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D” for simplicity, but all results extend to mSBD (as shown in the thesis).
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P(y [dox))= ), ] Pyl previy.x;2)
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ldea for connecting BD and Identification

If [ Y | do(x)] is expressible as a function of BDs (i.e., E[Y | do(x)] = f{{BD})),

then, a general estimator for [E[Y | do(x)] can be constructed

by strategically combining robust BD estimators.
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to reach to causal distribution P(Y | do(X))
through

factorization & marginalization of

distribu

1ONS

P(CZXY)

Factorization Marginalization

TP(C)P(XY | ZC)

Factorization
Pyoz) (XY)

TZ P(c)P(XY | Zc)

P(Y | do(X))

Pioin(Y | X) =

Z P(c)P(XY | Zc)

Z P(c)P(X | Zc)
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 BDs (or mSBDs) can be estimated sample-efficiently using

S O f a r robust estimators
5 + The computation tree for the effect identification is composed

of interventional distributions as intermediate nodes.
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My Approach: 3-Step

To connect BD & Identification,

c Check if each interventional distribution on the tree is expressible as BD
e Express causal effects as a function of BD

e Construct robust estimators by using robust BD estimators
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Complete Criterion for mSBD Adjustment

G Check if each interventional distribution on the tree is expressible as BD

Graph

\_

Distribution

P do(a) (B )

4 Interventional )

\_ |

y g Seqguential Adjustment Criterion

-

~

(Sec. 3.2.1) | PdO(d)(B) — BD(IU, 7[) If
BD-expressible

Check if Py, (B) is expressed as BD
N

S
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Motivation: Incompleteness of BD/mSBD (Sec 3.2)

J examples s.t. P(y | do(x)) is BD adjustment even if BD criterion fails.

Z,2 (2,2, Z,2 (2.7,

a Z. doesn’t satisfy the mSBD criterion “mSBD adjustment”

/\
~ O~

e P(y,y, | do(xx,))= Z P(y, | prev,, 2,x,)P(y,Z, | Z;x,)P(z,)

1,7,
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[Def. 29] Sequential Adjustment
Criterion (SAC)

Aseq. L = (4, -, Z,) satisfies the SAC if, for

(1= 1,--,m, Z;V prev._. satisfies the adjustment

1
criterion relative to (X;, Y=
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[Def. 29] Sequential Adjustment

Criterion (SAC)

(1= 1,--,m, Z;V prev.

criterion relative to (X, Y=

Aseq. L = (4, -, Z,) satisfies the SAC if, for
satisfies the adjustment

|

Complete criterion for the
BD adjustment [Shpitser
et al., 2010, van der
Zander et al., 2014)
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Complete Seq. Adjustment Criterion (Sec 3.2)

[Def. 29] Sequential Adjustment
Criterion (SAC)

Aseq. L = (4, -, 1, ) satisfies the SAC if, for

1 = 1,---,m, £;U prev._, satisfies the adjustment

1
criterion relative to (X;, Y=

Z,2 (2,7, Z,2 (2.7,
ZCZ ZC

Zy

Zy

— [Theorem 10] Completeness —

P(y | do(x)) is given as mSBD.

X mSBD fails

v SAC holds
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e Express causal effects as a function of BD

Y
P(C)P(XY | ZC) JZCP(C)P(XY | Zc)

Factorization Marginalization

Z P(c)P(XY | Zc)

Z P(c)P(X | Zc)

y

P(CZXY) ——— Pyoz)(CXY) ———— Py (XV) 0 poy | do(X)
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Estimating Causal Effects in 3-Steps

e Express causal effects as a function of BD

_ BDi(u, )

Factorization BDZ(ﬂ, ﬂ)
BDy(4, 1) ———— P(Y | do(X))



Estimating Causal Effects in 3-Steps

e Express causal effects as a function of BD

Theorem 14

The followings are equivalent:

1. P(y | do(x)) is identifiable from (&, P)

2. P(y | do(x)) is expressible as a function of BDs
through AdmissiblelD (Algo 4)
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DMVL-ID: Estimator for Identifiable Causal Effects

e Construct robust estimators by combining DML-BD

[Y | dox)] = f(1BD(,7;), BD(5,75), +-+, BD(i,,.77,,) })

| | |

DML-BD DML-BD DML-BD

| l l

[V [dox)] = f({ BD(up.7my) , BD (upy) ... BD(,.7,) })

‘DML-ID” (Def 306)




Robustness of DML-ID

Theorem 16

Error(DML-ID, E[Y | do(x)]) =

m A\ Va\
- Error(ge;, p;)XError(7;, ;)
® Double Robustness: Error = 0 if either i, = . or 7, = forall i = 1,---, m.

® Fast Convergence: Error — 0 fast even when /i. — . and 7; — 7. slow.
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Fast Convergence
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DML-ID converges to the true causal effect
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Performed simulations for 100 random graphs.

Fast Convergence Double Robustness

l.7) — (o, 1) slowly p misspecified ({£p) 7T misspecified (T#7)

Errors

0.01
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# samples s



Talk Outline

» © Chs3 Estimating causal effects from observations

® cha Estimating causal effects from data fusion

© Ch.5 Unified causal effect estimation method

Q Conclusion
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Motivation: Joint Treatment Effect Estimation

ASpPIrN Wartari - -
v v Challenges for Estimating E[Y | do(x,, x,)]
1 2
U, U, e BD is not applicable
Propengiﬁies ;'{ »~. Dietary
o Asprn =, ' Factors e Not identifiable from observations P(V).
1 ‘» e Can’t run experiments do(x, x,) due to
%4 Y drug-interactions
Platelet Aggregation Bleeding
INhipition Disease

Can E[Y | do(x, x,)] be estimated from two trials Py, (V) and Py, y(V)?
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Joint Treatment Effect Identification

(Def. 39) BD Criterion for Joint Treatment Effect (BD™)

A set Z. satisfies the BD criterion from marginal experiments Pdo(xl) and Pdo(xz)

relative to the outcome Y for the joint treatment effect (X, X,) in & if
1. Z is not a descendent of X, in &; and
2. 7. blocks every spurious path between X, and Y in the experiment do(X,)
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(Def. 39) BD Criterion for Joint Treatment Effect (BD™)

A set Z. satisfies the BD criterion from marginal experiments Pdo(xl) and Pdo(xz)

relative to the outcome Y for the joint treatment effect (X, X,) in & if
1. Z is not a descendent of X, in &; and
2. 7. blocks every spurious path between X, and Y in the experiment do(X,)

(Theorem 17)

[V [ do(x;, %) = )

_do(xz)[Y X, z|P do(xl)(z)
Z _ NG ,

~N
Trial on X, Trial on X
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Example of BD+

1. Z = {W} is not a descendent of X, in &; and

2. 1. = { W} blocks every spurious path between
X, and Y in the experiment do(X,)

[V | do(xy, x,)] = 2

1 2%
N—

¢
%
U,
1.°
-’
4 3\

%4

_do(xz)[Y ‘xp w|P do(xl)(W)

L _J
S

N
Trial on X,

Trial on X
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=E[Y]| do(x,, x,)]




Parametrization of BD+ (Sec. 4.2.2)
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Z

_dO(Xz)[Y ‘Xl’ Z]Pdo(xl)(z)

u(X,.Z) = “do(x) L Y 1K, Z]
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[V [ do(x). %)l = )

Z

_dO(Xz)[Y ‘Xl’ Z]Pdo(xl)(z)

u(X,.Z) = “do(x) L Y 1K, Z]

_do(xl)[ﬂ(xlaz)]

=ZZ,M(X1,Z)P do(x)(Z)
=E[Y | do(x;, x,)]

m(X,Z.): Solution of
_do(X2)[”(X1Z) X p(X24)] = _do(xl)[ﬂ(xlaz)]

~do(x,) [ﬂ(XIZ) X V]

= Ego) 77X Z) X p(XZ)]

= _do(xl)[ﬂ(XPZ)]
=[E[Y | do(x,, x,)]
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Doubly Robust Estimator for BD+

20,7 =

E[Y | do(x,. X,)] = BD*(,7) 2

= doGi) L VA= X =1} +

~do(x,) [//tXﬂ]

—~do(x,) [//tXﬂ']




Doubly Robust Estimator for BD+

_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tX]T]

2,7

_do(xz)[{/:t\_//t }X{ﬂ_ﬁ'}] + _do(xz)[//tXﬂ]

~do(x,) [7%{;”_/2 } +7T/:t\]




Doubly Robust Estimator for BD+

_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tXﬂ]

2060.,7) = Egouy [ {A—p}x{m=7}] + E oy [ux7]

~do(x,) [7%{;”_/2 } +7T/:t\]

~do(x,) [ﬁ-{ Y_/;t\}] T _do(xl)[/;t\(xa C)]




Doubly Robust Estimator for BD+

2,7

_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tXﬂ]

_do(x2)[{/:t\_//t }X{ﬂ_ﬁ'}] + _do(xz)[//tXﬂ]

~do(x,) [7%{;”_/2 } +7T/:t\]

_do(xz)[ﬁ'{ Y_/;t\}] T

= o) T Y =4} ] +

DML-BD+ (Def. 46)

_do(xl)[/;t\(xa C)]

~do(x;) [///t\(xa C)]
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Robustness of DML-BD+

Error(DML-BD+(j1,7), BD+(i4,77) = Error(/i,11) X Error(7, )

® Double Robustness: Error = O ifeither i = porn=n

e Fast Convergence: Error — 0 fast even when /i — 1 and 7 — 7 slowly.
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Example where BD+ Falils

ASPIrN
Xl

\Wartarin
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Mediator
R

Blood

oressure W Cardiovascular

Y Disease

X BD+ fails

Z P do(xl)(r | x,)P do(xz)(y | 7 le)z P do(xl)(w | 7, x5)P do(xl)(xé)
rw %%

Can E[Y | do(x,, x,)] be sample-efficiently estimated?
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Background: General Identification from Data Fusion

General Ildentification (gID, Algo 5)

e spanning a tree from available distributions { Pyo (V) }r cv

e to reach to causal distribution P(Y | do(X))
® through factorization & marginalization of distributions
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Background: General Identification from Data Fusion
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Background: General Identification from Data Fusion
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Causal effects as a function of BD+
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Causal effects as a function of BD+
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Causal effects as a function of BD+

X

%)

| Poge,x)(WR) 1s BD*-expressible |

- from {Pyoiytiz1,2

Po(x,x) (1) 1s @ function of BD+
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Causal effects as a function of BD+

Theorem 26

The followings are equivalent:
1. P(y | do(x)) is identifiable from (&, {Pdo(r,-)})

2. P(y | do(x)) is expressible as a function of
BD+s through AdmissibleGID (Algo 6)
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DML-gID: Estimator for Causal Effects from Fusion

(Y | do(x)] = f{BD™(yy,7,), BD" (45, 75), +++, BD™(14,,,,77,,) })

| | |

DML-BD+ DML-BD+ DML-BD+

| l l

[V ] do(x)] = f({ BD (u.7,) , BD (o) ... BD(1,,.7,) })

‘DML-gID” (Det 49)




Robustness of DML-gID

Theorem 27
Error(DML-gID, E[Y | do(x)]) =

m A\ Va\
- Error(ge;, p;)XError(7;, ;)
® Double Robustness: Error = 0 if either i, = . or 7, = forall i = 1,---, m.

® Fast Convergence: Error — 0 fast even when /i. — . and 7; — 7. slow.
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» Q Ch.5 Unified causal effect estimation method




Towards More General Causal Inference Queries

Estimating the
iInterventional effects

=Y | do(x)]




Towards More General Causal Inference Queries

Fairness Analysis

Salary a man would earn if he had the
opportunities that other genders would receive

Estimating the
interventional effects

=[Y | do(x)]
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Towards More General Causal Inference Queries

Offline Policy Evaluation

Estimating the
interventional effects

=[Y | do(x)]

=D 7(X| C)]

Recovery rate of a drug dosage
policy given baseline characteristics




Towards More General Causal Inference Queries

Estimating the
interventional effects

=[Y | do(x)]

Joint Treatment Effect

[ Y | do(xy,xy)]

Effect of drugs x; and X, from two trials

do(x;) and do(x,), respectively



Towards More General Causal Inference Queries

Estimating the
interventional effects

=[Y | do(x)]

Counterfactual

o[V =]

The headache intensity for patients who
took aspirin, had they not taken it



Towards More General Causal Inference Queries

Missing Data
1Y | do(x), mis=0]

The effect of a treatment identifiable
from missing data

Estimating the
interventional effects

=[Y | do(x)]




Towards More General Causal Inference Queries

Domain Transfer

-1 Y | do(x), S=NY]

The effect of a treatment in NY identifiable
from trials in Chicago

Estimating the
interventional effects

=[Y | do(x)]




Towards More General Causal Inference Queries

Estimating the
interventional effects

=[Y | do(x)]




Towards More General Causal Inference Queries

Fairness Analysis Domain Transfer

[V | max)POm | )

Offline Policy Evaluation Missing Data

Y |x,c, mis=1]P(c | mis=1)

D ELY [ c0n(x | e)P(c)

Joint Treatment Effect Counterfactual

2ol 1 51,6 1Po(ay () [V ] ¢, x)P(c | 7x)
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Towards More General Causal Inference Queries

Estimator 3 Estimator 4




Towards More General Causal Inference Queries

f Jung et al., NeurlPS 2024\
Chapter 5

Unified Covariate Adjustment (UCA)

Unified causal estimation for summation of the
poroduct of arbitrary conditional distributions

\_ .
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Kernel Policy Product & Unified Covariate Adjustment

Kernel Policy Product (Def. 50)

Arbitrary prob. kernel
(distributions)

TS
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Kernel Policy Product & Unified Covariate Adjustment

Kernel Policy Product (Def. 50)

Arbitrary prob. kernel

Arbitrary vectors

Py (Y] Si)HZIUi(Xi | SOP(Z,|S7)




Kernel Policy Product & Unified Covariate Adjustment

Kernel Policy Product (Def. 50)

Arbitrary prob. kernel

Arbitrary vectors

P () Si)Hizlai\m,- | SOP(Z157)

ouicome Policies




Kernel Policy Product & Unified Covariate Adjustment

Kernel Policy Product (Def. 50)

Arbitrary prob. kernel Arbitrary vectors

Pm+1(/Y‘ Si)HiZIUi\(Xz‘ | S?()Pi( | SiZ_l)

ouicome Policies

Unified Covariate Adjustment (Def. 51)

Expectation of ¥ over the KPP




Canonical Example of UCA

arbitrary arbitrary policy of arbitrary set of
distributions outcome treatments distributions variables
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Canonical Example of UCA

arbitrary

arbitrary policy of

distributions outcome treatments

o)

z /X,C

UCA

arbitrary

=p Y| X, 2lo(x | 2)Py(2)

Lp Y| x, z]o(x | 2)Py(2)

Pl < Pdo(xl)

Py« P do(x,)

c < [.(X)
7 — {W}

set of
distributions variables

\

BD+

D

PdO()Cz)

[V ] x, W]Pdo(xl)(w)
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Canonical Example of UCA

arbitrary arbitrary policy of arbitrary
distributions outcome treatments distributions

WA

N EL V], zlo(x | D)Py(2)

Theorem 28

UCA can represent any causal effects expressible as a sum of products of arbitrary
conditional distributions (Kernel-Policy Product), by choosing Z, Py, P,, o( - | - ) properly.



Parameterization for UCA (Def. 54)
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Parameterization for UCA (Def. 54)

o2 Y EplY | x, Zlo(x | P (2)

//l(X,Z) = _Pz[Y‘X’ Z]

-P, [ ~0(X|Z) [//t(X,Z)]]
=) u(x2)oy(x|2)P(2)




Parameterization for UCA (Def. 54)

Yo = Zx,c

//l(X,Z) = _Pz[Y‘X’ Z]

-P, [ ~0(X|Z) [//t(X,Z)]]
=) u(x2)oy(x|2)P(2)

—p LV | X, z]o(x | 2)Py(2)

—p [H(XZ) X u(X,Z2)] =

_P1[

n(X,Z.): Solution of

= L H(X,Z)]]




Parameterization for UCA (Def. 54)

Yo = Zx,c

//l(X,Z) = _Pz[Y‘X’ Z]

_Pl[ ~0(X|Z) [//t(X,Z)]]

— ZZ XIM(X,Z)(TX(X\Z)P 1(2)

—p LV | X, z]o(x | 2)Py(2)

n(X,Z.): Solution of
Cp | (X,2) X u(X,2)] = Ep [, [1(X.Z)]]

= [2(X,Z) X ]

_Pz[ﬂ(X’Z) X //t(X,Z)]

_Pl[

Yo

=5 LH(X,Z)]]




Doubly Robust Estimator for UCA
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Doubly Robust Estimator for UCA

UCA(u,7) = Ep,[1X7]

"‘Double Robustness”

20.7) — Ep luxr] = Ep[{/i—pu}x{n—7}]




Doubly Robust Estimator for UCA

UCA(u,7) = Ep,[1X7]
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Doubly Robust Estimator for UCA

UCA(u,7) = Ep,[1X7]

20,7 =Ep[{ji—pyx{n=7}] + Ep [ux7]

= Ep [mp—fi }+m]



Doubly Robust Estimator for UCA

UCA(u,7) = Ep,[1X7]

20,7 =Ep[{ji—pyx{n=7}] + Ep [ux7]
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Doubly Robust Estimator for UCA

UCA(u,7) = Ep,[1X7]

20,7 =Ep[{ji—pyx{n=7}] + Ep [ux7]

=p L7 pp—fi 7]

—p [ Y=(}] +Ep [E, [/]]

DML-UCA (Double Machine Leaming estimator for UCA)

UCA (41,7) & Ep [#{Y—11}] +Ep [E, [A]]




Robustness Property of DML-UCA

Theorem 33
Error(DML-UCA, yy) = Q" Error(A, j1,)XError(%;, )

® Double Robustness: Error = 0 if either i, = . or 7, = forall i = 1,---, m.

® Fast Convergence: Error — 0 fast even when /i. — . and 7; — 7. slow.
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Simulation: DML-UCA

(f1.t) — (py, 7y) slowly
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Simulation: DML-UCA

(f1.t) — (py, 7y) slowly

Fairness Analysis Counterfactual Domain Transfer
0.45- 0.251 0.5-
0.4- \ 0.2- 0.4 -
IPW (1)

N 0.35- ) 0.15- C\.\. 0.3-

O
0 0.3 OM (g) 0.1- ~ 0.2-

~9
0.25- 0.05- 0.1-
~e—_ DML (u,7) — o
0.2- _ 0.0- _ 0.0-
2500 5000 10000 20000 2500 5000 10000 20000 2500 5000 10000 20000
# samples

DML-UCA converges fast even when (f£,7t) — (H, 7y) Slowly
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This Talk: Estimating Causal Effects
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This Talk: Estimating Causal Effects

1. From Observation 2. From Data Fusion
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This Talk: Estimating Causal Effects

2. From Data Fusion 3. Unified Estimation

Fairness =4 .. Mﬂx]
Off-policy “ry
A evaluation o)

Counterfactuals E[Y x\ —1x]

e DML-BD~
e DML-gID

DML-1D

Solution
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This Talk: Estimating Causal Effects

2. From Data Fusion

3. Unified Estimation

Fairness =4 .. Mﬂx]
Off-policy =%
evaluation o)

Counterfactuals E[Y x\ —1x]

DML-1D

Solution

e DML-BD~
e DML-gID

DML-UCA
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Other Work 1: Causal inference Without Graphs

|dentification

Estimation

\_

Input
" Effect(@
g ~[Y | do(x)]

g Graph h
Approximated,
Incomplete Graph
\_ T W,
Samples
DfrOmP

Jung et al., ICML 2021

0 = f(D)

v

61



Other Work 2: Instrumental Variable (IV) Analysis
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Jung et al., American Thoracic Society, 2018

Result

For seminal RCTs,
. QOur treatment recommendation
. = Trials’ treatment recommendation

\ 4

Impact

Our method can be used to

Causal graph on Acute Respiratory ~ construct an initial hypothesis
Distress syndrome (ARDS) before conducting trials.
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Unique causality-based feature importance measure that aligns
with human intuition:

® [wo features recelve equal contributions whenever their causal effects are the same.

® ecature’s contribution = O If It has no causal effect

® Feature contributions closely approximate their causal effects on the outcome

e The sum of feature contributions = The outcome f(X;, ---, X )
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