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Positive Correlation with Lower Mortality No Causal Effect to Lower Mortality
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Since Remdesivir costs over $2000, wealthier patients are more likely to receive it.
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Standard Causal Inference Pipeline 

Q = f(P)

X

C

Y Q = ∑c
𝔼[Y ∣ x, c]P(c) Double Machine Learning (DML)

 from a distribution D P
Samples 

Input
“When is the causal effect 

computable from available data?” 

Identification 
“How do we compute the 

effect from data?”

Estimation 

“Back-Door”
“Back-Door Adjustment”

Pearl, 95 Chernozhukov et al, 2018
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Task 3: Unified Estimation Methods 
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The headache intensity for 
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they not taken it

𝔼[Yx∣¬x]
Domain Transfer

   NY𝔼[Y ∣ do(x), S= ]
The effect of a treatment in NY 

identifiable from trials in Chicago

…
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Q̂ = ̂f(D)Q = f(P)

✔

D ∼ P
Samples 

Input Identification Estimation 
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✔

Application
• Healthcare 

• Explainable AI

Jung et al., AAAI, 2021

Jung et al., American 
Thoracic Society, 2018

Jung et al., ICML, 2022
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Background: Back-door Adjustment (BD)

12

X Y

C

Back-door Criterion 
(Rubin 74,, Robins 86, Pearl, 95)

Spurious paths between (treatments, outcome) are blocked by 
observed variables (i.e., no unmeasured confounders)

“Back-door adjustment (BD)”

“Back-door graph”

    𝔼[Y ∣ do(x)] = BD ≜ ∑c
𝔼[Y ∣ x, c]P(c)
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2 DML-BD( , ) is a robust estimator: ̂μ ̂π
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13

BD( , ) ,μ π =𝔼[μ×π]1 where  and   μ(XC) ≜ 𝔼    π(XC) ≜
𝕀

 

2 DML-BD( , ) is a robust estimator: ̂μ ̂π
DML-BD( , ), BD( , )   ,   ,Error( ̂μ ̂π μ π ) = Error( ̂μ μ) × Error( ̂π π)

• Double     if either    or   Error = 0 ̂μ = μ ̂π = π

• Fast Convergence:    fast even when    and    slowly.Error → 0 ̂μ → μ ̂π → π
Property of modern ML models

n−1/4n−1/4n−1/2
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  𝔼[Y ∣ do(x)] =
∑c 𝔼[Y ∣ x, z, c]P(x ∣ z, c)P(c)

∑c P(x ∣ z, c)P(c)

Identification

Estimation

❓

X Y

Z

C

U1
U2

Actual treatment Outcome

Doctors’ recommendation 
on taking treatments

Genetic factors

Patients’ pre-treatment 
health condition Lifestyle factors 

(Diet, Smoking) 

  𝔼[Y ∣ do(x)]=

  𝔼[Y ∣ do(x)]
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Idea for connecting BD and Identification 

   is expressible as a function of BDs (i.e.,    = ), 𝔼[Y ∣ do(x)] 𝔼[Y ∣ do(x)] g({BD})If

then, a general estimator for    can be constructed𝔼[Y ∣ do(x)]

by strategically combining DML-BD estimators.
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Background: Causal Effect Identification 

P(CZXY)

X Y

Z

C

U1 U2

Pdo(Z)(CXY) Pdo(Z)(XY) P(Y ∣ do(X))

P(C)P(XY ∣ ZC)

Factorization

∑c
P(c)P(XY ∣ Zc)

Pdo(Z)(Y ∣ X) ∑c
P(c)P(XY ∣ Zc)

∑c
P(c)P(X ∣ Zc)

=

Marginalization

Identification
• spanning a tree from   
• to reach to causal distribution  
• through factorization & marginalization of 

distributions 

P(V)
P(Y ∣ do(X))

Factorization
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My Approach: 3-Step

1 Check if each interventional distribution on the tree is expressible as BD

2 Express causal effects as a function of BD

3 Construct robust estimators by combining DML-BD

So far, • Back-door  

• The computation tree for causal ff fi


To connect BD & Identification,



19

Estimating Causal Effects in 3-Steps

1 Check if each interventional distribution on the tree is expressible as BD



19

Estimating Causal Effects in 3-Steps
1 Check if each interventional distribution on the tree is expressible as BD



19

Estimating Causal Effects in 3-Steps

Pdo(a)(B)

Interventional 
Distribution

Graph

1 Check if each interventional distribution on the tree is expressible as BD



19

Estimating Causal Effects in 3-Steps

Pdo(a)(B)

Interventional 
Distribution

Graph

Check if  is 
expressed as BD

Pdo(a)(B)

CheckBD

1 Check if each interventional distribution on the tree is expressible as BD

Jung et al., AAAI 2021
Jung et al., NeurIPS 2024



19

Estimating Causal Effects in 3-Steps

 if 
BD-expressible 

Pdo(a)(B) = BD(μ, π)

Pdo(a)(B)

Interventional 
Distribution

Graph

Check if  is 
expressed as BD

Pdo(a)(B)

CheckBD

1 Check if each interventional distribution on the tree is expressible as BD

Jung et al., AAAI 2021
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Estimating Causal Effects in 3-Steps

 if 
BD-expressible 

Pdo(a)(B) = BD(μ, π)

Pdo(a)(B)

Interventional 
Distribution

Graph

Check if  is 
expressed as BD

Pdo(a)(B)

CheckBD

1 Check if each interventional distribution on the tree is expressible as BD

Jung et al., AAAI 2021
Jung et al., NeurIPS 2024 is expressible through BD Pdo(a)(B)

if and only if 

 passes CheckBDPdo(a)(B)

Theorem
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2 Express causal effects as a function of BD

X Y

Z

C
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P(CZXY) Pdo(Z)(CXY) P(Y ∣ do(X))BD1(μ, π)

BD1(μ, π)
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Factorization Marginalization Factorization
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Estimating Causal Effects in 3-Steps
2 Express causal effects as a function of BD

X Y

Z

C
U1 U2

P(CZXY) Pdo(Z)(CXY) P(Y ∣ do(X))BD1(μ, π)

BD1(μ, π)
BD2(μ, π)

=
Factorization Marginalization Factorization

Causal effect is identifiable 

Theorem

If and only if 

It’s expressible as a function of BD
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DML-ID: Estimator for Identifiable Causal Effects

𝔼[Y ∣ do(x)]    g({BD(μ1,π1), BD(μ2,π2), ⋯, BD(μm,πm)})=

̂𝔼[Y ∣ do(x)] ≜ ̂BD (μ1,π1)  , ̂BD (μ2,π2)  , ⋯, ̂BD (μm,πm)g({ })

DML-BD DML-BD DML-BD⋯

3 Construct robust estimators by combining DML-BD

“DML-ID”
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Robustness of DML-ID 

• Double Robustness:    if either    or    for all .Error = 0 ̂μi = μi ̂πi = πi i = 1,⋯, m

• Fast Convergence:    fast even when    and    slow.Error → 0 ̂μi → μi ̂πi → πi

Theorem

, Error(DML-ID 𝔼[Y ∣ do(x)]) = , , ∑m
i=1Error( ̂μi μi)×Error( ̂πi πi)
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DML-ID - Simulation

,  slowly( ̂μ π̂) → (μ0, π0)

Fast Convergence

DML-ID converges fast, even 
when ,  converge slowly( ̂μ π̂)

DML-ID converges to the true causal effect 
even when  or  are misspecified.̂μ π̂
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"When is the causal effect 
computable from data?”

Identification
“How do we compute the 

effect from available data?”

Estimation

Whenever computable from data,  
We can compute sample-efficiently. “

Econ Professor at MIT, who developed DML Turing Award winner, pioneer of causal inference
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Talk Outline 

2 Estimating causal effects from data fusion   

3 Unifi

1 Estimating causal effects from observations  
+ its application in healthcare & explainable AI

4 Summary & Future direction
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Application 1. Healthcare Science

RCT

Gold standard in 
causal inference

Expensive

Selection bias

EHR

Confounding bias

Easy to collect

Generalizable 

MIMIC-IV, OpenMRS eICU, …

Best of Both Worlds

Emulating RCT from EHR
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Application 1. Emulating RCT from EHR
Input Identification Estimation

Effect (Q)
𝔼[Y ∣ do(x)]

EHR
 from D P

Domain 
Knowledge

Graph Q = f(P) Q̂ = ̂f(D)

Graph Discovery
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Application 1. Emulating RCT from EHR

Causal graph on Acute Respiratory 
Distress Syndrome (ARDS)

For seminal RCTs, 
Our treatment recommendation 

= Trials’ treatment recommendation

Result

Our method can be used to 
construct an initial hypothesis 

before conducting trials.

Impact

Jung et al., American Thoracic Society, 2018
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Application 2. Explainable AI

Contribution of Discount to the Retention?

• SHAP value: one of the most cited 
measure for the feature importance 

• Larger discounts contribute less to 
retention?

• Mismatch with human intuition is 
due to computing the importance 
based on correlation  
(e.g. )𝔼[retention∣discount]

Causality-based feature importance 
measure is essential

Retention

Economy

Discount

Needs

Sales 
calls

Interactions

Upgrade

Ads

Usage

Bugs
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do-Shapley: Causality-based Feature Attribution

• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Attribution 

ϕi =
1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{𝔼[Y |do(xS, xi)] − 𝔼[Y |do(xS)]}

Jung et al.,ICML  2022
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Graph
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Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Identification Estimation Attribution 

ϕi = f(P)

Determine if  is 
computable from 

available data 

ϕi

̂ϕi = ̂f(D)
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do-Shapley: Causality-based Feature Attribution

• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Identification Estimation Attribution 

ϕi = f(P)

Determine if  is 
computable from 

available data 

ϕi

̂ϕi = ̂f(D)

DML-do-Shapley

DML-ID

Jung et al.,ICML  2022
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Simulation: Better Interpretability

Rank Correlation with 
True Importances

DML-do-Shapley

Estimator

SHAP

1.0

-0.28

Estimated feature importance ranking

= True ranking of feature importance

Implication

High true importance ranking 

= Low estimated ranks
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Impact on Explainable AI

Unique causality-based feature importance measure that aligns 
with human intuition:

• Two features receive equal contributions whenever their causal effects are the same.

• Feature’s contribution = 0 if it has no causal effect 

• Feature contributions closely approximate their causal effects on the outcome

• The sum of feature contributions = The outcome f(X1, ⋯, Xm)
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Factors
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Challenges for Estimating    𝔼[Y ∣ do(x1, x2)]

• Can’t run experiments  due to 
drug-interactions

do(x1, x2)

• BD is not applicable

• Not identifiable from observations .P(V)

Can    be estimated from two trials   and ?𝔼[Y ∣ do(x1, x2)] Pdo(x1)(V) Pdo(x2)(V)
35
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Back-door (BD) [Pearl, 95] 

Spurious paths between (treatments, outcome) 
are blocked by observed variables 

BD for Fusion (BD+)
Jung et al., ICML 2023

• For (treatment1, treatment2) partitioning treatments,  

• spurious paths between (treatment1, outcome)  are 
blocked by observed variables  

• in the experiments for treatment2 .do( )

  , = ∑w
𝔼do(x2)[Y ∣x1 w]Pdo(x1)(w)

Trial on X2 Trial on X1

  𝔼[Y ∣ do(x1, x2)]

X1 X2
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Doubly Robust Estimator for BD+ 

DML-BD+( , ) achieves the followings:̂μ ̂π

• Double Robustness:    if either 
   or   

Error = 0
̂μ = μ ̂π = π

• Fast Convergence:    fast even 
when    and    slowly

Error → 0
̂μ → μ ̂π → π

TheoremBD+ Parametrization

BD+( , )  μ π ≜ 𝔼Pdo(x2)
[μ×π]

•       μ(X1W) ≜ 𝔼Pdo(x2)
[Y ∣ X1, W]

where

• π(X1W) ≜
𝕀x1

(X1)
Pdo(x2)(X1 ∣ W)

Pdo(x1)(W)
Pdo(x2)(W)
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Fast Convergence
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𝔼[Y ∣ do(x)]

39

General Estimator for Data Fusion 

✔

Input Identification Estimation 

Assumption

{DZ} ∼ {Pdo(Z)}
Data Fusion

✔
Q = g({BD+}) Q̂ = g({ ̂BD+} )

Jung et al., NeurIPS 2023

“DML-gID”

Theorem
1. Any causal effect identifiable from data-fusion can be expressed as a 

function of BD+. 

2. DML-gID, which is an estimator for any identifiable causal effects from 
data fusion, achieves double robustness and fast convergence.

Whenever computable from data fusion,  
We can compute sample-efficiently. “
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Towards More General Causal Inference Queries

Unified Covariate Adjustment (UCA)

Unified causal estimation for summation of the 
product of arbitrary conditional distributions

Jung et al., NeurIPS 2024
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Unified Covariate Adjustment (UCA)

     ∑x,c𝔼P2
[Y ∣ x, c]τ(x ∣ c)P1(c)

arbitrary 
distributions

arbitrary 
distributions

arbitrary policy of 
treatments

set of 
variablesoutcome

     ∑x,c𝔼P2
[Y ∣ x, c]τ(x ∣ c)P1(c)

UCA

   ∑w𝔼Pdo(x2)
[Y ∣ x, w]Pdo(x1)(w)

BD+

τ ← 𝕀x(X)
C ← W

  P1 ← Pdo(x1)

  P2 ← Pdo(x2)

Theorem
UCA can represent any causal effects expressible as a sum of products of arbitrary 

conditional distributions, by choosing , , ,  properly. C P1 P2 τ( ⋅ ∣ ⋅ )
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DML-UCA( , ) achieves the followings: ̂μ ̂π

• Double Robustness:    if either 
   or   .

Error = 0
̂μ = μ ̂π = π

• Fast Convergence:    fast even 
when    and    slow.

Error → 0
̂μ → μ ̂π → π
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Simulation: DML-UCA 
,  slowly( ̂μ π̂) → (μ0, π0)
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DML-UCA converges fast even when ,  slowly( ̂μ π̂) → (μ0, π0)
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4 Summary & Future direction

✔
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Effect (Q)
𝔼[Y ∣ do(x)]

Graph Q̂ = ̂f(D)Q = f(P)

 from D P
Samples 

Input Identification Estimation 

✔
Approximated, 

Incomplete Graph ✔

Jung et al., ICML 2021
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Other Work 2: Instrumental Variable (IV) Analysis

Effect (Q)
P(Y ∣ do(x), complier)

Graph

Q̂ = ̂f(D)Q = f(P)

 from D P
Samples 

Input Identification Estimation 

X YIV

actual 
treatment

prescribed 
treatment

✔

⭐ Jung et al., NeurIPS 2021 (Spotlight)

Imbens & Angrist won the 
2021 Nobel Prize in 
Economics for their 

achievements in IV analysis.

✔with additional 
assumptions 
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Future 1: Inference with Multi-modal Data

X Y

CR

   𝔼[Y ∣ do(x)] = ∑c
 , 𝔼[Y ∣x c] P(c)❓∑r
 , 𝔼[Y ∣x r] P(r)

Representation 
learning

 doesn’t satisfy the BD criterionR

• Representation learning taking 
account of causal dependencies 

Approach

• New causal inference methods 
that allows us to use existing 
representation learning modelsX Y

C

   𝔼[Y ∣ do(x)] =❓
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Thank you

www.yonghanjung.me/

Current: Developing robust estimators for causal effects across diverse scenarios 
Future: Advancing causal inference for complex, real-world benefits



PhD Student Recruitment 

www.yonghanjung.me/

I currently recruiting PhD students to work with me starting in Spring or Fall 2026. 
My research focuses on causal inference with AI/ML, trustworthy AI, and 
applications to public health. If you’re interested in these areas, please feel free 
to reach out. You can find more details on my website.


