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Positive Correlation with Lower Mortality No Causal Effect to Lower Mortality
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Structural Causal Models & Causal Graph 
[Def 1] Structural Causal Model 

(Pearl 95)

A structural causal model (SCM) is a 4-tuple 
 where 

•  are endogenous variables; 

•  are exogenous variables; 

• are functions determining 

(  for , ) 

•  is a distribution over .

⟨V, U, F, P(U)⟩

V = {V1, …, Vn}
U = {U1, …, Um}
F = {f1, …, fn} V
Vi ← fi(PAi, Ui) PAi ⊆ V Ui ⊆ U

P(U) U
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[Def 4] Intervention on  

(Pearl 95)
X = x
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intervention is to replace  to 
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Standard Causal Inference Engine 

Q = f(P)

X

C

Y Q = ∑c
𝔼[Y ∣ x, c]P(c)

 from a distribution D P
Samples 

Input
“When is the causal effect 

computable from available data?” 

Identification 
“How do we compute the 

effect from data?”

Estimation 

“Back-Door”
“Back-Door Adjustment”

Rubin, 74; Robins, 86;  Pearl, 95 Bickel et al., 93; van der Laan and Rubin 06, 
van der Laan and Gruber12;  Chernozhukov 

et al, 2018

One-Step Estimator, TMLE, DML
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Jung et al., AAAI, 2021
Chapter 3
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X Y

Z

Back-door Criterion 
(Pearl 95)

1.  is not a descendent of treatment;  
2.  blocks spurious paths between (treatments, outcome)

Z
Z

“Back-door adjustment (BD)”

“Back-door graph”

    P(y ∣ do(x)] = BD ≜ ∑z
P(y ∣ x, z)P(z)
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* I’ll use “BD” for simplicity, but all results extend to mSBD (as shown in the thesis).
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BD( , ) ,μ π =𝔼[μ×π]1 where  and   μ(XC) ≜ 𝔼[Y ∣ X, C] π(XC) ≜
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• Double Robustness:    if either    or   Error = 0 ̂μ = μ ̂π = π

• Fast Convergence:    fast even when    and    slowly.Error → 0 ̂μ → μ ̂π → π
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Non-BD Example: “Napkin Graph” 

  𝔼[Y ∣ do(x)] =
∑c 𝔼[Y ∣ x, z, c]P(x ∣ z, c)P(c)

∑c P(x ∣ z, c)P(c)

Identification

Estimation

❓

X Y

Z

C

U1
U2

Actual treatment Outcome

Doctors’ recommendation 
on taking treatments

Genetic factors

Patients’ pre-treatment 
health condition Lifestyle factors 

(Diet, Smoking) 

  𝔼[Y ∣ do(x)]=  𝔼[Y ∣ do(x)]
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Idea for connecting BD and Identification 

   is expressible as a function of BDs (i.e.,    = ), 𝔼[Y ∣ do(x)] 𝔼[Y ∣ do(x)] f({BD})If

then, a general estimator for    can be constructed𝔼[Y ∣ do(x)]

by strategically combining robust BD estimators.
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Background: Causal Effect Identification 

P(CZXY)

X Y

Z

C

U1 U2

Pdo(Z)(CXY) Pdo(Z)(XY) P(Y ∣ do(X))

P(C)P(XY ∣ ZC)

Factorization

∑c
P(c)P(XY ∣ Zc)

Pdo(Z)(Y ∣ X) ∑c
P(c)P(XY ∣ Zc)

∑c
P(c)P(X ∣ Zc)

=

Marginalization

Identification (Algo 1)
• spanning a tree from   
• to reach to causal distribution  
• through factorization & marginalization of 

distributions 

P(V)
P(Y ∣ do(X))

Factorization
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My Approach: 3-Step

1 Check if each interventional distribution on the tree is expressible as BD

2 Express causal effects as a function of BD

3 Construct robust estimators by using robust BD estimators

So far,
• BDs (or mSBDs) can be estimated sample-efficiently using 

robust estimators 
• The computation tree for the effect identification is composed 

of interventional distributions as intermediate nodes.

To connect BD & Identification,
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Complete Criterion for mSBD Adjustment

 if 
BD-expressible 

Pdo(a)(B) = BD(μ, π)

Pdo(a)(B)

Interventional 
Distribution

Graph

Check if  is expressed as BDPdo(a)(B)

Sequential Adjustment Criterion  
(Sec. 3.2.1) 

1 Check if each interventional distribution on the tree is expressible as BD
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Motivation: Incompleteness of BD/mSBD (Sec 3.2)

1  doesn’t satisfy the mSBD criterion Z

2 P(y1y2 ∣ do(x1x2))=∑z1z2
P(y2 ∣ prev1, z2x2)P(y1z2 ∣ z1x1)P(z1)

 examples s.t.  is BD adjustment even if BD criterion fails. ∃ P(y ∣ do(x))

X1 Y1

Za

X2 Y2

Zb Zc Zd

Z1 ≜ (Za, Zb) Z2 ≜ (Zc, Zd)

“mSBD adjustment”
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Complete Seq. Adjustment Criterion (Sec 3.2)
[Def. 29] Sequential Adjustment 

Criterion (SAC)

A seq.  satisfies the SAC if, for 
,  satisfies the adjustment 

criterion relative to 

Z = (Z1, ⋯, Zm)
i = 1,⋯, m Zi ∪ previ−1

(Xi, Y≥i)

⇔

mSBD fails X

 is given as mSBD.P(y ∣ do(x))

[Theorem 10] Completeness

SAC holds ✔
X1 Y1

Za

X2 Y2

Zb Zc Zd

Z1 ≜ (Za, Zb) Z2 ≜ (Zc, Zd)
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Estimating Causal Effects in 3-Steps
2 Express causal effects as a function of BD

X Y

Z

C
U1 U2

P(CZXY) Pdo(Z)(CXY) P(Y ∣ do(X))BD1(μ, π)

BD1(μ, π)
BD2(μ, π)

=
Factorization Marginalization Factorization

1.  is identifiable from  P(y ∣ do(x)) (𝒢, P)

Theorem 14

2.  is expressible as a function of BDs 
through AdmissibleID	(Algo	4)
P(y ∣ do(x))

The followings are equivalent: 
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DML-ID: Estimator for Identifiable Causal Effects

𝔼[Y ∣ do(x)]    f({BD(μ1,π1), BD(μ2,π2), ⋯, BD(μm,πm)})=

̂𝔼[Y ∣ do(x)] ≜ ̂BD (μ1,π1)  , ̂BD (μ2,π2)  , ⋯, ̂BD (μm,πm)f({ })

DML-BD DML-BD DML-BD⋯

3 Construct robust estimators by combining DML-BD

“DML-ID” (Def 36)
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Robustness of DML-ID 

• Double Robustness:    if either    or    for all .Error = 0 ̂μi = μi ̂πi = πi i = 1,⋯, m

• Fast Convergence:    fast even when    and    slow.Error → 0 ̂μi → μi ̂πi → πi

Theorem 16

, Error(DML-ID 𝔼[Y ∣ do(x)]) = , , ∑m
i=1Error( ̂μi μi)×Error( ̂πi πi)
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DML-ID - Simulation (Sec. 3.5)

,  slowly( ̂μ π̂) → (μ0, π0)

Fast Convergence

DML-ID converges fast, even 
when ,  converge slowly( ̂μ π̂)

DML-ID converges to the true causal effect 
even when  or  are misspecified.̂μ π̂
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DML-ID - Random (Sec. 3.5)
Performed simulations for 100 random graphs.
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𝔼[Y ∣ do(x)]

Q̂ = ̂f({Di})

✔

Input Identification Estimation 

Graph

{Di} ∼ {Pdo(Ri)}
Data Fusion

Q = f({Pdo(Ri)})

✔

Pearl, 95; Bareinboim & Pearl, 
2012; Lee et al., 2019

Jung et al., NeurIPS, 2023
Jung et al., ICML, 2023
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• Can’t run experiments  due to 
drug-interactions

do(x1, x2)

• BD is not applicable

• Not identifiable from observations .P(V)

Can    be estimated from two trials   and ?𝔼[Y ∣ do(x1, x2)] Pdo(x1)(V) Pdo(x2)(V)
31
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Joint Treatment Effect Identification

A set  satisfies the BD criterion from marginal experiments  and  
relative to the outcome  for the joint treatment effect  in  if   
1.  is not a descendent of  in ; and  
2.  blocks every spurious path between  and  in the experiment 

Z Pdo(x1) Pdo(x2)
Y (X1, X2) 𝒢

Z X2 𝒢
Z X1 Y do(X2)

(Def. 39) BD Criterion for Joint Treatment Effect (BD ))
+
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Example of BD+

X1 X2

W Y

U2
U11.  is not a descendent of  in ; and  

2.  blocks every spurious path between 
 and  in the experiment 

Z = {W} X2 𝒢
Z = {W}
X1 Y do(X2)

  , = ∑w
𝔼do(x2)[Y ∣x1 w]Pdo(x1)(w)  𝔼[Y ∣ do(x1, x2)]

Trial on X2 Trial on X1
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?( , )̂μ ̂π  = 𝔼do(x2)[{ ̂μ−μ}×{π− ̂π}]   + 𝔼do(x2)[μ×π]

 = 𝔼do(x2)[ ̂π{μ− ̂μ}+π ̂μ]

  = 𝔼do(x2)[ ̂π{Y− ̂μ}] +𝔼do(x1)[ ̂μ(x, C)]

( , )   ̂BD+ ̂μ ̂π ≜ 𝔼do(x2)[ ̂π{Y− ̂μ}] +𝔼do(x1)[ ̂μ(x, C)]

DML-BD+ (Def. 46)

    BD+( , )  𝔼[Y ∣ do(x1, x2)] = μ π ≜ 𝔼do(x2)[μ×π]



Robustness of DML-BD+

36

DML-BD+( , ), BD+( , )  ,   ,Error( ̂μ ̂π μ π = Error( ̂μ μ) × Error( ̂π π)

• Double Robustness:    if either    or   Error = 0 ̂μ = μ ̂π = π

• Fast Convergence:    fast even when    and    slowly.Error → 0 ̂μ → μ ̂π → π
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Simulation: DML-BD+
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Simulation: DML-BD+
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Fast Convergence
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Can    be sample-efficiently estimated?𝔼[Y ∣ do(x1, x2)]
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Background: General Identification from Data Fusion
General Identification (gID, Algo 5) 

Bareinboim and Pearl, 2012; Lee et al. 2019

• spanning a tree from available distributions   

• to reach to causal distribution  
• through factorization & marginalization of distributions 

{Pdo(ri)(V)}Ri⊆V
P(Y ∣ do(X))
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from 
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{Pdo(xi)}i=1,2

X1 X2

W
Y

R

BD+-expressible from Pdo(x2)

Factorization

	 	is	a function of BD+Pdo(x1x2)(Y )

1.  is identifiable from  P(y ∣ do(x)) (𝒢, {Pdo(ri)})

Theorem 26

2.  is expressible as a function of 
BD+s through AdmissibleGID	(Algo	6)
P(y ∣ do(x))

The followings are equivalent: 
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DML-gID: Estimator for Causal Effects from Fusion

𝔼[Y ∣ do(x)]    f({BD+(μ1,π1), BD+(μ2,π2), ⋯, BD+(μm,πm)})=
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DML-gID: Estimator for Causal Effects from Fusion

𝔼[Y ∣ do(x)]    f({BD+(μ1,π1), BD+(μ2,π2), ⋯, BD+(μm,πm)})=

̂𝔼[Y ∣ do(x)] ≜ ̂BD (μ1,π1)  , ̂BD (μ2,π2)  , ⋯, ̂BD (μm,πm)f({ })

DML-BD+ DML-BD+ DML-BD+⋯

“DML-gID” (Def 49)
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Robustness of DML-gID 

• Double Robustness:    if either    or    for all .Error = 0 ̂μi = μi ̂πi = πi i = 1,⋯, m

• Fast Convergence:    fast even when    and    slow.Error → 0 ̂μi → μi ̂πi → πi

Theorem 27

, Error(DML-gID 𝔼[Y ∣ do(x)])= , , ∑m
i=1Error( ̂μi μi)×Error( ̂πi πi)
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DML-gID - Simulation (Sec. 4.6)
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Towards More General Causal Inference Queries

Unified Covariate Adjustment (UCA)

Unified causal estimation for summation of the 
product of arbitrary conditional distributions

Jung et al., NeurIPS 2024
Chapter 5
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Expectation of  over the KPPY
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     ∑x,c𝔼P2
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distributions
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[Y ∣ x, z]σ(x ∣ z)P1(z)

UCA

   ∑w𝔼Pdo(x2)
[Y ∣ x, w]Pdo(x1)(w)

BD+

σ ← 𝕀x(X)
Z ← {W}

  P1 ← Pdo(x1)

  P2 ← Pdo(x2)

Theorem 28
UCA can represent any causal effects expressible as a sum of products of arbitrary 

conditional distributions (Kernel-Policy Product), by choosing , , ,  properly. Z P1 P2 σ( ⋅ ∣ ⋅ )
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?( , )̂μ ̂π  = 𝔼P2
[{ ̂μ−μ}×{π− ̂π}]   + 𝔼P2

[μ×π]

 = 𝔼P2
[ ̂π{μ− ̂μ}+π ̂μ]

  = 𝔼P2
[ ̂π{Y− ̂μ}] +𝔼P1

[𝔼σX
[ ̂μ]]

( , )   ̂UCA ̂μ ̂π ≜ 𝔼P2
[ ̂π{Y− ̂μ}] +𝔼P1

[𝔼σX
[ ̂μ]]

DML-UCA (Double Machine Learning estimator for UCA)

( , )  UCA μ π ≜ 𝔼P2
[μ×π]
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Robustness Property of DML-UCA 

• Double Robustness:    if either    or    for all .Error = 0 ̂μi = μi ̂πi = πi i = 1,⋯, m

• Fast Convergence:    fast even when    and    slow.Error → 0 ̂μi → μi ̂πi → πi

Theorem 33

, Error(DML-UCA ψ0) = , , ∑m
i=1Error( ̂μi μi)×Error( ̂πi πi)
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Compliers: samples that prescribed treatments ( ) = actual treatment IV (X)
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Effect (Q)
P(Y ∣ do(x), complier)

Graph

Q̂ = ̂f(D)Q = f(P)

 from D P
Samples 

Input Identification Estimation 

X YIV

actual 
treatment

prescribed 
treatment

✔

Jung et al., NeurIPS 2021 (Spotlight)

Imbens & Angrist won the 
2021 Nobel Prize in 
Economics for their 

achievements in IV analysis.

✔with additional 
assumptions 
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Application 1. Healthcare Science

RCT

Gold standard in 
causal inference

Expensive

Selection bias

EHR

Confounding bias

Easy to collect

Generalizable 

MIMIC-IV, OpenMRS eICU, …

Best of Both Worlds

Emulating RCT from EHR
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Application 1. Emulating RCT from EHR
Input Identification Estimation

Effect (Q)
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EHR
 from D P
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Graph Q = f(P) Q̂ = ̂f(D)
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Application 1. Emulating RCT from EHR

Causal graph on Acute Respiratory 
Distress Syndrome (ARDS)

For seminal RCTs, 
Our treatment recommendation 

= Trials’ treatment recommendation

Result

Our method can be used to 
construct an initial hypothesis 

before conducting trials.

Impact

Jung et al., American Thoracic Society, 2018
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Contribution of Discount to the Retention?

• SHAP value: one of the most cited 
measure for the feature importance 

• Larger discounts contribute less to 
retention?

• Mismatch with human intuition is 
due to computing the importance 
based on correlation  
(e.g. )𝔼[retention∣discount]

Causality-based feature importance 
measure is essential

Retention

Economy

Discount

Needs

Sales 
calls

Interactions

Upgrade

Ads

Usage

Bugs
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do-Shapley: Causality-based Feature Attribution

• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Attribution 

ϕi =
1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{𝔼[Y |do(xS, xi)] − 𝔼[Y |do(xS)]}

Jung et al.,ICML  2022
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• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Identification Estimation Attribution 

ϕi = f(P)

Determine if  is 
computable from 

available data 

ϕi
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do-Shapley: Causality-based Feature Attribution

• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Identification Estimation Attribution 

ϕi = f(P)

Determine if  is 
computable from 

available data 

ϕi

̂ϕi = ̂f(D)

DML-do-Shapley

DML-ID

Jung et al.,ICML  2022
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Simulation: Better Interpretability

Rank Correlation with 
True Importances

DML-do-Shapley

Estimator

SHAP

1.0

-0.28

Estimated feature importance ranking

= True ranking of feature importance

Implication

High true importance ranking 

= Low estimated ranks
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Impact on Explainable AI

Unique causality-based feature importance measure that aligns 
with human intuition:

• Two features receive equal contributions whenever their causal effects are the same.

• Feature’s contribution = 0 if it has no causal effect 

• Feature contributions closely approximate their causal effects on the outcome

• The sum of feature contributions = The outcome f(X1, ⋯, Xm)
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Future 1: Inference with Multi-modal Data

X Y

CR

   𝔼[Y ∣ do(x)] = ∑c
 , 𝔼[Y ∣x c] P(c)❓∑r
 , 𝔼[Y ∣x r] P(r)

Representation	
learning

 doesn’t satisfy the BD criterionR

• Representation learning taking 
account of causal dependencies 

Approach

• New causal inference methods 
that allows us to use existing 
representation learning modelsX Y

C

   𝔼[Y ∣ do(x)] =❓
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Future 2: Causal Inference with Spatiotemporal Data

X Y

C

Vaccine

Characteristics 

outcome

Space

Longitude

La
titu

de

Time

Approach
• Develop causal inference methods 

with spatiotemporal dataset

• Optimal treatment policy with 
spatiotemporal dates
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Future 3: Causal Inference Loop with Uncertainty 

Effect (Q)
𝔼[Y ∣ do(x)]

Observations 
or 

Experiments

Domain 
knowledge

Graph Q = f(P) Q̂ = ̂f(D)

LLM

Uncertainty/Unreliability 

❓ Q̂ = ̂f(D)❓

Approach
• Bounds of effects when unidentifiable

• Sensitive analysis on graphs

• Efficient decision making with bounds


