# **Causal Data Science:** Estimating Identifiable Causal Effects

**Department of Computer Science** 

Purdue University

www.yonghanjung.me

### Yonghan Jung

KAIST | Apr. 25, 2025

# **Causal Data Science:** Estimating Identifiable Causal Effects

### **Yonghan Jung**

- **Department of Computer Science** 
  - Purdue University
  - www.yonghanjung.me

- Overview
- Less Technical
- Introduction at a broad & intuitive level

KAIST | Apr. 25, 2025



# **Clinical Infectious Diseases**, 2019

#### **Content Content Content**

Remdesivir becomes first Covid-19 treatment to receive FDA approval

<u>CNN</u>, 2020

### Remdesivir use is associated with lower mortality in patients with COVID Clinical Infectious Diseases, 2019

### Remdesivir becomes first Covid-19 treatment to receive FDA approval

### WHO recommends against use of Remdesivir for COVID patients

<u>CNN</u>, 2020



## What's going on?



#### **Observational Study** (FDA)

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 11%            |
| Non Remdesivir | 20%            |

Positive Correlation with Lower Mortality

VS.

### Randomized Trial (WHO)

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 15%            |
| Non Remdesivir | 15%            |



Since Remdesivir costs over \$2000, wealthier patients are more likely to receive it.

**Observational Study** (FDA)

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 11%            |
| Non Remdesivir | 20%            |

Positive Correlation with Lower Mortality

### Randomized Trial (WHO)

Mortality RateRemdesivir15%Non Remdesivir15%

No Causal Effect to Lower Mortality

VS.



#### **Observational Study** (FDA)



VS.

### Randomized Trial (WHO)

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 15%            |
| Non Remdesivir | 15%            |



#### **Observational Study** (FDA)



VS.

### Randomized Trial (WHO)

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 15%            |
| Non Remdesivir | 15%            |



#### **Observational Study** (FDA)



VS.

### Randomized Trial (WHO)

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 15%            |
| Non Remdesivir | 15%            |



#### **Observational Study** (FDA)



#### Randomized Trial (WHO)



VS.



### **Observational Study** (FDA)



Confounding bias

VS.

### **Randomized Trial** (WHO)





Expensive, Infeasible



#### **Observational Study** (FDA)

|                | Mortality Rate | "C |
|----------------|----------------|----|
| Remdesivir     | 11%            |    |
| Non Remdesivir | 20%            |    |



Causal Inference Pipeline"

#### **Causal Effect**

|                | Mortality Rate |
|----------------|----------------|
| Remdesivir     | 15%            |
| Non Remdesivir | 15%            |





Input



### Graph

### Samples

D from a distribution P











Encode a story (or assumptions) behind the dataset



Input

### Identification

"When is the causal effect computable from available data?"



Graph

### Samples

D from a distribution P



Causal graph on acute respiratory distress syndrome (ARDS)













• Goal: Estimate  $\mathbb{E}[Y \mid do(x_1, x_2)]$  from single interventions  $do(x_1)$  and  $do(x_2)$ .









- Goal: Estimate  $\mathbb{E}[Y \mid do(x_1, x_2)]$  from single interventions  $do(x_1)$  and  $do(x_2)$ .
- Drug interactions between  $X_1$  and  $X_2$









- Goal: Estimate  $\mathbb{E}[Y \mid do(x_1, x_2)]$  from single interventions  $do(x_1)$  and  $do(x_2)$ .
- Drug interactions between  $X_1$  and  $X_2$
- Not identifiable from observations











*(Fairness)* Salary (*Y*) a man (X = x) would earn if he is given the opportunities (*M*) that other genders ( $X \neq x$ ) had received





*(Fairness)* Salary (*Y*) a man (X = x) would earn if he is given the opportunities (*M*) that other genders ( $X \neq x$ ) had received

$$\mathbb{E}[Y_{x,M_{\neg x}}]$$





*(Fairness)* Salary (*Y*) a man (X = x) would earn if he is given the opportunities (*M*) that other genders ( $X \neq x$ ) had received




## Tasks

## Challenges

1 Complicated dependences

2 Data fusion(observations + experiments)

**3** More general scenarios



## Tasks





## 2 Data fusion(observations + experiments)

**3** More general scenarios



## Tasks



Estimating causal effects from observations



## Challenges





## Tasks



Estimating causal effects from observations



Estimating causal effects from data fusion



Unified causal effect estimation method



## Task 3: Unified Estimation Methods





The headache intensity for patients who took aspirin, had they not taken it

## **Offline Policy Evaluation**



Recovery rate of a drug dosage policy given baseline characteristics



 $\mathbb{E}[Y \mid do(x), S = NY]$ 

The effect of a treatment in NY identifiable from trials in Chicago



## Task 3: Unified Estimation Methods









## Task 3: Unified Estimation Methods

Unified causal effect estimation method





## 1 Estimating causal effects from observations

+ its application in healthcare & explainable AI



## Estimating causal effects from observations

+ its application in healthcare & explainable Al





## Estimating causal effects from observations

+ its application in healthcare & explainable Al







## Estimating causal effects from observations

+ its application in healthcare & explainable Al

## 2 Estimating causal effects from data fusion

## 3 Unified causal effect estimation method

## Summary & Future direction



## • Estimating causal effects from observations + its application in healthcare & explainable Al



## **Back-door Criterion**

Spurious paths between (treatments, outcome) are blocked by observed variables (i.e., *no unmeasured confounders*)

(Rubin 74,, Robins 86, Pearl, 95)





## **Back-door Criterion**

Spurious paths between (treatments, outcome) are blocked by observed variables (i.e., *no unmeasured confounders*)

(Rubin 74,, Robins 86, Pearl, 95)







Spurious paths between (treatments, outcome) are blocked by observed variables (i.e., *no unmeasured confounders*)

"Back-door adjustment (BD)"

 $\mathbb{E}[Y \mid do(x)] = \mathsf{BD} \triangleq \sum_{c} \mathbb{E}[Y \mid x, c] P(c)$ 

## **Back-door Criterion**

(Rubin 74,, Robins 86, Pearl, 95)







# 1 $BD(\mu,\pi) = \mathbb{E}[\mu \times \pi]$ , where $\mu(XC) \triangleq \mathbb{E}[Y \mid X, C]$ and $\pi(XC) \triangleq \frac{\mathbb{I}_{x}(X)}{P(X \mid C)}$











## "Double Machine Learning Estimator for Back-door Adjustment" (Chernozhukov et al., 2018) **2** DML-BD( $\hat{\mu}, \hat{\pi}$ ) is a robust estimator:

 $\operatorname{Error}(\mathsf{DML}-\mathsf{BD}(\widehat{\mu},\widehat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\widehat{\mu},\mu) \times \operatorname{Error}(\widehat{\pi},\pi)$ 





## **2** DML-BD( $\hat{\mu}, \hat{\pi}$ ) is a robust estimator: $\operatorname{Error}(\operatorname{DML-BD}(\hat{\mu},\hat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\hat{\mu},\mu) \times \operatorname{Error}(\hat{\pi},\pi)$

• Double Robustness: Error = 0 if either  $\hat{\mu} = \mu$  or  $\hat{\pi} = \pi$ 





## 2 DML-BD( $\hat{\mu}, \hat{\pi}$ ) is a robust estimator: Error(DML-BD( $\hat{\mu}, \hat{\pi}$ ), BD( $\mu, \pi$ )) = Error( $\hat{\mu}, \mu$ ) × Error( $\hat{\pi}, \pi$ )

- Double Robustness: Error = 0 if either  $\hat{\mu} = \mu$  or  $\hat{\pi} = \pi$
- Fast Convergence: Error  $\rightarrow 0$  fast even when  $\hat{\mu} \rightarrow \mu$  and  $\hat{\pi} \rightarrow \pi$  slowly.


#### DML-BD: Robust Estimator for BD

#### $\operatorname{Error}(\mathsf{DML}-\mathsf{BD}(\widehat{\mu},\widehat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\widehat{\mu},\mu) \times \operatorname{Error}(\widehat{\pi},\pi)$ $n^{-1/4}$ $n^{-1/4}$



• Fast Convergence: Error  $\rightarrow 0$  fast even when  $\hat{\mu} \rightarrow \mu$  and  $\hat{\pi} \rightarrow \pi$  slowly.



### **DML-BD: Robust Estimator for BD**



 $n^{-1/2}$ 

#### $\operatorname{Error}(\operatorname{DML-BD}(\hat{\mu},\hat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\hat{\mu},\mu) \times \operatorname{Error}(\hat{\pi},\pi)$ $n^{-1/4}$ $n^{-1/4}$

• Fast Convergence: Error  $\rightarrow 0$  fast even when  $\hat{\mu} \rightarrow \mu$  and  $\hat{\pi} \rightarrow \pi$  slowly.



### DML-BD: Robust Estimator for BD



 $n^{-1/2}$ 

#### $\operatorname{Error}(\operatorname{DML-BD}(\hat{\mu},\hat{\pi}), \operatorname{BD}(\mu,\pi)) = \operatorname{Error}(\hat{\mu},\mu) \times \operatorname{Error}(\hat{\pi},\pi)$ $n^{-1/4}$ $n^{-1/4}$

• Fast Convergence: Error  $\rightarrow 0$  fast even when  $\hat{\mu} \rightarrow \mu$  and  $\hat{\pi} \rightarrow \pi$  slowly.

Property of modern ML models













#### Identification

# $\mathbb{E}[\boldsymbol{Y} \mid do(\boldsymbol{x})] = \frac{\sum_{c} \mathbb{E}[\boldsymbol{Y} \mid \boldsymbol{x}, \boldsymbol{z}, \boldsymbol{c}] P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}{\sum_{c} P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}$





#### Identification

# $\mathbb{E}[\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{x})] = \frac{\sum_{c} \mathbb{E}[\boldsymbol{Y} \mid \boldsymbol{x}, \boldsymbol{z}, \boldsymbol{c}] P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}{\sum_{c} P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{c}) P(\boldsymbol{c})}$

#### **Estimation**





| Data                        | Scenario          | Ide |
|-----------------------------|-------------------|-----|
| $D \sim P$<br>Observational | Back-door<br>(BD) |     |
|                             | Non-BD            |     |

#### entification Estimation



| Data                        | Scenario          | Ide |
|-----------------------------|-------------------|-----|
| $D \sim P$<br>Observational | Back-door<br>(BD) |     |
|                             | Non-BD            |     |





| Data                        | Scenario          | Ide |
|-----------------------------|-------------------|-----|
| $D \sim P$<br>Observational | Back-door<br>(BD) |     |
|                             | Non-BD            |     |





| Data                        | Scenario          | Ide |
|-----------------------------|-------------------|-----|
| $D \sim P$<br>Observational | Back-door<br>(BD) |     |
|                             | Non-BD            |     |







#### **f** $\mathbb{E}[Y | do(x)]$ is expressible as a function of BDs (i.e., $\mathbb{E}[Y | do(x)] = g(\{BD\}))$ ,



#### **f** $\mathbb{E}[Y \mid do(x)]$ is expressible as a function of BDs (i.e., $\mathbb{E}[Y \mid do(x)] = g(\{BD\}))$ ,

#### **then**, a general estimator for $\mathbb{E}[Y \mid do(x)]$ can be constructed



#### $\mathbb{E}[Y \mid do(x)]$ is expressible as a function of BDs (i.e., $\mathbb{E}[Y \mid do(x)] = g(\{BD\}))$ , It.

#### **then**, a general estimator for $\mathbb{E}[Y \mid do(x)]$ can be constructed

strategically combining DML-BD estimators.





#### Identification

- spanning a tree from  $P(\mathbf{V})$
- to reach to causal distribution  $P(Y \mid do(X))$ through factorization & marginalization of
- distributions



#### Identification

- spanning a *tree* from  $P(\mathbf{V})$
- to reach to causal distribution  $P(Y \mid do(X))$ through factorization & marginalization of
- distributions

#### " $P(Y \mid do(X))$ is a function of P(V) via factorizations & marginalizations"



#### Identification

- spanning a *tree* from  $P(\mathbf{V})$
- to reach to causal distribution  $P(Y \mid do(X))$
- through factorization & marginalization of distributions







#### Identification

- spanning a *tree* from  $P(\mathbf{V})$
- to reach to causal distribution  $P(Y \mid do(X))$
- through factorization & marginalization of distributions









#### Identification

- spanning a *tree* from  $P(\mathbf{V})$
- to reach to causal distribution  $P(Y \mid do(X))$
- through factorization & marginalization of distributions









#### Identification

- spanning a *tree* from  $P(\mathbf{V})$
- to reach to causal distribution  $P(Y \mid do(X))$
- through factorization & marginalization of distributions





$$\xrightarrow{\text{ion}} P_{\text{do}(Z)}(XY)$$

$$\sum_{c} P(c)P(XY \mid Zc)$$



- distributions









So far,
Back-door adjustment (BD) car
The computation tree for cause of interventional distributions.

Back-door adjustment (BD) can be computed through DML-BD

The computation tree for *causal effect identification* composes of interventional distributions.



#### To connect BD & Identification,





#### To connect BD & Identification,

**Check** if each interventional distribution on the tree is expressible as BD





#### To connect BD & Identification,



**Express** causal effects as a function of BD

**Check** if each interventional distribution on the tree is expressible as BD





## To connect BD & Identification,





3

**Construct** robust estimators by combining DML-BD

**Check** if each interventional distribution on the tree is expressible as BD







**Check** if each interventional distribution on the tree is expressible as BD





**Check** if each interventional distribution on the tree is expressible as BD





Check if each interventional distribution on the tree is expressible as BD



Interventional Distribution  $P_{do(a)}(B)$ 







**Check** if each interventional distribution on the tree is expressible as BD

Jung et al., AAAI 2021 Jung et al., NeurIPS 2024 CheckBD







**Check** if each interventional distribution on the tree is expressible as BD







**Check** if each interventional distribution on the tree is expressible as BD

#### Theorem

- $P_{do(a)}(B)$  is expressible through BD
  - if and only if
  - $P_{do(a)}(B)$  passes CheckBD

 $= BD(\mu, \pi)$  if **xpressible** 
























































**Express** causal effects as a function of BD

- Theorem
- Causal effect is identifiable
  - If and only if
- It's expressible as a *function of BD*



 $BD_1(\mu, \pi)$ 

 $\mathsf{BD}_2(\mu,\pi)$ 







**3 Construct** robust estimators by combining DML-BD





**3** Construct robust estimators by combining DML-BD

 $\mathbb{E}[Y \mid \operatorname{do}(\mathbf{x})] = g(\{\mathsf{BD}(\mu_1, \pi_1), \mathsf{BD}(\mu_2, \pi_2), \cdots, \mathsf{BD}(\mu_m, \pi_m)\})$ 





#### "DML-ID" E

**3** Construct robust estimators by combining DML-BD

 $\mathbb{E}[Y \mid \operatorname{do}(\mathbf{x})] = g(\{\mathsf{BD}(\mu_1, \pi_1), \mathsf{BD}(\mu_2, \pi_2), \cdots, \mathsf{BD}(\mu_m, \pi_m)\})$ 





### $\mathbb{E}[Y \mid do(\mathbf{x})] = g(\{\mathsf{BD}(\mu_1, \pi_1), \mathsf{BD}(\mu_2, \pi_2), \cdots, \mathsf{BD}(\mu_m, \pi_m)\})$

### "DML-ID" $\mathbb{E}[\widehat{Y \mid \mathrm{do}(\mathbf{x})}] \stackrel{\Delta}{=} g(\{$

**3 Construct** robust estimators by combining DML-BD







**Construct** robust estimators by combining DML-BD



# **Robustness of DML-ID**

### Theorem

# Error(DML-ID, $\mathbb{E}[Y \mid do(x)]) = \sum_{i=1}^{m} \operatorname{Error}(\hat{\mu}_{i}, \mu_{i}) \times \operatorname{Error}(\hat{\pi}_{i}, \pi_{i})$

• Double Robustness: Error = 0 if either  $\hat{\mu}_i = \mu_i$  or  $\hat{\pi}_i = \pi_i$  for all  $i = 1, \dots, m$ .

• **Fast Convergence:** Error  $\rightarrow 0$  fast even when  $\hat{\mu}_i \rightarrow \mu_i$  and  $\hat{\pi}_i \rightarrow \pi_i$  slow.



DML-ID converges fast, even when  $(\hat{\mu}, \hat{\pi})$  converge slowly











DML-ID converges fast, even when  $(\hat{\mu}, \hat{\pi})$  converge slowly

#### **Double Robustness**









DML-ID converges fast, even when  $(\hat{\mu}, \hat{\pi})$  converge slowly

#### **Double Robustness**

DML-ID converges to the true causal effect even when  $\hat{\mu}$  or  $\hat{\pi}$  are misspecified.



## Identification

"When is the causal effect computable from data?"



### Estimation

"How do we compute the effect from available data?"



## Identification

"When is the causal effect computable from data?"

### Whenever computable from data, We can compute sample-efficiently.



### Estimation

"How do we compute the effect from available data?"



## Identification

"When is the causal effect computable from data?"

### Whenever computable from data, We can compute sample-efficiently.

Econ Professor at MIT, who developed DML



**Victor Chernozhukov** @VC31415



Replying to @YonghanJung @PHuenermund

This is really a fantastic work and is a major contribution. (Incidentally, our DML work was meant to be a service paper to help applied researchers use ML for causal inference, and I don't view our work as a major contribution, certainly not seminal :-) .)



### Estimation

"How do we compute the effect from available data?"

Turing Award winner, pioneer of causal inference



Judea Pearl

Follow ) ~

the do-calculus. The answer, surprisingly and pleasingly is YES. This recent paper causalai.net/r62.pdf shows that EVERY identifiable causal effect can be estimated by a "Weighted Empirical Risk Minimization" method, a fancy name for IPW-like estimation. Worth keeping in mind.



# Talk Outline

### Estimating causal effects from observations + its application in healthcare & explainable Al











# Talk Outline



#### + its application in healthcare & explainable Al









#### RCT











#### RCT







EHR MIMIC-IV, OpenMRS eICU, ...





Easy to collect







#### RCT







#### **Emulating RCT from EHR**

EHR MIMIC-IV, OpenMRS elCU, ...







Generalizable

Best of Both Worlds –









### Input



### EHR D from P





#### Input

### Graph Discovery











#### Graph Discovery













### Identification
















# Application 1. Emulating RCT from EHR



Causal graph on Acute Respiratory Distress Syndrome (ARDS)





# Application 1. Emulating RCT from EHR

Y



Causal graph on Acute Respiratory Distress Syndrome (ARDS)

Jung et al., American Thoracic Society, 2018

### Result

For seminal RCTs, Our treatment recommendation = Trials' treatment recommendation







# Application 1. Emulating RCT from EHR

Y



Causal graph on Acute Respiratory Distress Syndrome (ARDS)

Jung et al., American Thoracic Society, 2018

### Result

For seminal RCTs,

Our treatment recommendation

= Trials' treatment recommendation



### Impact

Our method can be used to construct an initial hypothesis before conducting trials.











Contribution of **Discount** to the **Retention**?





Contribution of **Discount** to the **Retention**?







Contribution of **Discount** to the **Retention**?

• SHAP value: one of the most cited measure for the feature importance





Contribution of **Discount** to the **Retention**?

- SHAP value: one of the most cited measure for the feature importance
- Larger discounts contribute less to retention?





Contribution of **Discount** to the **Retention**?



- SHAP value: one of the most cited measure for the feature importance
- Larger discounts contribute less to retention?
- Mismatch with human intuition is due to computing the importance based on correlation
  (e.g. E[retention[discount])







Contribution of **Discount** to the **Retention**?



- SHAP value: one of the most cited measure for the feature importance
- Larger discounts contribute less to retention?
- Mismatch with human intuition is due to computing the importance based on correlation (e.g. E[retention|discount])

Causality-based feature importance measure is essential











### Input

















$$\phi_i = \frac{1}{n} \sum_{S \subseteq [n] \setminus \{i\}} \binom{n-1}{|S|}^{-1} \{ \mathbb{E}[Y | do(\mathbf{x}_S, x_i)] - \mathbb{E}[Y | do(\mathbf{x}_S)] \}$$



## Simulation: Better Interpretability



| n with<br>ICes | Implication |
|----------------|-------------|
|                |             |
|                |             |



## Simulation: Better Interpretability



| n with<br>Ices | Implication                                                                  |  |
|----------------|------------------------------------------------------------------------------|--|
|                | Estimated feature importance ranking<br>= True ranking of feature importance |  |
|                |                                                                              |  |





## Simulation: Better Interpretability



| n with<br>ces | Implication                                                                  |  |
|---------------|------------------------------------------------------------------------------|--|
|               | Estimated feature importance ranking<br>= True ranking of feature importance |  |
|               | High true importance ranking<br>= Low estimated ranks                        |  |





## Impact on Explainable AI



# Impact on Explainable AI

# **Unique** causality-based feature importance measure that aligns with human intuition:





# Impact on Explainable Al



- **Unique** causality-based feature importance measure that aligns with human intuition:
- Two features receive equal contributions whenever their causal effects are the same.





# Impact on Explainable Al

- Two features receive equal contributions whenever their causal effects are the same. • Feature's contribution = 0 if it has no causal effect

**Unique** causality-based feature importance measure that aligns with human intuition:





# Impact on Explainable AI

- Two features receive equal contributions whenever their causal effects are the same. • Feature's contribution = 0 if it has no causal effect
- Feature contributions closely approximate their causal effects on the outcome

**Unique** causality-based feature importance measure that aligns with human intuition:





# Impact on Explainable AI

- Two features receive equal contributions whenever their causal effects are the same. • Feature's contribution = 0 if it has no causal effect
- Feature contributions closely approximate their causal effects on the outcome
- The sum of feature contributions = The outcome  $f(X_1, \dots, X_m)$

**Unique** causality-based feature importance measure that aligns with human intuition:





## Talk Outline



### 2 Estimating causal effects from data fusion









### Talk Outline



### Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$







### Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

• BD is not applicable







### Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

- BD is not applicable
- Not identifiable from observations  $P(\mathbf{V})$ .







### Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

- BD is not applicable
- Not identifiable from observations  $P(\mathbf{V})$ .
- Can't run experiments  $do(x_1, x_2)$  due to drug-interactions




# **Motivation: Joint Treatment Effect Estimation**



### Can $\mathbb{E}[Y \mid do(x_1, x_2)]$ be estimated from two trials $P_{do(x_1)}(V)$ and $P_{do(x_2)}(V)$ ?

### Challenges for Estimating $\mathbb{E}[Y \mid do(x_1, x_2)]$

- BD is not applicable
- Not identifiable from observations  $P(\mathbf{V})$ .
- Can't run experiments  $do(x_1, x_2)$  due to drug-interactions











 $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$ 





### $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

### Back-door (BD) [Pearl, 95]

Spurious paths between (treatments, outcome) are blocked by observed variables





### $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

### Back-door (BD) [Pearl, 95]

Spurious paths between (treatments, outcome) are blocked by observed variables







### $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

- BD for Fusion (BD+) Jung et al., ICML 2023
- For (treatment<sub>1</sub>, treatment<sub>2</sub>) partitioning treatments,
- spurious paths between (treatment<sub>1</sub>, outcome) are blocked by observed variables
- in the experiments for  $do(treatment_2)$ .





### $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

- BD for Fusion (BD+) Jung et al., ICML 2023
- For (treatment<sub>1</sub>, treatment<sub>2</sub>) partitioning treatments,
- spurious paths between (treatment<sub>1</sub>, outcome) are blocked by observed variables
- in the experiments for  $do(treatment_2)$ .





### $\mathbb{E}[Y \mid \mathrm{do}(x_1, x_2)]$

### BD for Fusion (BD+) Jung et al., ICML 2023

• For (treatment<sub>1</sub>, treatment<sub>2</sub>) partitioning treatments,

 spurious paths between (treatment<sub>1</sub>, outcome) are blocked by observed variables

• in the experiments for  $do(treatment_2)$ .







 $\mathbb{E}[Y \mid do(x_1, x_2)] = \sum_{w} \mathbb{E}_{do(x_2)}[Y \mid x_1, w] P_{do(x_1)}(w)$ 

- BD for Fusion (BD+) Jung et al., ICML 2023
- For (treatment<sub>1</sub>, treatment<sub>2</sub>) partitioning treatments,
- spurious paths between (treatment<sub>1</sub>, outcome) are blocked by observed variables
- in the experiments for  $do(treatment_2)$ .









 $\mathbb{E}[Y \mid do(x_1, x_2)] = \sum_{w} \mathbb{E}_{do(x_2)}[Y \mid x_1, w] P_{do(x_1)}(w)$ 

- Jung et al., ICML 2023 **BD** for Fusion (**BD**+)
- For (treatment<sub>1</sub>, treatment<sub>2</sub>) partitioning treatments,
- spurious paths between (treatment<sub>1</sub>, outcome) are blocked by observed variables
- in the experiments for  $do(treatment_2)$ .







# Doubly Robust Estimator for BD+





# Doubly Robust Estimator for BD+

## **BD+ Parametrization**

$$\mathsf{BD}^+(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_{\mathrm{do}(x_2)}}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

• 
$$\mu(X_1W) \triangleq \mathbb{E}_{P_{\operatorname{do}(x_2)}}[Y \mid X_1, W]$$
  
•  $\pi(X_1W) \triangleq \frac{\mathbb{I}_{X_1}(X_1)}{P_{\operatorname{do}(x_2)}(X_1 \mid W)} \frac{P_{\operatorname{do}(x_1)}(W)}{P_{\operatorname{do}(x_2)}(W)}$ 





# Doubly Robust Estimator for BD+

## **BD+ Parametrization**

$$\mathsf{BD}^+(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_{\mathrm{do}(x_2)}}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

• 
$$\mu(X_1W) \triangleq \mathbb{E}_{P_{\operatorname{do}(x_2)}}[Y \mid X_1, W]$$
  
•  $\pi(X_1W) \triangleq \frac{\mathbb{I}_{X_1}(X_1)}{P_{\operatorname{do}(x_2)}(X_1 \mid W)} \frac{P_{\operatorname{do}(x_1)}(W)}{P_{\operatorname{do}(x_2)}(W)}$ 

### Theorem

DML-BD+( $\hat{\mu}, \hat{\pi}$ ) achieves the followings:

- Double Robustness: Error = 0 if either  $\hat{\mu} = \mu$  or  $\hat{\pi} = \pi$
- Fast Convergence: Error  $\to 0$  fast even when  $\hat{\mu} \to \mu$  and  $\hat{\pi} \to \pi$  slowly



DML-BD<sup>+</sup> converges fast, even when  $(\hat{\mu}, \hat{\pi})$  converge slowly





DML-BD<sup>+</sup> converges fast, even when  $(\hat{\mu}, \hat{\pi})$  converge slowly

### Double Robustness

 $\hat{\boldsymbol{\pi}}$  misspecified ( $\hat{\boldsymbol{\pi}} \neq \boldsymbol{\pi}$ )









DML-BD+ converges fast, even when  $(\hat{\mu}, \hat{\pi})$  converge slowly

DML-BD+ converges to the true causal effect even when  $\hat{\mu}$  or  $\hat{\pi}$  are misspecified.



Jung et al., NeurIPS 2023





## Theorem

- function of BD+.
- data fusion, achieves double robustness and fast convergence.

1. Any causal effect identifiable from data-fusion can be expressed as a

2. DML-gID, which is an estimator for any identifiable causal effects from





## Theorem

- function of BD+.
- data fusion, achieves double robustness and fast convergence.

1. Any causal effect identifiable from data-fusion can be expressed as a

2. DML-gID, which is an estimator for any identifiable causal effects from

Whenever computable from data fusion, We can compute sample-efficiently.





# Talk Outline

## Estimating causal effects from observations

+ its application in healthcare & explainable Al

## 2 Estimating causal effects from data fusion

3 Unified causal effect estimation method







# Talk Outline









Estimating the interventional effects  $\mathbb{E}[Y \mid do(x)]$ 



### **Fairness Analysis**



Salary a man would earn if he had the opportunities that other genders would receive





### **Offline Policy Evaluation**

 $\mathbb{E}[Y_{\tau(X|C)}]$ 

Recovery rate of a drug dosage policy given baseline characteristics



### Joint Treatment Effect

 $\mathbb{E}[Y \mid do(x_1, x_2)]$ 

Effect of drugs  $x_1$  and  $x_2$  from two trials  $do(x_1)$  and  $do(x_2)$ , respectively



## Retrospection $\mathbb{E}[Y_x | \neg x]$

The headache intensity for patients who took aspirin, had they not taken it



### **Missing Data**

 $\mathbb{E}[Y \mid do(x), mis=0]$ 

The effect of a treatment identifiable from missing data







### **Domain Transfer**

 $\mathbb{E}[Y \mid do(x), S = NY]$ 

The effect of a treatment in NY identifiable from trials in Chicago





**Fairness Analysis** 

$$\sum_{m} \mathbb{E}[Y \mid m, x) P(m \mid \neg x)$$

### **Offline Policy Evaluation**

 $\sum_{c} \mathbb{E}[Y \mid c, x) \pi(x \mid c) P(c)$ 

### Joint Treatment Effect

$$\sum_{w} \mathbb{E}_{\mathrm{do}(x_2)}[Y \mid x_1, c] P_{\mathrm{do}(x_2)}(w)$$

















### **Unified Covariate Adjustment (UCA)**

Unified causal estimation for summation of the product of arbitrary conditional distributions

Jung et al., NeurIPS 2024





# Unified Covariate Adjustment (UCA)

## $\sum_{x,c} \mathbb{E}_{P_2}[Y \mid x, c] \tau(x \mid c) P_1(c)$




































$$\begin{array}{c} & & & & \\ & & \\ \hline \\ \leftarrow P_{do(x_1)} \end{array} \end{array} \xrightarrow{} & \begin{bmatrix} X \\ P_{do(x_2)} \end{bmatrix} \begin{bmatrix} Y \\ X, \end{bmatrix} \\ W \end{bmatrix} \xrightarrow{} \\ \begin{array}{c} & \\ P_{do(x_1)} \end{array}$$







### Theorem

UCA can represent **any** causal effects expressible as a sum of products of arbitrary conditional distributions, by choosing  $C, P_1, P_2, \tau(\cdot | \cdot)$  properly.





# Doubly Robust Estimator for UCA





# Doubly Robust Estimator for UCA

### **UCA Parametrization**

$$\mathsf{UCA}(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_2}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

•  $\mu(XC) \triangleq \mathbb{E}_{P_2}[Y \mid X, C]$ •  $\pi(XC) \triangleq \frac{\tau(X \mid C) P_1(C)}{P_2(X \mid C) P_2(C)}$ 





# Doubly Robust Estimator for UCA

### **UCA Parametrization**

$$\mathsf{UCA}(\boldsymbol{\mu},\boldsymbol{\pi}) \triangleq \mathbb{E}_{P_2}[\boldsymbol{\mu} \times \boldsymbol{\pi}]$$

where

•  $\mu(XC) \triangleq \mathbb{E}_{P_2}[Y \mid X, C]$ •  $\pi(XC) \triangleq \frac{\tau(X \mid C) P_1(C)}{P_2(X \mid C) P_2(C)}$ 

### Theorem

DML-UCA( $\hat{\mu}, \hat{\pi}$ ) achieves the followings:

- **Double Robustness:** Error = 0 if either  $\hat{\mu} = \mu$  or  $\hat{\pi} = \pi$ .
- Fast Convergence: Error  $\rightarrow 0$  fast even when  $\hat{\mu} \rightarrow \mu$  and  $\hat{\pi} \rightarrow \pi$  slow.









### $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$ slowly









 $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$  slowly

### **Domain Transfer**











DML-UCA converges fast even when  $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$  slowly

 $(\hat{\mu}, \hat{\pi}) \rightarrow (\mu_0, \pi_0)$  slowly

### **Domain Transfer**







## Talk Outline

### Estimating causal effects from observations

+ its application in healthcare & explainable Al

### 2 Estimating causal effects from data fusion

### 3 Unified causal effect estimation method

### Summary & Future direction





## Talk Outline



### Summary & Future direction







### 1. From Observation





### 1. From Observation



Solution

### DML-ID

+ application to

- Healthcare
- Explainable Al





ution So

### DML-ID

+ application to

- Healthcare
- Explainable Al





ution S S O

### DML-ID

+ application to

- Healthcare
- Explainable Al

- DML-BD+
- DML-gID





ution So

### DML-ID

+ application to

- Healthcare
- Explainable Al

### 3. Unified Estimation

. . .

Fairness

Off-policy evaluation

Counterfactuals

 $\mathbb{E}[Y_x | \neg x]$ 

• DML-BD+

DML-gID







ution So

### DML-ID

+ application to

- Healthcare
- Explainable Al

### 3. Unified Estimation

Fairness

Off-policy evaluation

Counterfactuals

 $\mathbb{E}[Y_x | \neg x]$ 

### • DML-BD+

• DML-gID

DML-UCA

. . .



# Develop robust estimation methods for causal effects across diverse scenarios





# Develop robust estimation methods for causal effects across diverse scenarios

### Identification

"When is the causal effect computable from data?"

### Estimation

"How do we compute the effect from data?"




## Develop robust estimation methods for causal effects across diverse scenarios

#### Identification

"When is the causal effect computable from data?"







# Develop robust estimation methods for causal effects across diverse scenarios

#### Identification

"When is the causal effect computable from data?"











# Develop robust estimation methods for causal effects across diverse scenarios

#### Identification

"When is the causal effect computable from data?"



#### Approach

- Representation learning taking account of causal dependencies
- New causal inference methods that allows us to use existing representation learning models









#### Collaborators



Elias Bareinboim (Columbia University)



Jin Tian (MBZUAI)





Alexis Bellot (Google DeepMind)



Sanghack Lee (Seoul National University)



Ivan Diaz (NYU Biostatistics)



Shiva Kasiviswanathan (Amazon)



Dominik Janzing (Amazon)

Kyungwoo Song (Yonsei University)



Sanghyuk Chun (Naver AI)



Shamali Joshi (Columbia Univ. DBMI)







# Thank you

# **Future**: Advancing causal inference for complex, real-world benefits



**Current**: Developing robust estimators for causal effects across diverse scenarios

www.yonghanjung.me/



# PhD Student Recruitment

I currently recruiting PhD students to work with me starting in Spring or Fall 2026. My research focuses on causal inference with AI/ML, trustworthy AI, and applications to public health. If you're interested in these areas, please feel free to reach out. You can find more details on my website.



www.yonghanjung.me/

