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Remdesivir use Is associated with
lower mortality in patients with COVID dinical Infectious Diseases, 2019
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Story Behind the Data

Since Remdesivir costs over $2000, wealthier patients are more likely to receive it.
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Story Behind the Data

Observational Study pa) Randomized Trial wHo
Economic Economic
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Feasible, Accessible Gold standard in causal inference

@ Confounding bias @ Expensive, Infeasible
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Fairness Analysis
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ldea for connecting BD and Identification

If -[Y | do(x)] is expressible as a function of BDs (i.e., E[Y | do(x)] = g({BD})),

then, a general estimator for [E[Y | do(x)] can be constructed

by strategically combining DML-BD estimators.
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Background: Causal Effect Identification
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e spanning a tree from P(V)

to reach to causal distribution P(Y | do(X))
factorization & marginalization of

P(CZXY)

Factorization Marginalization

TP(C YWP(XY | ZC)

Factorization
Pyoz) (XY)

TZ P(c)P(XY | Zc)

P(Y | do(X))

Pdo(Z)(Y ‘ X) =

Z P(c)P(XY | Zc)

Z P(c)P(X | Zc)
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* Back-door adjustment (BD) can be computed through DML-BD

S O fa r, * The computation tree for causal effect identification composes

of interventional distributions.
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My Approach: 3-Step

To connect BD & Identification,

c Check if each interventional distribution on the tree is expressible as BD

e Express causal effects as a function of BD

e Construct robust estimators by combining DML-BD
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Estimating Causal Effects in 3-Steps

G CheckKk if each interventional distribution on the tree is expressible as BD

Graph

\_

Distribution

P do(a) (B )

4 Interventional )

]

]

~

CheckBD

~

\_

Check if Py, (B) is
expressed as BD

_J

),

Jung et al., AAAI 2021
Jung et al., NeurlPS 2024

BD-expressible
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Estimating Causal Effects in 3-Steps

G CheckKk if each interventional distribution on the tree is expressible as BD

Theorem

Pyoa)(B) is expressible through BD
If and only if

Pyo(a)(B) passes CheckBD
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e Express causal effects as a function of BD

Y
P(C)P(XY | ZC) JZCP(C)P(XY | Zc)

Factorization Marginalization

Z P(c)P(XY | Zc)

Z P(c)P(X | Zc)

y

P(CZXY) ——— Pyoz)(CXY) ———— Py (XV) 0 poy | do(X)
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e Express causal effects as a function of BD

Factorization

BD(p, 1) ———» P(Y | do(X))
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Estimating Causal Effects in 3-Steps

e Express causal effects as a function of BD

_ BDi(u, )

Factorization BDZ(ﬂ, ﬂ)
BDy(4, 1) ———— P(Y | do(X))
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Estimating Causal Effects in 3-Steps

e Express causal effects as a function of BD

Theorem

Causal effect is identifiable
If and only if

It’s expressible as a function of BD
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DMVL-ID: Estimator for Identifiable Causal Effects

e Construct robust estimators by combining DML-BD

“[Y | do(x)] = g({BD(u;,7,), BD(4,75), *-+, BD(14,,,,77,,) })

| | |

DML-BD DML-BD DML-BD

| l l

_[Y‘ dO(X)] é g({ /BB(//tlaﬂl) ° /BB(//t297T2) s °°°, /BB(//tmaﬂm) })




Robustness of DML-ID

Theorem

Error(DML-ID, E[Y | do(x)]) =

m A\ Va\
- Error(ge;, p;)XError(7;, ;)
® Double Robustness: Error = 0 if either i, = . or 7, = forall i = 1,---, m.

® Fast Convergence: Error — 0 fast even when /i. — . and 7; — 7. slow.
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Fast Convergence

(.t) — (py, my) slowly

0.5-

0.4 1

Errors
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DML-ID converges fast, even
when (ft,7t) converge slowly
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OM (u)
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DML-ID converges to the true causal effect

even when I or 7t are misspecified.
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|dentification Estimation

"When Is the causal effect "How do we compute the
computable from data?”  Connect  offect from available data?”

E€ Whenever computable from data,
We can compute sample-efficiently.

Econ Professor at MIT, who developed DML Turing Award winner, pioneer of causal inference
. Judea Pearl &
= Victor Chernozhukov @ Follow v
""3 @VC31415 < Follow > M @yudapearl < >
Replying to @YonghanJung @PHuenermund the dO—CaICUIUS' The answer’
. : : : surprisingly and pleasingly is YES. This
This is really a fantastic work and is a major Prisingly pieasingly
QL . recent paper causalai.net/r62.pdf shows
contribution.(Incidentally, our DML work was

that EVERY identifiable causal effect can
be estimated by a "Weighted Empirical
Risk Minimization" method, a fancy
name for IPW-like estimation. Worth
keeping in mind.

meant to be a service paper to help applied
researchers use ML for causal inference, and
| don't view our work as a major contribution,
certainly not seminal :-) .)

24
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Application 1. Healthcare Science

RCT EHR mimic-iv. openMRs elcu, ...

Gold standard in

causal inference @ Confounding bias

@ Expensive asy to collect

@ Selection bias Generalizable

Best of Both Worlds

Emulating RCT from EHR

20
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Jung et al., American Thoracic Society, 2018

Result

For seminal RCTs,
. QOur treatment recommendation
. = Trials’ treatment recommendation

Causal graph on Acute Respiratory
Distress Syndrome (ARDS)
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Application 1. Emulating RCT from EHR

Jung et al., American Thoracic Society, 2018

Result

For seminal RCTs,
. QOur treatment recommendation
. = Trials’ treatment recommendation

\ 4

Impact

Our method can be used to

Causal graph on Acute Respiratory ~ construct an initial hypothesis
Distress syndrome (ARDS) before conducting trials.
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Simulation: Better Interpretability

Estimator

Rank Correlation with
True Importances

Implication

DML-do-Shapley

1.0

Estimated feature importance ranking
= True ranking of feature importance

SHAP

-0.28

High true importance ranking
= Low estimated ranks
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Impact on Explainable Al

Unique causality-based feature importance measure that aligns
with human intuition:

® [wo features recelve equal contributions whenever their causal effects are the same.

® ecature’s contribution = O If It has no causal effect

® Feature contributions closely approximate their causal effects on the outcome

e The sum of feature contributions = The outcome f(X;, ---, X )

32
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Motivation: Joint Treatment Effect Estimation

ASpPIrN Wartari - -
v v Challenges for Estimating E[Y | do(x,, x,)]
1 2
U, U, e BD is not applicable
Propengiﬁies ;'{ »~. Dietary
o Asprn =, ' Factors e Not identifiable from observations P(V).
1 ‘» e Can’t run experiments do(x, x,) due to
%4 Y drug-interactions
Platelet Aggregation Bleeding
INhipition Disease

Can E[Y | do(x, x,)] be estimated from two trials Py, (V) and Py, y(V)?
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BD+: BD for Data Fusion

Jung et al., ICML 2023

BD for Fusion (BD+)

® For (tfreatments, treatmenty) partitioning treatments,

® spurious paths between (treatmenty, outcome) are
blocked by observed variables

e in the experiments for do(treatmenty).

\ 4

_do(xz)[Y vy, w]P do(xl)(w)

_/
N— ~ J\\V

Trial on X, Trial on X,
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Doubly Robust Estimator for BD+

BD+ Parametrization

BD+(i,71) = [Epd( )[,MXJT]
OX2
where
o H(X;W) = _Pdo(xz)[Y‘Xl, W]

ﬂxl(Xl) Pdo(xl)(W)
P do(xz)(Xl ‘ W) P do(xz)(W)

, X\ W) &
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Doubly Robust Estimator for BD+

BD+ Parametrization Theorem
N A F A A
BD(u,m) = Ep,  L1X7] DML-BD+(11, %) achieves the followings:
where e Double Robustness: Error = () if either

A\

A=UOrT=T

o /’t(Xlw)é Py (Y] X, W]

L, (X1 Paopey(W) ¢ Fast Convergence: Error — 0 fast even

(X W) = A A
° Pioe) X1 | W) Pyoi (W) when (1 — 1 and 7 — 7 slowly
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DML-BD+ converges fast, even
when (f,7t) converge slowly
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Fast Convergence

(.t) — (py, my) slowly
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Simulation: DML-BD+

Fast Convergence

(I,/l\,ﬁ,') — (ﬂo, 71'0) slowly
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DML-BD+ converges fast, even
when (f,7t) converge slowly
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DML-BD+ converges to the true causal
effect even when jI or t are misspecified.
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(General Estimator for Data Fusion
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(General Estimator for Data Fusion

Input

Effect (Q)

Assumption

&
'-‘O ~'-‘
lS d l‘i J
PN »
X 4
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~

ldentification @ Estimation

-
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- )
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]

Connect

Jung et al., NeurlPS 2023

"‘DML-gID”
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(General Estimator for Data Fusion

Theorem

1. Any causal effect identifiable from data-fusion can be expressed as a
function of BD+.

2. DML-gID, which is an estimator for any identifiable causal effects from
data fusion, achieves double robustness and fast convergence.
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(General Estimator for Data Fusion

Theorem

1. Any causal effect identifiable from data-fusion can be expressed as a
function of BD+.

2. DML-gID, which is an estimator for any identifiable causal effects from
data fusion, achieves double robustness and fast convergence.

k€& Whenever computable from data fusion,
We can compute sample-efficiently.

39



Talk Outline

€@ Cstimating causal effects from observations

+ Its application in healthcare & explainable Al

» (2, cstimating causal effects from data fusion

€ Unified causal effect estimation methoo

O Summary & Future direction
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Talk Outline
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» ©® Unified causal effect estimation method
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Towards More General Causal Inference Queries

Estimating the
iInterventional effects

=Y | do(x)]

41



Towards More General Causal Inference Queries

Fairness Analysis

Salary a man would earn if he had the
opportunities that other genders would receive

Estimating the
interventional effects

=[Y | do(x)]
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Towards More General Causal Inference Queries

Offline Policy Evaluation

Estimating the
interventional effects

=[Y | do(x)]

=D 7(X| C)]

Recovery rate of a drug dosage
policy given baseline characteristics
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Towards More General Causal Inference Queries

Estimating the
interventional effects

=[Y | do(x)]

Joint Treatment Effect

[ Y | do(xy,xy)]

Effect of drugs x; and X, from two trials

do(x;) and do(x,), respectively

41



Towards More General Causal Inference Queries

Estimating the
interventional effects

=[Y | do(x)]

Retrospection

o[V =]

The headache intensity for patients who
took aspirin, had they not taken it
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Towards More General Causal Inference Queries

Missing Data
1Y | do(x), mis=0]

The effect of a treatment identifiable
from missing data

Estimating the
interventional effects

=[Y | do(x)]

41



Towards More General Causal Inference Queries

Domain Transfer

-1 Y | do(x), S=NY]

The effect of a treatment in NY identifiable
from trials in Chicago

Estimating the
interventional effects

=[Y | do(x)]
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Towards More General Causal Inference Queries

Estimating the
interventional effects

=[Y | do(x)]
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Towards More General Causal Inference Queries

2

Offline Policy Evaluation

Fairness Analysis

[V | max)POm | )

[V ] e,x)m(x | )P(c)

Joint Treatment Effect

Zw _do(xz)[Y | x,,¢]P do(xz)(w)

Domain Transfer

Missing Data

Y |x,c, mis=1]P(c | mis=1)

Retrospection

[ Y] e.x)P(c | —x)
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Towards More General Causal Inference Queries

Estimator 3 Estimator 4
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Towards More General Causal Inference Queries

( Jung et al., NeurlPS 2024\

Unified Covariate Adjustment (UCA)

Unified causal estimation for summation of the
poroduct of arbitrary conditional distributions

\_ .




Unified Covariate Adjustment (UCA)

ZX»C = [Y | x, clt(x | ¢)FP(c)




Unified Covariate Adjustment (UCA)

arbitrary arbitrary
distributions distributions

N /

N LY ] x, clex | ©)P ()
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Unified Covariate Adjustment (UCA)

arbitrary arbitrary
distributions outcome distributions
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Unified Covariate Adjustment (UCA)

arbitrary arbitrary policy of arbitrary set of
distributions outcome treatments distributions  variables

RN

N LV ]S clex | )P ()

UCA
ZX»C =p [V | X, cle(x | €)P(c)




Unified Covariate Adjustment (UCA)

arbitrary

arbitrary policy of

distributions outcome treatments

o

z /X,C

UCA

LY x, ele(x | )P, (o)

Py < Pyo(x,)

Py« P do(x,)

T < [ (X)
C<<W

arbitrary

set of
distributions  variables

[

=L [V ] 5, ele(x | )P (O)

BD+

D

PdO()Cz)

[V ] x, W]Pdo(xl)(w)
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Unified Covariate Adjustment (UCA)

arbitrary policy of set of
outcome treatments variables

\ SN

ZX’C[E [V | x, c]t(x | ¢)P(c)

Theorem

UCA can represent any causal effects expressible as a sum of products of arbitrary
conditional distributions, by choosing C, Py, P,, (- | - ) properly.
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Doubly Robust Estimator for UCA

UCA Parametrization

UCA(u,7) 2 [EPz[/’tXﬂ]

where

o L(XCO)ZEp[Y|X, C]

(X | C) P1(C)
Py(X | C) P,(C)

e 7(XC) =
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Doubly Robust Estimator for UCA

UCA Parametrization Theorem
A
UCA, ) = [EPz['u X7] DML-UCA(j4,77) achieves the followings:
where

A ® Double Robustness: Error = 0 if either
o (XC)=Ep|Y|X, C] A A
U=l Orm=T.

o 2(XC) 2 (X | C) P,(C)
& ~ P,(X| O)P,(C) e Fast Convergence: Error — () fast even
when (i — 1 and 7 — 7 slow.
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Simulation: DML-UCA

() — (py, my) slowly
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Simulation: DML-UCA

(f1.t) — (py, 7y) slowly

Fairness Analysis Retrospection Domain Transfer
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Simulation: DML-UCA

(f1.t) — (py, 7y) slowly

Fairness Analysis Retrospection Domain Transfer
0.45- 0.25- 0.5
0.4- \ 0.2- 0.4-
~IPW ()

N 0.35- ) 0.15- C\.\. 0.3-

O
L 0.3 OM () 0.1- ~ 0.2-

~Q
0.25- 0.05- 0.1
~o—_ DML (u,7) — o
0.2- ! 0.0- ! 0.0+
2500 5000 10000 20000 2500 5000 10000 20000 2500 5000 10000 20000
# samples

DML-UCA converges fast even when (f£,7t) — (H, 7y) Slowly
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This Talk: Estimating Causal Effects

1. From Observation
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This Talk: Estimating Causal Effects

2. From Data Fusion
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This Talk: Estimating Causal Effects

1. From Observation 2. From Data Fusion 3. Unified Estimation
Fairness =0 Mﬂx]
Off-policy =
A evaluation [YT(X | C)]

Counterfactuals E[Y x\ —1x]

C DML-ID

O o e DML-BD-
= + application to

g ® Healthcare o DML-gID

® Explainable Al
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This Talk: Estimating Causal Effects

1. From Observation

2. From Data Fusion

3. Unified Estimation

Fairness =4 .. Mﬂx]
Off-policy =%
evaluation o)

Counterfactuals E[Y x\ —1x]

DML-ID
+ application to

® Healthcare

Solution

® Explainable Al

e DML-BD~
e DML-gID

DML-UCA
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Other Work 1: Causal inference Without Graphs

|dentification

Estimation

\_

Input
" Effect(@
g ~[Y | do(x)]

g Graph h
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\_ T W,
Samples
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Jung et al., ICML 2021
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Other Work 2: Instrumental Variable (IV) Analysis
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Other Work 2: Instrumental Variable (IV) Analysis
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Develop robust estimation methods for
causal effects across diverse scenarios

|dentification Estimation

"When Is the causal effect
computable from data®?”

“How do we compute the
effect from data”?”

50



Future 1: Inference with Multi-modal Data

VAN



Future 1: Inference with Multi-modal Data

m
@@a/i\@@



Future 1: Inference with Multi-modal Data

m
@@a/i\@@

E[Y | do(x)] = 2, E[Y|x, c] P(c)



Future 1: Inference with Multi-modal Data

E[Y | do(x)] = 2, E[Y|x, c] P(c)



Future 1: Inference with Multi-modal Data

E[Y | do(x)] = 2



Future 1: Inference with Multi-modal Data

E[Y | do(x)] = 2



Future 1: Inference with Multi-modal Data

E[Y | do(x)] = 2, E[Y |x, r] P(r)



Future 1: Inference with Multi-modal Data

E[Y | do(x)] # 2, EI[Y |x, r] P(r)

___, R doesn’t satisfy the BD criterion
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Future 1: Inference with Multi-modal Data

E[Y | do(x)] = ?
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Future 1: Inference with Multi-modal Data
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E[Y | do(x)] = ? /

Approach

Representation learning taking

account of causal dependencies

tha

> ® New causa

- allows

rep

resentati

iINnfere

UsS to u

Nce I

on lea

et

‘ning

NOds

se existing

models

51



Collaborators

Elias Bareinboim Jin Tian lvan Diaz Shiva Kasiviswanathan  Dominik Janzing
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Thank you

Current: Developing robust estimators for causal effects across diverse scenarios
Future: Advancing causal inference for complex, real-world benefits



PhD Student Recruitment

| currently recruiting PhD students to work with me starting in Spring or Fall 2026.
My research focuses on causal inference with Al/ML, trustworthy Al, and
applications to public health. |t you're interested In these areas, please feel free
to reach out. You can find more details on my website.




