
Summary
In this work, we propose do-Shapley values, a method for measuring the 
contribution of each input feature based on its causal impact on the 
outcome.  
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do-Shapley: We propose the do-Shapley as a method for measuring the 
contribution of each input feature based on its causal impact on the 
outcome.  

S

I
P

M

B
E A

L

Y

D

Task: Given the causal effect of a hypothetical intervention , 
our goal is to measure the contribution of each realization  based on 
the causal impact of  on . 

𝔼[Y |do(v)]
vi ∈ v

vi Y

Application to Interpreting ML models: If the outcome  is an ML model 
output; i.e.,  where  is the ML model, then the task reduces to 
measuring the contribution of  of the ML outcome .
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Comparing with other methods 
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‣Existing methods for attribution contribution of input features measure the 
contribution based on the correlation, instead of causation, of inputs to the 
outcome; e.g., [1]. 


‣Other methods considering causality assume that a model for target  is 
accessible and can be generated for arbitrary input features [2,3].
‣The proposed method measures the contribution based on identifiable 
causal effects without relying on accessibility.

‣Note Intrinsic Causal Contribution (ICC) [4] captures a fundamentally different kind of 

contribution because it describes the causal contribution of a node that has not been 
inherited from its ancestors.
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where  is the number of variables and . n [n] := {1,2,⋯, n}

Theorem: Axiomatic Characterization of do-Shapley 

The do-Shapley is a unique contribution method satisfying the following 
properties: 

1. Assignment: Its sum equals to . 


2. Causal Irrelevance: , if  for all 

 (i.e.,  is causally irrelevant to ). 


3. Causal Symmetry:  if  

for all  (i.e.,  have the same causal explanatory power). 


4. Linearity:  is a linear function of  . 
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do-Shapley Identification 

‣To determine the identifiability of the do-Shapley, the identifiability of 
  should be determined, which takes 

exponential time. 


‣We introduce graphical criteria where the identifiability of the do-
Shapley can be determined efficiently.

𝔼[Y |do(vS)] ∀S ⊆ [n]

Theorem: do-Shapley Identifiability
The do-Shapley is identifiable if  and its children are not 
connected by the bidirected paths (the path where unmeasured 
variables confound variables on the paths). 

Vi ∈ V

do-Shapley Estimation  
‣Computing do-Shapley takes exponential time because it 

iterates all . Also,  must be well-
approximated from finite samples for accurately computing the 
do-Shapley.
‣We developed do-DML-Shapley, based on the double/
debiased machine learning (DML) [5],  which can be evaluated 
efficiently, and exhibits robustness properties (debiasedness, 
doubly robustness) against errors.

S ⊆ [n] 𝔼[Y |do(vS)] ∀S ⊆ [n]

Theorem: Robustness of do-DML-Shapley

The do-DML-Shapley  converges to the do-Shapley  fast even 

when the nuisance parameters of  converges slowly or misspecified. 
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Simulation

(a) Debiasedness (b) Doubly Robustness - 1 (c) Doubly Robustness - 2

‣We compared the proposed method (do-DML-Shapley) with 
competing methods (regression, inverse-probability-weighting 
based).

‣The result shows that the do-DML-Shapley converges faster than 

other methods, exhibiting robustness properties against model 
errors.
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