$ slowly

DML-BD⁺ converges fast, even when $(\hat{\mu}, \hat{\pi})$ converge slowly

DML-BD⁺ converges fast, even when $(\hat{\mu}, \hat{\pi})$ converge slowly

Double Robustness

 $\hat{\boldsymbol{\pi}}$ misspecified ($\hat{\boldsymbol{\pi}} \neq \boldsymbol{\pi}$)

DML-BD+ converges fast, even when $(\hat{\mu}, \hat{\pi})$ converge slowly

DML-BD+ converges to the true causal effect even when $\hat{\mu}$ or $\hat{\pi}$ are misspecified.

Jung et al., NeurIPS 2023

Theorem

- function of BD+.
- data fusion, achieves double robustness and fast convergence.

1. Any causal effect identifiable from data-fusion can be expressed as a

2. DML-gID, which is an estimator for any identifiable causal effects from

Theorem

- function of BD+.
- data fusion, achieves double robustness and fast convergence.

1. Any causal effect identifiable from data-fusion can be expressed as a

2. DML-gID, which is an estimator for any identifiable causal effects from

Whenever computable from data fusion, We can compute sample-efficiently.

Talk Outline

Estimating causal effects from observations

+ its application in healthcare & explainable Al

2 Estimating causal effects from data fusion

3 Unified causal effect estimation method

Talk Outline

Estimating the interventional effects $\mathbb{E}[Y \mid do(x)]$

Fairness Analysis

Salary a man would earn if he had the opportunities that other genders would receive

Offline Policy Evaluation

 $\mathbb{E}[Y_{\tau(X|C)}]$

Recovery rate of a drug dosage policy given baseline characteristics

Joint Treatment Effect

 $\mathbb{E}[Y \mid do(x_1, x_2)]$

Effect of drugs x_1 and x_2 from two trials $do(x_1)$ and $do(x_2)$, respectively

Retrospection $\mathbb{E}[Y_x | \neg x]$

The headache intensity for patients who took aspirin, had they not taken it

Missing Data

 $\mathbb{E}[Y \mid do(x), mis=0]$

The effect of a treatment identifiable from missing data

Domain Transfer

 $\mathbb{E}[Y \mid do(x), S = NY]$

The effect of a treatment in NY identifiable from trials in Chicago

Fairness Analysis

$$\sum_{m} \mathbb{E}[Y \mid m, x) P(m \mid \neg x)$$

Offline Policy Evaluation

 $\sum_{c} \mathbb{E}[Y \mid c, x) \pi(x \mid c) P(c)$

Joint Treatment Effect

$$\sum_{w} \mathbb{E}_{\mathrm{do}(x_2)}[Y \mid x_1, c] P_{\mathrm{do}(x_2)}(w)$$

Unified Covariate Adjustment (UCA)

Unified causal estimation for summation of the product of arbitrary conditional distributions

Jung et al., NeurIPS 2024

Unified Covariate Adjustment (UCA)

$\sum_{x,c} \mathbb{E}_{P_2}[Y \mid x, c] \tau(x \mid c) P_1(c)$

$$\begin{array}{c} & & & & \\ & & \\ \hline \\ \leftarrow P_{do(x_1)} \end{array} \end{array} \xrightarrow{} & \begin{bmatrix} X \\ P_{do(x_2)} \end{bmatrix} \begin{bmatrix} Y \\ X, \end{bmatrix} \\ W \end{bmatrix} \xrightarrow{} \\ \begin{array}{c} & \\ P_{do(x_1)} \end{array}$$

Theorem

UCA can represent **any** causal effects expressible as a sum of products of arbitrary conditional distributions, by choosing $C, P_1, P_2, \tau(\cdot | \cdot)$ properly.

Doubly Robust Estimator for UCA

Doubly Robust Estimator for UCA

UCA Parametrization

$$\mathsf{UCA}(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_2}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

• $\mu(XC) \triangleq \mathbb{E}_{P_2}[Y \mid X, C]$ • $\pi(XC) \triangleq \frac{\tau(X \mid C) P_1(C)}{P_2(X \mid C) P_2(C)}$

Doubly Robust Estimator for UCA

UCA Parametrization

$$\mathsf{UCA}(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_2}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

• $\mu(XC) \triangleq \mathbb{E}_{P_2}[Y \mid X, C]$ • $\pi(XC) \triangleq \frac{\tau(X \mid C) P_1(C)}{P_2(X \mid C) P_2(C)}$

Theorem

DML-UCA($\hat{\mu}, \hat{\pi}$) achieves the followings:

- **Double Robustness:** Error = 0 if either $\hat{\mu} = \mu$ or $\hat{\pi} = \pi$.
- Fast Convergence: Error $\rightarrow 0$ fast even when $\hat{\mu} \rightarrow \mu$ and $\hat{\pi} \rightarrow \pi$ slow.

$(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$ slowly

 $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$ slowly

Domain Transfer

DML-UCA converges fast even when $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$ slowly

 $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$ slowly

Domain Transfer

Talk Outline

Estimating causal effects from observations

+ its application in healthcare & explainable Al

2 Estimating causal effects from data fusion

3 Unified causal effect estimation method

Summary & Future direction

Talk Outline

Summary & Future direction

1. From Observation

1. From Observation

Solution

DML-ID

+ application to

- Healthcare
- Explainable Al

ution So

DML-ID

+ application to

- Healthcare
- Explainable Al

ution S S O

DML-ID

+ application to

- Healthcare
- Explainable Al

- DML-BD+
- DML-gID

ution So

DML-ID

+ application to

- Healthcare
- Explainable Al

3. Unified Estimation

. . .

Fairness

Off-policy evaluation

Counterfactuals

 $\mathbb{E}[Y_x | \neg x]$

• DML-BD+

DML-gID

ution So

DML-ID

+ application to

- Healthcare
- Explainable Al

3. Unified Estimation

Fairness

Off-policy evaluation

Counterfactuals

 $\mathbb{E}[Y_x | \neg x]$

• DML-BD+

• DML-gID

DML-UCA

. . .

Develop robust estimation methods for causal effects across diverse scenarios

Develop robust estimation methods for causal effects across diverse scenarios

Identification

"When is the causal effect computable from data?"

Estimation

"How do we compute the effect from data?"

Develop robust estimation methods for causal effects across diverse scenarios

Identification

"When is the causal effect computable from data?"

Develop robust estimation methods for causal effects across diverse scenarios

Identification

"When is the causal effect computable from data?"

Develop robust estimation methods for causal effects across diverse scenarios

Identification

"When is the causal effect computable from data?"

Approach

- Representation learning taking account of causal dependencies
- New causal inference methods that allows us to use existing representation learning models

Collaborators

Elias Bareinboim (Columbia University)

Jin Tian (MBZUAI)

Alexis Bellot (Google DeepMind)

Sanghack Lee (Seoul National University)

Ivan Diaz (NYU Biostatistics)

Shiva Kasiviswanathan (Amazon)

Dominik Janzing (Amazon)

Kyungwoo Song (Yonsei University)

Sanghyuk Chun (Naver AI)

Shamali Joshi (Columbia Univ. DBMI)

Thank you

Future: Advancing causal inference for complex, real-world benefits

Current: Developing robust estimators for causal effects across diverse scenarios

www.yonghanjung.me/

PhD Student Recruitment

I currently recruiting PhD students to work with me starting in Spring or Fall 2026. My research focuses on causal inference with AI/ML, trustworthy AI, and applications to public health. If you're interested in these areas, please feel free to reach out. You can find more details on my website.

www.yonghanjung.me/

