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Abstract
Causal contributions measure the strengths of dif-
ferent causes to a target quantity. Understanding
causal contributions is important in empirical sci-
ences and data-driven disciplines since it allows
to answer practical queries like “what are the con-
tributions of each cause to the effect?” In this
paper, we develop a principled method for quan-
tifying causal contributions. First, we provide
desiderata of properties (axioms) that causal con-
tribution measures should satisfy and propose the
do-Shapley values (inspired by do-interventions
(Pearl, 2000)) as a unique method satisfying these
properties. Next, we develop a criterion under
which the do-Shapley values can be efficiently
inferred from non-experimental data. Finally, we
provide do-Shapley estimators exhibiting consis-
tency, computational feasibility, and statistical
robustness. Simulation results corroborate with
the theory.

1. Introduction
Inferring causal effects is a fundamental problem through-
out the data sciences since it can answer queries like “what
would be an expected outcome if inputs had been fixed to
certain values?”. There is a growing literature tackling this
question in both understanding the conditions under which
causal conclusions can be drawn from non-experimental
data (causal effect identification) (Pearl, 1995; Tian & Pearl,
2003; Huang & Valtorta, 2006; Shpitser & Pearl, 2006;
Bareinboim & Pearl, 2016; Jaber et al., 2018; Lee et al.,
2019; 2020; Lee & Bareinboim, 2020), and in estimating
the identified causal functions using the data (causal effect
estimation) (Jung et al., 2020; Bhattacharya et al., 2020;
Jung et al., 2021a;b; Bhattacharyya et al., 2020; 2021). Be-
yond the task of causal inference, interpreting the result

1Purdue University 2Amazon 3Iowa State Univerity
4Columbia University. Correspondence to: Yonghan Jung
<jung222@purdue.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

of causal inference, including “what is the most important
cause of the effect?” or more generally, “what are the con-
tributions of each cause to the effect?”, is also practically
important. Answering these queries fall under the task of
measuring causal contributions, which quantifies the degree
of contribution of causes to a target effect. As a motivation,
consider the following scenario:
Example 1. A video streaming service company has col-
lected data that contains various features (as described
in (Lundberg, 2021)) including sales call (S), product needs
(P ), interaction with customers (I), monthly usage (M),
discounts provided (D), last upgrade (L), economic factors
(E), Ad spend (A), bugs reported (B). These features are
causally related and affect the target variable: customer
retention (Y ) (see Fig. 1a). The company aims to measure
causal contributions of these features to the target effect –
the expected customer retention if each feature had been
fixed to a certain value (e.g., set to lower sales calls, higher
product needs, etc.).

Example 1 captures practical cases where the target quantity
is related to the query ‘what would be the output if inputs
had been fixed to certain values?’ This includes cases where
the target quantity is a machine learning (ML) model output
since the output is the quantity derived by fixing inputs to
specific values, which details are described in Remark 1.

In the area of explainable AI (XAI), there has been a re-
cent thrust on measuring the contributions of features to the
ML output (e.g., (Lundberg & Lee, 2017; Schwab & Karlen,
2019; Janzing et al., 2020b; Heskes et al., 2020; Covert et al.,
2021)). The majority of existing methods have focused on
queries where the target quantity is induced from an acces-
sible model (we say a model for target Y is accessible if the
model can be evaluated to obtain Y value for arbitrary input
features), with little attention paid to the cases where the
target is induced by nature (i.e., the data-generating process
is inaccessible; e.g., the customer retention in Example 1)
or the ML models are inaccessible. Also, many existing
techniques are based on correlation (rather than causation)
between the features and the ML model output (e.g., (Lund-
berg & Lee, 2017; Frye et al., 2020)). Even if another thread
of methods focused on measuring contributions based on
causation (e.g., (Schwab & Karlen, 2019; Janzing et al.,
2020b; Heskes et al., 2020)), these methods often assume



that the data generating process for the target is known and
accessible, allowing that an outcome corresponding to any
arbitrary features can be generated, ruling out scenarios
where the target quantity is induced from an inaccessible
model (e.g., Example 1). A detailed comparison with exist-
ing literature is presented in Sec. 3.1.

In this paper, we generalize previous approaches to measure
the causal contributions of each feature to a target effect
induced by an blac-box/unknown/inaccessible model. Our
proposed method is directly applicable to the task of quanti-
fying causal contributions of input features of an ML model
prediction (formalized in Remark 1). Our key contributions,
in further detail, are as follows:

1. [Sec. 3] We axiomatize causal contribution measures.
Specifically, we propose desiderata for causal contribution
measures as axioms, and propose the do-Shapley, the Shap-
ley value (Shapley, 1953)-based method specialized for
quantifying the causal contribution by leveraging the do-
intervention (Pearl, 2000).1 Our axiomatic characterization
provides a theoretical advocation in using the do-Shapley
for quantifying causal contributions.

2. [Sec. 4] We provide conditions under which the do-
Shapley values can be inferred from the observational data
(identifiability) in polynomial time (computational feasibil-
ity). Even if verifying the identifiability can be done through
existing theories in causal-effect identification, they do not
provide computational feasibility in determining the iden-
tifiability of the do-Shapley. To address this, we provide a
sufficient condition under which the identifiability and com-
putational feasibility of the do-Shapley can be efficiently
determined.

3. [Sec. 5] We construct estimators for the do-Shapley,
exhibiting consistency, computational feasibility, and statis-
tical robustness. We developed three estimators based on the
inverse probability weighting (IPW) (Rosenbaum & Rubin,
1983), outcome regression (REG) (Rubin, 1979), and dou-
ble/debiased machine learning (DML) (Chernozhukov et al.,
2018). We prove that all estimators manifest consistency
and computational feasibility. In addition, we show that the
DML estimator additionally displays statistical robustness
to model misspecification and bias. Finally, we present sim-
ulation results on these estimators that corroborate with the
theory [Sec. 6].

Due to space constraints, the proofs and other omitted details
are provided in the appendix.

1The do-Shapley is a generalization of the causal Shapley
(Heskes et al., 2020), which also uses the do-interventions, to
the case where the target quantity is induced by an inaccessible
model.
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Figure 1: Causal graph for Example 1, taken from Lundberg
(2021).

2. Preliminaries
Notation. Each variable is represented with a capital let-
ter (V ) and its realized value with the small letter (v). We
use bold letters V and v to denote a set of variables and
a realized value of it, respectively. For any set S, we use
|S| to denote its cardinality. Given a topological order ≺
over the vertices V := {V1, . . . , Vn} of a graph G, we
will use pre(Vi) to denote the predecessors of Vi. We
use pre(vi) as a realization of a set of variables pre(Vi);
i.e., pre(vi) = wi for pre(Vi) = Wi. We use Ch(Vi)
to represent the children of a variable Vi in G. For an
index set [n] := {1, · · · , n} and a subset S ⊆ [n], we
use VS := {Vk}k∈S and VS := {Vk}k ̸∈S . We use D
for the N samples from a distribution P over V; i.e.,
D := {V(i)}Ni=1 ∼ P , where V(i) denotes the ith sam-
ple. For a function f , we use E [f(V)] as an expectation of
f(V) over P , and ED [f(V)] := (1/N)

∑N
i=1 f(V(i)). We

use ∥f(V)∥ :=
√
E [(f(V))2] to denote the L2(P ) norm

of f(V). OP (·) and oP (·) denotes the big O and little O in
probability, respectively.

Structural Causal Models. We use the language of struc-
tural causal models (SCMs) as our basic semantical frame-
work (Pearl, 2000). A structural causal model (SCM) is
a tupleM := ⟨V,U,F, P (u)⟩ where V,U are a sets of
endogenous (observerables) and exogenous variables (la-
tents), F is a set of functions fVi

one for each Vi ∈ V where
Vi ← fVi

(PAVi
, UVi

) for some PAVi
⊆ V and UVi

⊆ U ,
and P (u) is a strictly positive probability measure for U.
Each SCMM induces a semi-Markovian causal graph G
over the node set V here Vi → Vj if Vi is an argument
of fVj , and Vi ↔ Vj if UVi and UVj are correlated. Per-
forming an intervention X = x is represented through the
do-operator, do(X = x) (shortly, do(x)), which encodes
the operation of replacing the original equations of X by
the constant x in the SCMM, inducing a submodelMx

and an interventional distribution P (V = v|do(x)) (shortly,
P (v|do(x))).



Causal Effect Identification. Given a causal graph G over
V, an effect P (y|do(x)) where X,Y ⊆ V is identifiable
if P (y|do(x)) is computable from the distribution P (v)
in any SCMM that induces G (Pearl, 2000, p. 77). One
key notion is called confounded components (in short, C-
component): a set of nodes connected with a path composed
solely of bi-directed edge Vi ↔ Vj (Tian & Pearl, 2003).
For any C ⊆ V, the quantity Q [C] := P (v\c|do(c)),
called a C-factor (Tian & Pearl, 2003), is defined as an inter-
ventional distribution of C under an intervention on V\C.
We use C(Vi)G (shortly, C(Vi)) to denote C-component
of Vi in G, a set of variables belonging to the same C-
component as in Vi. We use C(W) :=

⋃
Vi∈W C(Vi) to

denote a C-component of a set W ⊆ V.

Shapley Value. The Shapley value (Shapley, 1953) seeks
to allocate the contribution of each player i ∈ [n] on some
function value f([n]) given a value function ν(S) that mea-
sures the value of coalition of players i ∈ S ⊆ [n]. The
Shapley value, given as

ϕi(ν) :=
∑

S⊆[n]\{i}

ω(S) {ν(S ∪ {i})− ν(S)} , (1)

where ω(S) := 1
n

(
n−1
|S|

)−1
, is a unique value satisfying a set

of some desiderata for fair allocation (Young, 1985) (See
Appendix A for more details).

2.1. Problem Definition

We are given samplesD drawn from a distribution P := PM
and a compatible semi-Markovian causal graph G := GM,
induced by the SCMM, on topologically ordered variables
(V, Y ), with Y supposed to be the final variable in the order.
We assume that Y is bounded, and V is a set of discrete
variables.

Given (G,D,v) where v is a realized value for V, our
goal is to measure the the contribution of vi ∈ v to the
target causal effect2 E[Y |do(v)] based on the impact to
Y if the SCM M has fixed the value of the variable as
Vi = vi; PM(y|do(vi)) where PM denote the distribution
induced byM. We set E [Y ] = 0 without loss of generality.
We make no assumptions regarding the data generating
process on Y for generality. With the following additional
assumption on f , our problem is straightforwardly reduced
to the problem of attributing the importance of features in
the XAI:
Remark 1 (Reduction to the XAI). If Y is generated
by a deterministic function, (e.g., Y is an output of a ML
prediction model f s.t. Y := f(V)), then our task reduces

2We focus on the average causal effect E[Y |do(v)], the most
widely used quantity in practice. Our method is applicable for any
function of causal distribution P (y|do(v)). A condition whether
the target quantity E[Y |do(v)] (or P (y|do(v))) can be determined
using non-experimental data is discussed in Sec. 4.

to measure the causal contribution of each features vi ∈ v
on the ML prediction f(v), since E[Y |do(v)] = f(v).

3. Axioms for Causal Contribution
We start by asking the question: “What makes a good causal
contribution measure?” To answer, we propose the follow-
ing desiderata:

Axiom 1 (Desiderata for Causal Contribution). Causal
contributions {ϕvi}ni=1 w.r.t. G is considered desirable if
the following properties are satisfied:

1. Perfect assignment: Contributions are perfectly as-
signed; i.e., E[Y |do(v)] =

∑
vi∈v ϕvi .

2. Causal irrelevance: If Vi is causally irrelevant to Y
for all witness w ⊆ v\{vi} (i.e., ∀y, P (y|do(vi,w)) =
P (y|do(w)))3, then ϕvi = 0.

3. Causal symmetry: If (vi, vj) ∈ v have the same
causal explanatory power4 to Y for ∀w ⊆ v\{vi, vj} (∀y,
P (y|do(vi,w))=P (y|do(vj ,w))), then ϕvi =ϕvj .

4. Causal approximation: For any S ⊆ [n]
and vS := {vi}i∈S ,

∑
i∈S ϕvi well approximates

E[Y |do(vS)]. Formally, {ϕvi}ni=1 is a solution the
following weighted least square; i.e., {ϕvi}ni=1 =
argmin{ϕ′

vi
}n
i=1

∑
S⊆[n](E[Y |do(vS)]−

∑
i∈S ϕ′

vi)
2ω(S)

for some positive and bounded function ω(S).

The rationale behind Axiom 1 is the following: (1) Per-
fect assignment is a natural requirement since we aim to
attribute the degree of contributions of each feature vi ∈ v
to the target causal effect. (2) Causal irrelevance reflects
a desire to understand the cause of the outcome by forcing
zero contributions for variables not causing the outcome. (3)
Causal symmetry enforces the equal contribution for a pair
of features if they have the same causal explanatory power.
(4) Causal approximation allows ϕvi to be interpreted as
a proxy for the causal effect s.t.

∑
i∈S ϕvi ≈ E[Y |do(vS)]

for any S ⊆ [n].

Perhaps surprisingly, there is a unique causal contribution
measure {ϕvi

} satisfying the above four properties.
Definition 1 (do-Shapley). The do-Shapley5 is a causal
contribution measure {ϕvi}ni=1 of v on E[Y |do(v)] w.r.t. G

3Vi is causally irrelevant to Y given VS if P (y|do(vi,vS))=
P (y|do(vS)) (Galles & Pearl, 1997, Def. 7).

4A causal explanatory power of X = x to Y = y is a measure
of making Y = y ‘more likely’ if X had been fixed to x; i.e.,
P (y|do(x))− P (y) (Eva & Stern, 2019).

5Heskes et al. (2020) proposed the same equation for measuring
contributions in the accessible model setting and referred to as the
causal Shapley. In this paper, we use the term do-Shapley to make
it clearer that the definition is based on the do-intervention.



defined as:

ϕvi
:=

∑
S⊆[n]\{i}

ω(S){E[Y |do(vS,i)]− E[Y |do(vS)]}, (2)

where ω(S) := (1/n)
(
n−1
|S|

)−1
.

Theorem 1 (Uniqueness of the do-Shapley). The do-
Shapley is a unique causal contribution measure satisfying
all the properties in Axiom 1.

Remark 2. Thm. 1 is significant because the axiom doesn’t
restrict the value function to any fixed form. Thm. 1 instead
characterizes the do-Shapley as the unique causal contri-
bution measures satisfying Axiom 1 among any arbitrary
value functions and corresponding contribution measures,
as in (Sundararajan & Najmi, 2020).

The do-Shapley, as the name implies, is a specialization
of the Shapley value in Eq. (1) for ν(S) = E[Y |do(vS)].
The do-Shapley can be alternatively viewed as a marginal
causal effect of vi ∈ v (i.e., E[Y |do(vS,i)]−E[Y |do(vS)])
weighted-averaging over a set S. The significance of Thm. 1
stems from that it codifies the guarantees of the do-Shapley,
and provides a tool to compare and contrast with alternative
contribution metrics.

Remark 3 (Attribution of contributions for a subset of
variables). It is worth noting that the do-Shapley allocates
contributions to all vi ∈ v. In practice, assigning contri-
butions exclusively to a subset x ⊆ v may engender more
interpretable result. For example, when X := Pa(Y ) ⊊ V,
assigning contributions only to the features in x ⊆ v might
be more interpretable if it is needed that features indirectly
affecting to the outcome should be assigned zero contribu-
tions. Enforcing the do-Shapley to assign contributions only
for the subset x can be simply done (without loss of general-
ity) by the following procedure: (1) Derive a causal graph
G[X] compatible with P (x) by applying the projection of a
graph6; and (2) Compute the do-Shapley w.r.t. G[X]. See
Appendix B for more details.

3.1. Relation with Other Work

In this section, we compare the do-Shapley in Def. 1 with
other known methods aiming to measure contributions of
features on the outcome. Table 1 summarizes the compari-
son.

Conditional Shapley. The conditional Shapley (ϕcond
vi ) is a

specialization of the Shapley value with ν(S) = E [Y |vS ]
(Lundberg & Lee, 2017; Frye et al., 2020). The conditional

6G[X] is constructed as follow: For any Vi, Vj ∈ X, (1) add a
directed edge Vi → Vj in G[X] if there exists a directed path from
Vi to Vj in G such that every vertex on the path is not in X; (2)
add a bidirected edge Vi ↔ Vj in G[X] if there exists a divergent
path between Vi and Vj in G such that every vertex on the path is
not in X (Tian & Pearl, 2003).

Causality Inaccessibility Axioms
Conditional ✗ ✓ ✗

Marginal ✓ ✗ ✓
Causal ✓ ✗ ✓

ICC ✓ ✓ ✗

do-Shapley ✓ ✓ ✓

Table 1: Summary of comparisons of the conditional,
marginal, causal Shapley values, and the ICC with our
method (do-Shapley) w.r.t. consideration of causality, ca-
pability in handling outcomes induced by an inaccessible
models (e.g., Example 1), and characterization by axioms
among measures based on arbitrary value functions.

Shapley measures contributions based on association rather
than causation. In general, the conditional Shapley doesn’t
match with the do-Shapley; The causal irrelevance property
doesn’t hold in the conditional Shapley (see Example C.1).

Marginal Shapley. The marginal Shapley is another widely
used contribution measure in the XAI in which the target
variable is a model prediction Y = f(V), where f is a deter-
ministic (refer Remark 1) and accessible prediction model.
The marginal Shapley is a specialization of the Shapley
value with ν(S) = E [f(vS ,VS)] (Janzing et al., 2020b).
The marginal Shapley is known to satisfy certain desiderata
in attributing the feature importance (Sundararajan & Najmi,
2020). With access to the model f , and a particular graphi-
cal assumption that features are not causally affecting each
other, the marginal Shapley matches with the do-Shapley
(Janzing et al., 2019, Eq. (14)). In general settings where
features are causally related as in Example 1, the marginal
Shapley doesn’t match with the do-Shapley.

Causal Shapley. The causal Shapley (Heskes et al., 2020) is
most closely related to the do-Shapley. Specifically, (Heskes
et al., 2020) proposed the same equation for measuring
the contributions when the outputs are generated by the
accessible models, and the graph is unknown (only a partial
topological ordering of the graph is known). While the do-
Shapley doesn’t have a restriction that the output is induced
by the accessible models and is defined specifically on semi-
Markovian causal graphs (DAGs with bidirected edges. See
Sec. 2) for which rich theories on causal effect identification
and estimation are available.

Intrinsic Causal Contribution (ICC). Janzing et al.
(2020b) proposed a new method called Intrinsic Causal
Contribution (ICC) (ϕicc

vi ) to measure the causal contribu-
tion under the setting where the causal graph is Markovian,
and the structural functions are invertible in the sense that
the noise values can be reconstructed from the observations.
The ICC relies on so-called a structure-based intervention,
which intervenes to features while keeping a causal structure
and a joint distribution unaffected, to measure the contri-



bution of Vi on Y . By doing so, the ICC can measure the
contribution of Vi on Y that is not via upstream variables.
However, there is no axiomatic characterization of the ICC
to the best of our knowledge. It is easy to show that ICC
does not satisfy the causal symmetry property (see Exam-
ple C.2).

Other Contribution Measures. Wang et al. (2021a) fo-
cused on measuring the relevance of paths in a causal graph
to a target node, whereas Singal et al. (2021) provided a re-
cursive approach to capture the flow of importance through
the graph. The causal influence defined in Janzing et al.
(2013) is based on an operation called ‘deletion of edges’
and measures the relevance of edges with respect to the
joint distribution, but not the relevance of edges for a certain
target node. Schamberg et al. (2020) describes a generaliza-
tion of the information-theoretic approach of Janzing et al.
(2013) which quantifies relevance of paths or edges for a
target node, based on operations on edges. Under some par-
ticular graphical assumptions, e.g., flat graphs, (Singal et al.,
2021, Def. 8), the path/edge-based Shapley values (Wang
et al., 2021a; Singal et al., 2021) match with the do-Shapley.
In general, however, the link between these lines of work is
yet to be fully established.

4. Identification of the do-Shapley
In this section, we investigate the question of evaluating the
do-Shapley values. To evaluate the do-Shapley, expressing
E[Y |do(vS)] as a functional of an observational distribu-
tion P using G is essential because we are only given non-
experimental dataset D. For each S ⊆ [n], complete causal
effect identification algorithms for identifying E[Y |do(vS)]
are already available (Tian & Pearl, 2003; Huang & Valtorta,
2006; Shpitser & Pearl, 2006). A major practical challenge
still remains, however, in using them because determining
the identifiability for all subsets S ⊆ [n] takes exponential
computation time. In this section, we address this com-
putational challenges in determining the identifiability by
presenting a graphical criterion where the identifiability can
be determined in polynomial time, which makes this proce-
dure feasible in practice. Formally,
Definition 2 (Identifiability & Feasibility). The do-
Shapley values {ϕvi}ni=1 w.r.t. G are said to be identifiable
if all elements in {E[Y |do(vS)]}S⊆[n] are identifiable in the
causal graph G. The identification of the do-Shapley values
are said to be (computationally-) feasible if the identification
can be done in O(poly(n)).

Since näively applying the existing causal effect identifica-
tion algorithms to determine the identifiability of the do-
Shapley values is not computationally feasible (requires
O(2n) computations), we provide a simple sufficient graph-
ical criterion under which determining the do-Shapley iden-
tifiability is feasible. We start with a definition (refer Sec. 2

for C-component, C-factor):

Definition 3 (C-partition). For a set of variables X ⊆ V,
{Xk}ck=1 is said to be the C-partition if X = ∪ck=1Xk

(where Xa ∩ Xb = ∅ for a ̸= b) where ∀k ∈ [c],Xk is
a set s.t. any two pairs Xi, Xj ∈ Xk are in the same C-
component. in G.

Theorem 2 (Identifiability & Feasibility of do-Shapley).
The do-Shapley is identifiable if no variable in Vi ∈ {V}
is connected to its child Ch(Vi) by bidirected paths in G.
Suppose Y is not connected by bidirected paths. In this case,
for any S ⊆ [n],

E[Y |do(vS)] =
∑

vS

E [Y |v]Q [V\VS] ,

where Q [V\VS] := Q [V\VS] (v) is given as

Q [V\VS] =
P (v)

Q [C(VS)]

c∏
k=1

∑
sk

Q [C(Sk)] ,

where Q [C(VS)] =
∏

Va∈C(VS) P (va|pre(va))
is a C-factor of a C-component VS (C(VS));
{Sk}ck=1 is a C-partition of VS; and Q [C(Sk)] :=∏

Va∈C(Sk)
P (va|pre(va)) is a C-factor of a C-component

C(Sk) for Sk.

Fig. 2a provides an example graph satisfying the condi-
tions in Thm. 2. Specifically, for all computations VS ⊆
V := {V1, V2, V3}, the causal effects are identified through
Thm. 2 as

E [Y |do(vS)]

=



∑
vS

E [Y |v]P (v2|v1, v3)P (vS), if S ∈ {1, 3},∑
vS

E [Y |v]P (vS), if S ∈ {∅, 2, {1, 2}, {2, 3}},∑
vS

E [Y |v]P (vS |vS), if S ∈ {{1, 3}},
E [Y |v] if S = {1, 2, 3}.

(3)

Thm. 2 entails the feasibility of the do-Shapley values since
the proposed graphical criteria (checking whether Vi and
Ch(Vi) are connected by bidirected paths) can be done in
O(n3) by applying the breadth-first-search for each variable
Vi ∈ V.

To demonstrate the wide applicability of Theorem 2, we
provide two special cases which are commonly considered
in the literature:

1. Markovian case: No latent confounders exist in the
system; i.e., G is given as a DAG (Janzing et al., 2013; 2019;
Heskes et al., 2020; Basu, 2020; Wang et al., 2021b; Singal
et al., 2021).

2. Direct-cause case: No pair of variables (Vi, Vj) ∈ V
(i ̸= j) is connected by a directed path, no Vi are connected



to Y via bidirected edges, and no directed edge from Y
to Vi exists (i.e, only Vi → Y is allowed) (Janzing et al.,
2020a;b).

For each of these cases, the identification result in Theo-
rem 2 can be simplified as follows.

Corollary 1 (Identification – Markovian). In the Marko-
vian case, E[Y |do(vS)] is given as

E[Y |do(vS)] =
∑
vS

E [Y |vS ,vS ]
∏
i ̸∈S

P (vi|pre(vi)).

Corollary 2 (Identification – Direct-cause). In the Direct-
cause case, E[Y |do(vS)] is given as

E[Y |do(vS)] =
∑
vS

E [Y |vS ,vS ]P (vS).

Figs. (2b,2c) provide example graphs for Markovian and
Direct-cause cases. For Fig. 2b, Coro. 1 gives

E [Y |do(vS)]

=


∑

vS
E [Y |v]P (vS |vS), if S ∈ {1, 3, {1, 3}},∑

vS
E [Y |v]P (vS), if S ∈ {∅, 2, {2, 3}, {1, 2}},

E [Y |v] if S = {1, 2, 3}.
(4)

For Fig. 2c, Coro. 2 gives

E [Y |do(vS)] =
∑
vS

E [Y |v]P (vS) (5)

for all vS ⊆ {v1, v2, v3}.

5. Estimation of the do-Shapley
Estimating the do-Shapley values in Eq. (2) is computation-
ally and statistically challenging because (1) Iterating over
all S ⊆ [n] takes computation time exponential in n, and (2)
Estimating E[Y |do(vS)] might be vulnerable to bias due to
finiteness of the sample dataset. In this section, we design
computationally efficient and statistically robust estimators
for the do-Shapley values to overcome these challenges, us-
ing three different techniques. For ease of presentation, we
focus only on the Markovian & Direct-cause cases discussed
in Sec. 4, because we are not aware of any general causal
effect estimators suitable for estimating the expression in
Thm. 27. Throughout this section, we assume all variables
are discrete.

7General causal effect estimators propoesd by (Jung et al.,
2021b) assumed that the expression is given by the identification
algorithm. Therefore, the results in (Jung et al., 2021b) are not
directly applicable to estimate the expression in Thm. 2.
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(a) Thm. 2

V1 V3

V2

Y

(b) Markovian

V1 V3

V2

Y

(c) Direct-cause

Figure 2: Example graphs for Thm. 2 and two special cases:
Markovian and Direct-cause.

We first introduce estimators leveraging the idea of the in-
verse probability weighting (IPW) (Rosenbaum & Rubin,
1983). Our construction of the IPW estimator is based on
the following result.

Lemma 1 (Representation using IPW). Let S =
{m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let

ωS
k :=

k∏
r=1

1vmr
(Vmr

)/hS
r , for k = s, · · · , 1;

ωS := 1vS
(VS)/h

S ,

where hS
r := P (Vmr |pre(Vmr )) and hS := P (VS |VS).

Then, E[Y |do(vS)] = E [Y ω] where ω = ωS
k for the Marko-

vian case, and ω = ωS for the Direct-cause case.

Using Lemma 1, we construct the IPW estimators.

Definition 4 (IPW for E[Y |do(vS)]). The IPW estimator
T ipw(S) for E[Y |do(vS)] is constructed as:

1. Split D randomly into two halves: D0 and D1;

2. Let ω̂S
s,p, ω̂

S
p denote estimators for ωS

s , ω
S from Dp ∈

{D0,D1}, respectively.

3. For each p ∈ {0, 1}, set

T ipw
p (S) :=

{
ED1−p

[
Y ω̂S

s,p

]
(Markovian)

ED1−p

[
Y ω̂S

p

]
(Direct-cause)

4. T ipw(S) := {T ipw
0 (S) + T ipw

1 (S)}/2.

The data-splitting (also known as sample-splitting) tech-
nique (Klaassen, 1987; Robins & Ritov, 1997; Robins et al.,
2008; Zheng & van der Laan, 2011; Chernozhukov et al.,
2018) will be employed in constructing all do-Shapley es-
timators discussed in this section. Without data-splitting,
some restriction on the complexity of the estimator function
class must be imposed to guarantee statistical consistency.

We introduce estimators leveraging the idea of outcome
regression (REG) (Rubin, 1979). Our REG estimator is
based on the following result.



Lemma 2 (Representation using REG). Let S :=
{m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let
θSs,1 := Y . For k = s, s− 1, · · · , 1,

θSk,2 := E
[
θSk,1|Vmk

, pre(Vmk
)
]

θSk−1,1 := E
[
θSk,1|vmk

, pre(Vmk
)
]
,

θSa := E [Y |vS ,VS ] ,

θSb := E [Y |VS ,VS ] .

Then, E[Y |do(vS)] = E [θ] where θ = θS0,1 for the Marko-
vian case, and θ = θSa for the Direct-cause case.

We construct the REG estimator based on Lemma 2.

Definition 5 (REG for E[Y |do(vS)]). The REG estimator
T reg(S) for E[Y |do(vS)] is constructed as:

1. Split D randomly into two halves: D0 and D1.

2. Let θ̂Sk,2,p, θ̂
S
k−1,1,p, θ̂

S
a,p denote an estimator for

θSk,2, θ
S
k−1,1, θ

S
a from Dp ∈ {D0,D1}, respectively.

3. For each p ∈ {0, 1},

T reg
p (S) :=

ED1−p

[
θ̂S0,1,p

]
(Markovian)

ED1−p

[
θ̂Sa,p

]
(Direct-cause).

4. T reg(S) := {T reg
0 (S) + T reg

1 (S)}/2.

For IPW and REG estimators to be consistent, one needs
to estimate each individual functional (called nuisances)
including E [Y |vS ,vS ] or P (vi|pre(vi)) consistently. A de-
sirable robust estimator is one that converges to the ground-
truth at a fast rate even when estimates for nuisances are mis-
specified (i.e., wrongly specified) or converging relatively
slowly. Double/Debiased Machine Learning (DML) (Cher-
nozhukov et al., 2017) is a recently introduced technique to
construct such estimators.

Lemma 3 (Representation using DML). Let

ηS :=

{
{θS0,1} ∪ {θSk,1, θSk,2}sk=1 ∪ {hS

r }sr=1 (Markovian)
{θSa , θSb , hS} (Direct-cause),

defined in Defs. (4, 5) above, and

VS(V′; ηS) :=

θS0,1 +
s∑

k=1

ωS
k (θ

S
k,1 − θSk,2) (Markovian)

θSa + ωS
(
Y − θSb

)
(Direct-cause),

where ωS
k :=

∏k
r=1 1vmr

(Vmr )/h
S
r and ωS :=

1vS
(VS)/h

S . Then, E[Y |do(vS)] = E
[
VS(V′; ηS)

]
.

We construct the DML estimators based on Lemma 3:

Definition 6 (DML for E[Y |do(vS)]). The DML estimator
T dml(S) is constructed as:

Algorithm 1 do-Shapley(M,T est(·))
1: Input: M , Estimators T est(·) in Defs. (4,5,6).
2: Output: Estimates {ϕ̂vi}ni=1.
3: Initialize ϕ̂vi = 0 for all Vi ∈ V.
4: for j = 1 to M do
5: Generate the random permutation π over [n].
6: for i = 1 to n do
7: ϕ̂vi ← ϕ̂vi + T est ({i, preπ(i)})− T est(preπ(i))
8: end for
9: end for

10: return {ϕ̂vi/M}ni=1

1. Split D randomly into two halves: D0 and D1;

2. Construct η̂Sp , estimates of ηS from Dp, p ∈ {0, 1}.

3. T dml
p (S) := ED1−p

[
VS(V; η̂Sp )

]
for p ∈ {0, 1}.

4. T dml(S) := {T dml
0 (S) + T dml

1 (S))/2.

Based on estimators in Defs. (4,5,6), we now propose a com-
putationally efficient estimator for the do-Shapley values
based on random permutations:

Definition 7 (do-Shapley estimators – Two cases). Let
T est(S) ∈ {T ipw(S), T reg(S), T dml(S)} denote an estima-
tor for E[Y |do(vS)] defined in Defs. (4,5,6), respectively.
The do-Shapley estimator is given as

ϕest
vi

:=
1

M

M∑
j=1

(T est({i, preπj
(i)})− T est(preπj

(i))),

where M is the number of randomly generated permutation
of [n], πj denotes the jth permutation, and preπj

(i) is the
set of elements that precedes i in πj .

Equipped with the above results, a systematic procedure
for constructing do-Shapley estimators is provided in Al-
gorithm 1. The following theorem summarizes the error
analyses of all the three do-Shapley estimators.

Theorem 3 (Bias Analysis). Let {πj}Mj=1 denote M ran-
domly generated permutations of [n]. For the fixed in-
dex i, let Sj,0 := preπj

(i) and Sj,1 := {i} ∪ Sj,a. Let
{η̂Sj,0 , η̂Sj,1}Mj=1 denote L2-consistent estimates for all nui-
sances {ηSj,0 , ηSj,1}Mj=1 defined in Def. 6. Let RM,N :=

OP (M
−1/2 +N−1/2). Let e(ĝ) := ∥ĝ − g∥ denote an er-

ror for a nuisance estimates for any ĝ ∈ η̂ and g ∈ η. For
the do-Shapley estimators defined in Def. 7, suppose the
estimators T est(S) are bounded. Let ϵestvi

:= ϕest
vi − ϕvi

(where est ∈ {ipw, reg,dml}).



(a) Thm. 2, Non-noisy (b) Thm. 2, Noisy (c) Thm. 2, Incorrect REG (d) Thm. 2, Incorrect IPW
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Figure 3: The L1-error plots. Plots are rendered in high resolution and can be zoomed in.

Under the Markovian case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p
sj )},

ϵregvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

0,1 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

sj∑
k=1

e(ĥ
Sj,p

k )e(θ̂
Sj,p

k,2 )}.

Under the Direct-cause case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p)},

ϵregvi
= RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

2 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(ĥSj,p)e(θ̂
Sj,p

b )}.

Remark 4 (Properties of the Proposed Estimators). Er-
ror analyses in Thm. 3 exhibit consistency of IPW, REG,

DML estimators. Specifically, if nuisances are consistently
estimated, ϵipwvi = ϵregvi = ϵdml

vi = OP (1), indicating that
the estimators converge to the true quantity. Furthermore,
the result presents the statistical robustness property of the
DML. In particular, the DML estimates ϕ̂dml

vi converges to
the true value if either e(ĥ

Sj,p

k ) or e(θ̂
Sj,p

k,2 ) under Marko-

vian, and either e(ĥSj,p) or e(θ̂Sj,p

b ) under Direct-cause are
accurate (doubly robustness). Also, ϕ̂dml

vi
converges at the

root-N rate if all nuisances ĥSj,p

k , θ̂
Sj,p

k,2 under Markovian,

and all nuisances ĥSj,p , θ̂
Sj,p

b under Direct-cause converge
at least at N−1/4 rate (debiasedness).

6. Experiments
In this section, we empirically compare the performance of
the proposed do-Shapley estimators from the previous sec-
tion. Details of the experiments and a different simulation
example is provided in Appendices E and F.

Experimental Setup. We use synthetic datasets based on
Figs. (2a, 2b, 2c) where each figures matches with Thm. 2,
Markovian, and Direct-cause cases. We note that causal
effects are identified as in Eqs. (3, 4, 5), respectively. Even
if no known estimators for Thm. 2 exist generally, we note



that Eq. (3) is in an amenable form for which results in
Sec. 5 are applicable. Throughout the simulation, we denote
{ϕvi}ni=1 as the ground-truth do-Shapley values.

Comparison Between Estimators. We compare
the three estimators (IPW, REG, DML), denoted by
{ϕipw

vi , ϕreg
vi , ϕdml

vi } respectively, for scenarios depicted in
graphs in Figs. (2a, 2b, 2c). Nuisances are estimated using
gradient boosting model (Friedman, 2001).

Let ϕest
vi,k
∈ {ϕdml

vi,k
, ϕipw

vi,k
, ϕreg

vi,k
} denote an estimated impor-

tance of the ith feature of jth samples (i.e., Vi,k ∈ V(k) ∈
D). We assess the quality of the estimator by computing
the L1 error as L1(est, k) := (1/n)

∑n
i=1

∣∣∣ϕest
vi,k
− ϕvi,k

∣∣∣
(where n is the number of features). We ran the sim-
ulation for 50 randomly generated sets of samples; i.e.,
k ∈ {1, 2, · · · , 50}, and with sample size N := |D| ∈
{100, 250, 500, 750, 1000} to observe convergence behav-
iors of estimators. We fix M = 20. We refer the box-plot
for L1(est, k) as the ‘L1-error plot’.

For all {Thm. 2, Markovian, Direct-cause} cases, we com-
pare the performances of the three do-Shapley estimators
for (1) ‘Non-noisy’ where no noises are introduced in the
model; (2) ’Noisy’ where a ‘converging noise’ ϵ, decaying at
a N−α rate (i.e., ϵ ∼ Normal(N−α, N−2α)) for α = 1/4,
is added to the estimated nuisance to control the conver-
gence rate, following the technique in (Kennedy, 2020); (3)
‘Incorrect REG’ where the model for the REG estimator in
Def. 5 is wrongly specified; and (4) ‘Incorrect IPW’ the
model for the IPW estimator in Def. 4 is wrongly specified.

Experimental Results. The L1-error plots for all cases are
presented in Fig. 3. For the non-noisy setting, performances
of all of three models {DML, REG, IPW} are similar. In the
noisy setting where the estimated nuisances are controlled
to converge at N−1/4 rate, the DML estimators outperform
the other two estimators by achieving a fast convergence
with the smallest variance. This result corroborates with
the robustness property of the DML (Remark 4). Also, the
DML esitmator exhibits the doubly robustness property;
the estimator converges in both of the ‘Incorrect IPW’ and
‘Incorrect REG’ settings where each corresponding nuisance
is wrongly specified.

Contrasting with Conditional Shapley. We contrast the
do-Shapley and conditional Shapley in the non-noisy set-
ting. We compare the importance ranking measured by the
true do-Shapley with the ranks from the do-DML and con-
ditional Shapley through the Spearman’s rank correlation.
The correlation is close to 1 if two ranks are similar and to -1
if the ranks are opposite. The true data generating function
is Y = 3V1 + 0.4V2 + V3 + UY and the true-do-Shapley
identifies V1 having the largest coefficient as the most im-
portant. As shown in Table 2, the do-DML-Shapley ranks
the feature importance closer to the true rank. As can be

noted, do-DML-Shapley identifies V1 as the most important.

Thm. 2 Markovian Direct
DML 1.0 0.8 0.93

Conditional -0.28 -0.74 0.52

Table 2: Comparison of the rank correlation.

7. Conclusion
We propose the do-Shapley as a causal contribution measure
and provide theoretical justification through the axiomatic
characterization (Thm. 1). Next, we provide conditions
under which do-Shapley values can be inferred from non-
experimental data in polynomial time (Thm. 2). We then
propose three do-Shapley estimators (IPW, REG, DML)
that are consistent. We show that the DML estimator has
additional robustness property called doubly robustness and
debiasedness (Thm. 3). We expect the proposed contribution
measure will help empirical scientists to answer “what are
the contributions of each cause to the effect?”
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Appendix – On Measuring Causal Contributions via do-interventions

A. Fundamentals of the Shapley Value
The Shapley value (Shapley, 1953) in Eq. (1) seeks to allocate the contribution of each i ∈ [n] on some function value f([n])
given a coalition function ν(S) that measures the value of coalition of values of players i ∈ S (where ν([n]) = f([n])). The
Shapley value uniquely satisfying the following desiderata:

Theorem A.1 (Axiomatization of the Shapley Value (Shapley, 1953; Shapley & Shubik, 1954; Young, 1985)). For any
subset S of the players indexed [n] = {1, 2, · · · , n} and the value function of S, denoted ν(S), the Shapley value of the
player i, denoted ϕi = ϕi(ν), equals

ϕi(ν) :=
1

n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1

{ν(S ∪ {i})− ν(S)} , (A.1)

is the unique attribution methods satisfying the following axioms (properties):

1. Efficiency:
∑

i∈[n] ϕi = ν([n]);

2. Dummy: For some i ∈ [n], if ν(S ∪ {i}) = ν(S) for all S ⊆ [n]\{i}, then ϕi = 0;

3. Symmetry: For some distinct (i, j) ∈ [n], if ν(S ∪ {i}) = ν(S ∪ {j}) for all S ⊆ [n]\{i, j}, then ϕi = ϕj;

4. Linearity: For all i ∈ [n], for any two coalition functions ν1 and ν2, ϕi(ν1 + ν2) = ϕi(ν1) + ϕi(ν2).

B. Details on Remark 3
Given a semi-Markovian causal graph G, a realized vector (v, y) corresponding to a set of variables (V, Y ) and its subset
x ⊆ v corresponding to a set of variables X ⊆ V, a procedure for assigning contributions only to xi ∈ x is the following:

1. Construct a graph G[X] composed of nodes in X and edges added as follows (Tian & Pearl, 2003).

(a) add a directed edge Vi → Vj in G[C] if there exists a directed path from Vi to Vj in G such that every vertex on
the path is not in C;

(b) add a bidirected edge Vi ↔ Vj in G[C] if there exists a divergent path between Vi and Vj in G such that every
vertex on the path is not in C.

2. Construct the do-Shapley w.r.t. {y,x} on G[X]. Specifically, for all xi ∈ x

ϕxi
:=

∑
xS⊆x\xi

ωx(S) {E[Y |do(xS,i)]− E[Y |do(xS)]} , (B.1)

where ωx(S) := (1/ |x|)
(|x|−1

|xS |
)−1

.

Then, {ϕxi
}xi∈x is a unique causal contribution measure:

Proposition S.1. {ϕxi}xi∈x is a unique causal contribution measure w.r.t. {y,x} on G.

Proof. It suffices to show that G[X] is a graph corresponding to P (X), because of ϕxi is the do-Shapley value defined on a
graph corresponding to P (X). By (Koster et al., 2002), G[X] is a graph corresponding to P (X).



C. Relation with Other Work - Examples
In this section, we provide examples to demonstrate that other types of Shapley values doesn’t satisfy the Axiom 1. We first
note that the conditional Shapley doesn’t satisfy the causal irrelevance property in Axiom 1.
Example C.1 (Causal Irrelevance Property doesn’t hold for the conditional Shapley (Janzing et al., 2020b)). Consider
G = {V1 ↔ V2 → Y } where V1, V2 ∈ {0, 1}, and the bidirected edge means the existence of hidden confounders. Suppose
P (v1, v2) = 1/2 whenever v1 = v2. Note V1 and Y is causally irrelevant. Causal irrelevance property doesn’t hold in the
conditional Shapley. Specifically, for any v1, v2, E [Y |v1]−E [Y ] = v1 − 1/2 ̸= 0, which leads that ϕcond

v1 ̸= 0. In contrast,
E[Y |do(v1)] − E [Y ] = E[Y |do(v1, v2)] − E[Y |do(v2)] = 0. Therefore, ϕv1 = 0, implying that do-Shapley satisfies the
causal irrelevance property, unlike to the conditional Shapley.

The ICC doesn’t satisfy the causal symmetry property in Axiom 1.
Example C.2 (Causal Symmetry Property doesn’t hold for the ICC Approach). Consider a following SCMM: For
all binary variables UV1

, UV2
, UY , V1, V2, Y ∈ {0, 1}, P (U1 = 1) = 0.5, P (U2 = 1) = 0.2, and P (UY = 1) = 0.8.

Also, V1 ← fV1
(UV1

) = UV1
; V2 ← fV2

(V1, U2) = V1 ∨ UV2
; and Y ← fY (V2, UY ) = V2 ⊕ UY . A corresponding

causal diagram is G = {V1 → V2 → Y, {UV → V for all V ∈ {V1, V2, Y }}}. Let y = v1 = v2 = 1. Then,
P (y|do(v1)) = P (y|v1) = 0.8, P (y|do(v2)) = P (y|v2) = 0.8, P (y|do(v1, v2)) = P (y|v2) = 0.8, and P (y) = 0.65. We
first note that v1 and v2 have the same causal explanatory power to Y since P (y|do(v1)) = P (y|do(v2)) = 0.8. Also, the
do-Shapley values for v1, v2 are the same as ϕv1 = ϕv2 = 0.075, which exhibits the causal symmetry. To compute the
ICC of the features v1 = v2 = 1, we fix u1 = 1 and u2 = 0, which makes v1 = v2 = 1. Let ϕicc

vi denote the ICC of vi.
Then, ϕicc

v1 = 0.225 and ϕicc
v2 = 0.075 even if v1, v2 have the same causal explanatory power. This implies that the causal

symmetry doesn’t hold.

D. Proofs
We provide complete proofs and additional missing details here.

D.1. Proofs from Section 3

We use
νdo(S) := E[Y |do(vS)]

in the proof.
Theorem D.1 (Restated Theorem 1). The do-Shapley is a unique causal contribution measure satisfying all the properties
in Axiom 1.

Proof. We first prove that do-Shapley satisfies all the properties in Axiom 1.

Lemma S.1 (Soundness of do-Shapley). The do-Shapley satisfies all properties in Axiom 1.

Proof. First, consider the perfect assignment property. By the result of (Štrumbelj & Kononenko, 2014), we can represent
the do-Shapley as

ϕvi(νdo) =
1

n!

∑
π∈Π([n])

{νdo ({i} ∪ preπ(i))− νdo (preπ(i)))} ,

where Π([n]) is a set of all possible permutations of [n], π is an individual permutation in Π([n]), and preπ(i) := {k ∈
[n] such that k < i in π([n])}. Then,

n∑
i=1

ϕvi(νdo) =
1

n!

∑
π∈Π([n])

n∑
i=1

{νdo ({i} ∪ preπ(i))− νdo (preπ(i)))}

=
1

n!

∑
π∈Π([n])

{νdo([n])− νdo(∅)}

= νdo([n])− νdo(∅) = E[Y |do(v)]− E [Y ] = E[Y |do(v)].



Now we consider the causal irrelevance property. Suppose Vi is causally irrelevant to Y in expectation for all witness
w ⊆ v\{vi}. Then, the equality νdo(S ∪ i)− νdo(S) = 0 holds immediately for all S ⊆ [n]\{i}.
Next we consider the causal symmetry property. Suppose vi, vj has the same causal explanatory power w.r.t. any witnesses
w ⊆ v\{vi, vj}. This leads νdo({i} ∪ S) = νdo({j} ∪ S) for any S ⊆ [n]\{i, j}. Then,

ϕvi(νdo) =
1

n

∑
S⊆[n]\{i}

(
n− 1

|S|

)−1

{νdo(S ∪ i)− νdo(S)}

=
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|

)−1

{νdo(S ∪ i)− νdo(S)}+
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|+ 1

)−1

{νdo(S ∪ {i, j})− νdo(S ∪ {j})}

=
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|

)−1

{νdo(S ∪ j)− νdo(S)}+
1

n

∑
S⊆[n]\{i,j}

(
n− 1

|S|+ 1

)−1

{νdo(S ∪ {i, j})− νdo(S ∪ {i})}

=
1

n

∑
S⊆[n]\{j}

(
n− 1

|S|

)−1

{νdo(S ∪ j)− νdo(S)} = ϕvj (νdo),

where the third equality holds since (vi, vj) has the same causal explanatory power.

Now, we prove that the do-Shapley satisfies the causal approximation property by showing that there exists ω(S) that
makes the do-Shapley as the solution of the weighted least square problem defined in Axiom 1. For a coalition function ν(S)
(see the “Shapley value” paragraph in Sec. 2), it’s known that there exists a specific weight function ω(S) that makes the
Shapley value in Eq. (1) as the solution of the following WLS problem: argmin{ϕ′

vi
}n
i=1

∑
S⊆[n](ν(S)−

∑
i∈S ϕ′

vi)
2ω(S)

( by (Charnes et al., 1988, Thm. 4) and (Lundberg & Lee, 2017, Theorem 2)). This implies that such an ω(S) is the weight
function that makes the do-Shapley as the solution of the weighted least square problem defined in Axiom 1.

We now show the other direction that a measure satisfying all properties in Axiom 1 is the do-Shapley.

Lemma S.2 (Completeness of do-Shapley). A vector {ϕvi}vi∈v satisfying Axiom 1 is the do-Shapley value.

Proof. Throughout the proof, we will define a canonical SCM as follow: Let T ⊆ [n] denote any fixed index set. A SCM is
called canonical for T if E[Y |do(VS = 1)] = 1 iff T ⊆ S, and 0 otherwise. We use νTdo(S) denote the causal coalition
function induced by the canonical SCM. Note νTdo(S) = 1 iff T ⊆ S, and 0 otherwise, by the definition of the canonical
SCM.

We first note that a vector ϕvi that satisfies the causal approximation property can be represented as a linear function of
νdo(S), because ϕvi is a solution of the weighted least square linear regression problem. Therefore,

ϕvi =
∑
S⊆[n]

aiSνdo(S). (D.1)

for some constants {aiS}.

Now we focus on the causal irrelevance property. Suppose T ⊆ [n]\{i}. For any S ⊆ [n], (T ⊆ S) =⇒ (T ⊆ S ∪ {i}).
With i ̸∈ T , (T ̸⊆ S) =⇒ (T ̸⊆ S ∪{i}). Therefore, νTdo(S) = νTdo(S ∪ i) for all S ⊆ [n]. Then, by the causal irrelevance
property, ϕvi(ν

T
do) = 0 if T ⊆ [n]\i. Then, ϕvi(ν

[n]\i
do ) = ai[n] + ai[n]\i = 0.

Suppose it has been shown that aiT∪i + aiT = 0 for T ⊆ [n]\i such that |T | ≥ k for some k. Then, for any S ⊆ [n]\i such
that |S| = k − 1,

ϕvi(ν
S
do) =

∑
T⊆[n]

aiT ν
S
do(T ) =

∑
T⊆[n]
T⊇S

aiT =
∑

T⊆[n]\{i}
T⊇S

(
aiT∪i + aiT

)

=


∑

T⊆[n]\i
T⊃S but T ̸=S

(
aiT∪i + aiT

)+
(
aiS∪i + aiS

)
= aiS∪i + aiS ,



where the first equality by Eq. (D.1), the second by the property of the canonical SCM, the third and fourth by the standard
algebra, and the fifth by the inductive hypothesis. Since S ⊆ [n]\{i}, by causal irrelevance property, ϕvi(ν

S
do) = 0. This

implies that aiS∪i + aiS = 0. Therefore, for any T ⊆ [n]\i, aiT∪i + aiT = 0.

Fix piT := aiT∪i = −aiT . Then,

ϕvi(νdo) =
∑

T⊆[n]

aiT νdo(T ) =
∑

T⊆[n]\i

(
aiT∪iνdo(T ∪ i) + aiT νdo(T )

)
=

∑
T⊆[n]\i

piT (νdo(T ∪ i)− νdo(T )) .

Now we focus on the causal symmetry property. Suppose vi and vj have the same causal explanatory power with any given
witness w ⊆ v\{vi, vj} in the canonical SCM for [n]; i.e., ν[n]do (S ∪ i) = ν

[n]
do (S ∪ j) for S ⊆ [n]\{i, j}. We note that

ϕvi(ν
[n]
do ) = pi[n]\i = ϕvj (ν

[n]
do ) = pj[n]\j . This implies that there exists pn−1 := pi[n]\i = pj[n]\j .

Again, suppose vi, vj have the same causal explanatory power with any given witness w ⊆ v\{vi, vj} in the canonical
SCM for [n]\k for any fixed k ̸∈ {i, j}. Then,

ϕvi(ν
[n]\k
do ) = pi[n]\{i,k} + pn−1 = ϕvj (ν

[n]\k
do ) = pj[n]\{j,k} + pn−1.

This implies that there exists a constant pn−2 := pi[n]\{i,k} = pj[n]\{j,k}. By repeating this, we can have a p1, · · · , pn−1

where p|T | is a constant applying to all pjT for any T ⊆ [n]\i. Therefore, there are constants {p|T |}T⊆[n]\i such that

ϕvi :=
∑

T⊆[n]\i

p|T | (νdo(T ∪ i)− νdo(T )) .

Finally, we focus on the perfect assignment property. An attribution ϕvi satisfies the perfect assignment property if and
only if

∑
i∈N pn−1 = 1, and for any nonempty T ⊆ [n],

∑
i∈T p|T |−1 =

∑
j ̸∈T p|T | (Winter, 2002, Chap. 7, Theorem 11).

This gives pn−1 = 1/n, and for any nonempty T ⊆ [n], |T | p|T |−1 = (n−|T |)p|T |. Then, a closed form for p|T | is given as

p|T | =
(n− |T | − 1)! |T |!

n!
=

1

n

(
n− 1

|T |

)
.

Taking a conjunction of Lemmas (S.1,S.2) completes the proof of the Theorem D.1.

D.2. Proofs from Section 4

Theorem D.2 (Restated Theorem 2). The do-Shapley is identifiable if no variable in Vi ∈ {V} is connected to its child
Ch(Vi) by bidirected paths in G. Suppose Y is not connected by bidirected paths. In this case, for any S ⊆ [n],

E[Y |do(vS)] =
∑

vS

E [Y |v]Q [V\VS] ,

where Q [V\VS] := Q [V\VS] (v) is given as

Q [V\VS] =
P (v)

Q [C(VS)]

c∏
k=1

∑
sk

Q [C(Sk)] ,

where Q [C(VS)] =
∏

Va∈C(VS) P (va|pre(va)) is a C-factor of a C-component VS (C(VS)); {Sk}ck=1 is a C-partition
of VS; and Q [C(Sk)] :=

∏
Va∈C(Sk)

P (va|pre(va)) is a C-factor of a C-component C(Sk) for Sk.

Proof. We prove the following, which would imply the above theorem.



Proposition S.1 (Generalized Tian’s Adjustment – Complete identification criteria for P (V|do(X))). P (V|do(X)) is
identifiable if ∀Xa ∈ X and Ch(Xa) is not connected by bidirected paths. If identifiable, it’s given as

P (V|do(X)) =
P (V)

Q [C(X)]

c∏
k=1

∑
xk

Q [C(Xk)] , (D.2)

where {Xk}ck=1 is a C-partition of X in G, and Q [C(X)] :=
∏

Vi∈C(X) P (Vi|pre(Vi)) is a C-factor of a C-component of
X (C(X)), and Q [C(Xk)] :=

∏
Vi∈C(Xk)

P (Vi|pre(Vi)) is a C-factor of a C-component of Xk (C(Xk)).

Proof. In the proof, for a vector W, we will use De(W) to denote a set of descendants of Wi ∈W in G.

Suppose ∀Xa ∈ X is not connected with Ch(Xa) by bidirected paths. We first show that P (V|do(X1)) (for any X1 ∈ X a
C-component in G(X)) is identifiable and given as

P (V|do(X1)) =
P (V)

Q [C(X1)]

∑
x1

Q [C(X1)] . (D.3)

By the result of (Jaber et al., 2018, Lemma 1), it suffices to show that X1 = De(X1)G(C(X1)). We show this by contradiction.
Suppose Va ∈ De(X1)G(C(X1)) such that Va ̸∈ X1. Since Va ∈ G(C(X1)), Va is connected with X1 by bidirected paths.
Since Va is a descendent of some Xa ∈ X1 in G(C(X1)), this means that Vb ∈ Ch(X1) is also in the G(C(X1)). This
means that Vb and Xa is connected by a bidirected path, which is a contradiction of the given condition. Therefore,
X1 = De(X1)G(C(X1)), and Eq. (D.3) holds.

Now, consider a following inductive hypothesis for i = 1, 2, · · · , c:

Q
[
V\X(i)

]
=

Q
[
V\X(i−1)

]
Q [C(Xi)]

∑
xi

Q [C(Xi)] . (D.4)

As shown in the above, it holds for i = 1. Suppose it holds for some i − 1 ≥ 1 for i ≥ 2. Then, we first
note that Xi = De(Xi)G(C(Xi))G(V\X(i−1))

. To witness, consider the contradiction – for some Xa ∈ Xi there ex-
ists Va ∈ De(Xi)G(C(Xi))G(V\X(i−1))

s.t. Va ̸∈ Xi. First, Va is connected with Xa by bidirected paths since
Va ∈ G(C(Xi))G(V\X(i−1)). Also, Va is a descendent of Xa, this means that a child of Xa is also in G(C(Xi)),
connected by bidirected paths. This is a contradiction. Therefore, Xi = De(Xi)G(C(Xi))G(V\X(i−1))

.

Now, we show that C(Xi)G(V\X(i−1)) = C(Xi)G. We start from an obvious observation – C(Xi)G(V\X(i−1)) ⊂ C(Xi)G.
We now prove C(Xi)G ⊂ C(Xi)G(V\X(i−1)). For some Va ∈ C(Xi)G, suppose Va ̸∈ C(Xi)G(V\X(i−1)). This means
that bidirected paths connecting Va to some nodes in X1 ∈ Xi must be via other nodes in X2 ∈ X(i−1). This means that
Va, X2, X1 are connected by bidirected paths. However, given that X2 ∈ X(i−1) and X1 ∈ Xi, this is a contradiction,
because they are in distinct C-partitions. Therefore, C(Xi)G(V\X(i−1)) = C(Xi)G.

Then, Eq. (D.4) holds. By unfolding it,

Q
[
V\X(i)

]
=

P (V)∏i
k=1 Q [C(Xi)]

c∏
k=1

∑
xi

Q [C(Xi)] .

We note Q
[
C(X(i))

]
=

∏i
k=1 Q [C(Xi)], since

Q
[
C(X(i))

]
=

∏
Vi∈C(X(i))

P (vi|pre(vi)) =
c∏

k=1

∏
Vi∈C(Xk)

P (vi|pre(vi)) =
c∏

k=1

Q [C(Xk)] .

This completes the proof.

Now back to witness Thm. D.2. Under the given condition that Y is not connected via bidirected paths to any nodes, the
following holds: for any S ⊆ [n],

(Y ⊥⊥ VS |VS)GVS

.



Therefore,

P (Y,V|do(VS)) = P (Y |do(VS),VS)Q [VS ] = P (Y |V)Q [VS ] ,

which implies that

E[Y |do(VS)] =
∑
vS

E [Y |V]
Q [V]

Q [C(VS)]

c∏
k=1

∑
xk

Q [C(Xk)] .

This completes the proof.

Corollary D.2 (Restated Corollary 1). In the Markovian case, E[Y |do(vS)] is given as

E[Y |do(vS)]=
∑
vS

E [Y |vS ,vS ]
∏
i̸∈S

P (vi|pre(vi)).

Proof. In the Markovian case, C(W) = W for all W ⊆ V. Then,

P (Y,VS |do(VS)) =
P (V, Y )

Q [C(VS)]

c∏
k=1

∑
xk

Q [C(Xk)] =
P (V, Y )

Q [VS ]
= P (Y |V)

∏
Vi∈VS

P (Vi|pre(Vi)).

This completes the proof.

Corollary D.2 (Restated Corollary 2). In the Direct-cause case, E[Y |do(vS)] is given as

E[Y |do(vS)] =
∑
vS

E [Y |vS ,vS ]P (vS).

Proof. In the Direct-cause case, Q [W] = P (W) for all W ⊆ V since there are no causal paths between a pair of variables
in V. Therefore, Q [V\VS] = P (V\VS) = P (VS), which completes the proof.

D.3. Proofs from Section 5

Lemma D.1 (Restated Lemma 1). Let S = {m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let

ωS
k :=

k∏
r=1

1vmr
(Vmr

)/hS
r , for k = s, · · · , 1;

ωS := 1vS
(VS)/h

S ,

where hS
r := P (Vmr |pre(Vmr )) and hS := P (VS |VS). Then, E[Y |do(vS)] = E [Y ω] where ω = ωS

k for the Markovian
case, and ω = ωS for the Direct-cause case.

Proof. For the Markovian case,

E[Y |do(vS)] =
∑
vS

P (v)∏s
r=1 P (vmr

|pre(vmr
)
) = E

[
1vmr

(Vmr
)

hS
r

]
.

For the Direct-cause case,

E[Y |do(vS)] =
∑
vS

P (v)

P (vS |vS)
= E

[
1vS

(VS)

P (VS |VS)

]
.



Lemma D.2 (Restated Lemma 2). Let S := {m1, · · · ,ms} ⊆ [n] denote an index set for VS . Let θSs,1 := Y . For
k = s, s− 1, · · · , 1,

θSk,2 := E
[
θSk,1|Vmk

, pre(Vmk
)
]

θSk−1,1 := E
[
θSk,1|vmk

, pre(Vmk
)
]
,

θSa := E [Y |vS ,VS ] ,

θSb := E [Y |VS ,VS ] .

Then, E[Y |do(vS)] = E [θ] where θ = θS0,1 for the Markovian case, and θ = θSa for the Direct-cause case.

Proof. For the Markovian case, we will prove the following, which implies the result.

Lemma S.3. Suppose V′ = {Y } ∪V where V′ is an ordered set. Assume that Y is the last variable in the given order.
Let VS := {Vm1

, · · · , Vms
} ⊆ V (where {m1, · · · ,ms} ⊆ [n]) denote a set of discrete variables. Let VS := V\VS .

For each k = 2, · · · , s, let Vℓk := {Vj ∈ VS : Vmk−1
≺ Vj ≺ Vmk

}. Let Vℓ1 := {Vj ∈ VS : Vj ≺ Vmk
} and

Vℓs+1
:= {Vj ∈ VS : Vms ≺ Vj}.

Let gS(P ) denote a following functional (a.k.a. g-formula (Robins, 1986)).

gS(P ) :=

∫
VS

E [Y |v]
∏
i̸∈S

P (vi|pre(vi)) d[vS ].

Let θs,1 := Y . For k = s, · · · , 1, and

θk,2 := E [θk,1|Vmk
, pre(Vmk

)]

θk−1,1 := E [θk,1|vmk
, pre(Vmk

)] .

Then, the following holds:

gS(P ) = E [θ0,1] .

Proof. Let

Ak := {pre(Vmk
)}

Bk := {Vℓk+1
,Vℓk+2

, · · · ,Vℓs+1
}

Ck := {Vmk+1
, Vmk+2

, · · · , Vms
}.

For W ⊆ V,

q(W) :=

{∏
Vi∈W P (vi|pre(vi)) If W ̸= ∅;

1 If W = ∅.

Then, it suffices to show that

θk,2 =

∫
Bk,Ck

E [Y |Vmk
,Ak,bk, ck] q(bk)1ck

(Ck) d[bk, ck]

θk−1,1 =

∫
Bk,Ck−1

E [Y |Ak,bk, ck−1] q(bk)1ck−1
(Ck−1) d[bk, ck−1],

because witnessing E [θ0,1] = gS(P ) becomes trivial. Let θs,1 := Y . Then, it’s easy to check that the above holds for θs,2
and θs−1,1.

Suppose the above equation holds for k, k + 1, · · · , s. Then, consider k − 1. By the given definition,

θk−1,2 := E
[
θk−1,1|Vmk−1

, pre(Vmk−1
)
]

θk−2,1 := E
[
θk−1,1|vmk−1

, pre(Vmk−1
)
]
.



Then,

θk−1,2 = E

[∫
Bk,Ck−1

E [Y |Ak,bk, ck−1] q(bk)1ck−1
(Ck−1) d[bk, ck−1]

∣∣∣∣Vmk−1
,Ak−1

]

=

∫
Bk−1,Ck−1

E
[
Y |Vmk−1

,Ak−1,bk−1, ck−1

]
q(bk−1)1ck−1

(Ck−1) d[bk−1, ck−1],

and

θk−2,1 = E

[∫
Bk,Ck−1

E [Y |Ak,bk, ck−1] q(bk)1ck−1
(Ck−1) d[bk, ck−1]

∣∣∣∣vmk−1
,Ak−1

]

=

∫
Bk−1,Ck−2

E [Y |Ak−1,bk−1, ck−2] q(bk−1)1ck−2
(Ck−2) d[bk−1, ck−2].

Therefore,

θ0,1 =

∫
B1,C0

E [Y |A1,b1, c0] q(b1)1c0
(C0) d[b1, c0],

which gives the equality E [θ0,1] = gS(P ).

For the Direct-cause case,

E
[
θSa

]
=

∑
vS

E [Y |v]P (vS) = E[Y |do(vS)],

which completes the proof.

Lemma D.3 (Restated Lemma 3). Let

ηS :=

{
{θS0,1} ∪ {θSk,1, θSk,2}sk=1 ∪ {hS

r }sr=1 (Markovian)
{θSa , θSb , hS} (Direct-cause),

defined in Defs. (4, 5) above, and

VS(V′; ηS) :=

θS0,1 +
s∑

k=1

ωS
k (θ

S
k,1 − θSk,2) (Markovian)

θSa + ωS
(
Y − θSb

)
(Direct-cause),

where ωS
k :=

∏k
r=1 1vmr

(Vmr )/h
S
r and ωS := 1vS

(VS)/h
S . Then, E[Y |do(vS)] = E

[
VS(V′; ηS)

]
.

Proof. For the Markovian case, it suffices to show that E
[
θSk,1 − θSk,2

]
for any k = 1, 2, · · · , s. This holds since

E
[
θSk,1 − θSk,2

]
= E

[
E
[
θSk,1 − θSk,2|Vmk

, pre(Vmk
)
]]

= E
[
θSk,2 − θSk,2

]
= 0.

Therefore, E
[
V(V′; ηS)

]
= E

[
θS0,1

]
= E[Y |do(vS)], where the 2nd equality holds by Lemma 2.

For the Direct-cause case, E
[
Y − θS2

]
= 0 by the definition of θS2 . Therefore, E

[
V(V′; ηS)

]
= E

[
θS1

]
= E[Y |do(vS)].

Theorem D.3 (Restated Theorem 3). Let {πj}Mj=1 denote M randomly generated permutations of [n]. For the fixed index
i, let Sj,0 := preπj

(i) and Sj,1 := {i} ∪ Sj,a. Let {η̂Sj,0 , η̂Sj,1}Mj=1 denote L2-consistent estimates for all nuisances
{ηSj,0 , ηSj,1}Mj=1 defined in Def. 6. Let RM,N := OP (M

−1/2 + N−1/2). Let e(ĝ) := ∥ĝ − g∥ denote an error for a
nuisance estimates for any ĝ ∈ η̂ and g ∈ η. For the do-Shapley estimators defined in Def. 7, suppose the estimators T est(S)
are bounded. Let ϵestvi

:= ϕest
vi − ϕvi (where est ∈ {ipw, reg,dml}).



Under the Markovian case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p
sj )},

ϵregvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

0,1 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

sj∑
k=1

e(ĥ
Sj,p

k )e(θ̂
Sj,p

k,2 )}.

Under the Direct-cause case,

ϵipwvi = RM,N +OP {
∑

p∈{0,1}

M∑
j=1

e(ω̂Sj,p)},

ϵregvi
= RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(θ̂
Sj,p

2 )},

ϵdml
vi = RM,N +OP {

∑
p∈{0,1}

M∑
j=1

e(ĥSj,p)e(θ̂
Sj,p

b )}.

Proof. In the proof, we will use a notation ED−P [f(V)] for f(V) := ED [f(V)]− E [f(V)]. We use N := |D|. Also, for
any quantity A,B, A ≲ B if there is a constant c s.t. A ≤ cB. We first introduce a useful tool for analyzing errors of the
proposed estimator.

Lemma S.4. Let η0 denote some nuisance and η̂ denote its L2 consistent estimate. Let f(V; η) denote an arbitrary function
having a bounded second moment for any fixed η. Suppose samples used for constructing η̂ and for evaluating f(V; η̂) are
independent.

ED [f(V; η̂)]− E [f(V; η0)] = OP (N
−1/2) + E [f(V; η̂)− f(V; η0)] .

Proof. We first note that

ED [f(V; η̂)]− E [f(V; η0)] = ED−P [f(V; η0)]− ED−P [f(V; η̂)− f(V; η0)] + E [f(V; η̂)− f(V; η0)] .

First, ED−P [f(V; η0)] = OP (N
−1/2) by the classical central limit theorem. Second, ED−P [f(V; η̂)− f(V; η0)] =

OP (N
−1/2) under given conditions by (Kennedy et al., 2020, Lemma 2).

Now, we introduce an equivalent representation of the do-Shapley:

Proposition S.2 ((Štrumbelj & Kononenko, 2014, Eq. (10))). An equivalent representation of the do-Shapley in Eq. (2) is
given as

ϕ̃vi :=
1

n!

∑
π∈Π([n])

{
E[Y |do(vpreπ(i),i)]−E[Y |do(vpreπ(i))]

}
,

where Π([n]) is a set of all possible permutations of [n], π is an individual permutation in Π([n]), preπ(i) := {k ∈
[n] such that k < i in π([n])}.

This representation motivates a following Monte-Carlo-based approximation:

ϕ̃vi :=
1

M

M∑
j=1

{
E[Y |do(vpreπj

(i),i)]−E[Y |do(vpreπj
(i))]

}
, (D.5)

where M is the number of randomly generated permutation of [n] and πj denotes kth permutation. Convergence of ϕ̃vi is
guaranteed by the following result:



Lemma S.5.

ϕ̃vi − ϕvi = OP (M
−1/2). (D.6)

Proof. Let Z(σ) := E[Y |do(vi,preσ(k)(i)
)]− E[Y |do(vpreσ(k)(i)

)] denote a random variable where the randomness is over
the permutation σ, where P (σ) = 1

n! . Then, EP [Z(σ)] = ϕvi . By the given assumption, Z(σ) and

ϕ̃vi :=
1

M

M∑
k=1

Z(σ(k))

are bounded random variables. Let B denote such bound. Then, by (Lattimore & Szepesvári, 2020, Corollary 5.5),

ϕ̃vi > ϕvi −
√

2B2 log(1/δ)

M
and ϕ̃vi < ϕvi +

√
2B2 log(1/δ)

M

in probability (1− δ), which implies that ϕ̃vi converges in
√
M rate. This completes the proof.

Let Sj,a := preπj
(i) and Sj,b := {i} ∪ preπj

(i). By Def. 7, Eqs. (D.5,D.6),

ϕest
vi − ϕvi

= ϕest
vi + ϕ̃vi − ϕ̃vi

+ ϕvi (D.7)

=
1

M

j∑
i=1

({
T est(Sj,b)− E[Y |do(vSj,b

)]
}
+

{
T est(Sj,a)− E[Y |do(vSj,a

)]
})

+OP (M
−1/2). (D.8)

Now, we analyze each of IPW, REG, DML estimators in Defs. (4,5,6).

Lemma S.6 (Error analysis for IPW). For any nonempty S ⊆ [n],

T ipw(S)− E[Y |do(vS)] =

{
OP (N

−1/2) +OP

(∥∥ω̂S
s − ωS

s

∥∥) (Markovian)
OP (N

−1/2) +OP

(∥∥ω̂S − ωS
∥∥) (Direct-cause),

(D.9)

Proof. We will prove only for the Markovian case, since the exactly same proof is applied for the Direct-cause case. First,
E[Y |do(vS)] = E

[
Y ωS

s

]
.

From Lemma S.4, it suffices to show that E
[
Y ω̂S

s − Y ωS
s

]
= OP

(∥∥ω̂S
s − ωS

s

∥∥). It can be shown by

E
[
Y ω̂S

s − Y ωS
s

]
≤ ∥Y ∥

∥∥ω̂S
s − ωS

s

∥∥ ≲
∥∥ω̂S

s − ωS
s

∥∥ ,
where the first inequality by Cauchy-Schwarz inequality and the second by the boundness of Y .

Lemma S.7 (Error analysis for REG). For any nonempty S ⊆ [n],

T reg(S)− E[Y |do(vS)] =

OP (N
−1/2) +OP

(∥∥∥θ̂S0,1 − θS0,1

∥∥∥) (Markovian)

OP (N
−1/2) +OP

(∥∥∥θ̂Sa − θS
∥∥∥) (Direct-cause) .

Proof. We will prove only for the Markovian case, since the exactly same proof is applied for the Direct-cause case. We
note that E

[
θS0,1

]
= E[Y |do(vS)] by Lemma 2. From Lemma S.4, it suffices to show that E

[
θ̂S0,1 − θS0,1

]
= OP (

∥∥∥θ̂ − θ
∥∥∥).

It holds by Cauchy-Schwarz inequality.

Lemma S.8 (Error analysis for DML). For any nonempty S ⊆ [n],

T dml(S)− E[Y |do(vS)] =

OP (N
−1/2) +

∑s
j=1 OP

(∥∥∥θ̂Sj,2 − θSj,2

∥∥∥∥∥∥ĥS
j − hS

j

∥∥∥) (Markovian)

OP (N
−1/2) +OP

(∥∥∥θ̂Sa − θSa

∥∥∥∥∥∥ĥS − hS

∥∥∥) (Direct-cause).



Proof. We note that E
[
V(V′, ηS)

]
= E[Y |do(vS)] by Lemma 3. From Lemma S.4, it suffices to show that

E
[
V(V′, η̂S)− V(V′, ηS)

]
=


∑s

j=1 OP

(∥∥∥θ̂Sj,2 − θSj,2

∥∥∥∥∥∥ĥS
j − hS

j

∥∥∥) (Markovian)

OP

(∥∥∥θ̂Sa − θSa

∥∥∥∥∥∥ĥS − hS

∥∥∥) (Direct-cause).

First, consider the Markovian case. We omit the superscript S. Consider a following quantity: For j = 1, 2, · · · , s

Qj := θj−1,1 +

s∑
k=j

ωj:k(θk,1 − θk,2),

where ωj:k :=
∏k

r=j

1vmr
(Vmr )

hS
r

. Let Qs+1 := Y and ωj+1:· = 0. We note that Q1 = V(V′; ηS), and E [Q1] =

E[Y |do(vS)]. Also, the following holds, by the definition of θk−1,1, θk,2:

E [θk−1,1] = E
[
1vmk

(Vmk
)θk,2

]
,

E
[
θ̂k−1,1

]
= E

[
1vmk

(Vmk
)θ̂k,2

]
.

First, we note that Qj can be written in a recursion as follow: For j = 1, 2, · · · , s

Qj = θj−1,1 + ωj:j (Qj+1 − θj,2) .

To witness, consider the followings:

Qj = θj−1,1 + ωj:j(θj,1 − θj,2) + ωj:j+1(θj+1,1 − θj+1,2) + ωj:j+2(θj+2,1 − θj+2,2) + · · ·
Qj+1 = θj,1 + ωj+1:j+1(θj+1,1 − θj+1,2) + ωj+1:j+2(θj+2,1 − θj+2,2) + · · ·

ωj:jQj+1 = ωj:jθj,1 + ωj:j+1(θj+1,1 − θj+1,2) + ωj:j+2(θj+2,1 − θj+2,2) + · · · .

Then,

Qj = ωj:jQj+1 − ωj:jθj,1 + θj−1,1 + ωj:j(θj,1 − θj,2)

= θj−1,1 + ωj:j (Qj+1 − θj,2) .

Finally, we will witness the following holds:

E
[
Q̂j −Qj

]
= E

[
Q̂j − θj−1,1

]
=

s∑
k=j

OP

(∥∥∥θk,2 − θ̂k,2

∥∥∥ ∥∥∥ĥk − hk

∥∥∥) .

We will prove this by using an inductive hypothesis. First, at j = s,

E
[
Q̂s −Qs

]
= E

[
Q̂s − θs−1,1

]
= E

[
θ̂s−1,1 + ω̂s:s(Y − θ̂s,2)− θs−1,1

]
= E

[
θ̂s−1,1 +

1vms
(Vms)

π̂s
(Y − θ̂s,2)− θs−1,1

]
= E

[
1vms

(Vms
)(θ̂s,2 − θs,2) +

1vms
(Vms)

π̂s
(θs,2 − θ̂s,2)

]
= OP

(∥∥∥θs,2 − θ̂s,2

∥∥∥ ∥π̂s − πs∥
)
.



For any j = s− 1, · · · , 1,

E
[
Q̂j −Qj

]
= E

[
Q̂j − θj−1,1

]
= E

[
θ̂j−1,1 − θj−1,1 + ω̂j:j

(
Q̂j+1 − θ̂j,2

)]
= E

[
θ̂j−1,1 − θj−1,1 + ω̂j:j

(
Q̂j+1 − θj,1

)
+ ω̂j:j

(
θj,1 − θ̂j,2

)]
= E

[
ω̂j:j

(
Q̂j+1 − θj,1

)]
+ E

[
1vmj

(Vmj
)
(
θ̂j,2 − θj,2

)
+ ω̂j:j

(
θj,1 − θ̂j,2

)]
= E

[
ω̂j:j

(
Q̂j+1 − θj,1

)]
+ E

[
1

P̂ (Vmj |Wmj )

{
θj,2 − θ̂j,2

}{
ĥj − hj

}]
≲ E

[(
Q̂j+1 − θj,1

)]
+ E

[{
θj,2 − θ̂j,2

}{
ĥj − hj

}]
≤ E

[(
Q̂j+1 − θj,1

)]
+
∥∥∥θj,2 − θ̂j,2

∥∥∥∥∥∥ĥj − hj

∥∥∥ .
If we assume E

[
Q̂r − θr−1,1

]
=

∑s
k=r OP

(∥∥∥θk,2 − θ̂k,2

∥∥∥∥∥∥ĥk − hk

∥∥∥) for r = j + 1, · · · , s, then it’s easy to witness
that it holds for r = j, too. Therefore, by an induction, the equality holds for all r = 1, 2, · · · , 1. This completes the proof
for Markovian case.

For Direct-cause case,

E
[
V(V′; ηS)− V(V; η̂S)

]
= E

[
1vS

(VS)

ĥS
(Y − θ̂a) + θ̂b − θb

]
= E

[
1vS

(VS)

ĥS
(θa − θ̂a) + θ̂b − θb

]
= E

[
hS

ĥS
(θb − θ̂b) + θ̂b − θb

]
= E

[
1

ĥS
(θb − θ̂b)(h

S − ĥS)

]
≲ E

[
1

ĥS
(θb − θ̂b)(h

S − ĥS)

]
≤

∥∥∥θb − θ̂b

∥∥∥∥∥∥hS − ĥS
∥∥∥ .

By combining Lemmas (S.4,S.5,S.6,S.7,S.8), we complete the proof of Theorem D.3.

E. Additional Experimental Details From Section 6
E.1. Data Generating Processes

Here, we present the structural causal model for the data generating processes used for the data generating process used in
Section 6.

We first note that U ∼ Bernoulli(0.4), UV1
∼ Bernoulli(0.8), UV3

∼ Bernoulli(0.4), UV2
∼ Bernoulli(0.3), and UY ∼

Normal(0, 1). The SCM that induced the graph in Fig. 2a is

V1 = UV1
⊕ U

V3 = UV3
∨ U

V2 = (V1 ∧ V3) ∨ UV2

Y = 3V1 + 0.4V2 + V3 + UY .
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Figure F.4: (a) Causal graph for Example 1, taken from Lundberg (2021) (b) Variables {S, P,M,L} are hidden. These
graphs are used for Appendix F.

The SCM that induced the graph in Fig. 2b is

V1 = UV1

V3 = UV3

V2 = (V1 ∧ V3) ∨ UV2

Y = 3V1 + 0.4V2 + V3 + UY .

The SCM that induced the graph in Fig. 2c is

V1 = UV1
⊕ U

V3 = UV3
∨ U

V2 = UV2

Y = 3V1 + 0.4V2 + V3 + UY .

F. Additional Experiments
In this section, we consider a different data generation process based on Example 1.

Experimental Setup. We use synthetic datasets based on: (a) Example 1 for which the corresponding causal graph Fig. F.4a
is Markovian, and (b) the graph in Fig. F.4b which matches with Direct-cause case. These two graphs share the same
data generating process since the graph in Fig. F.4b is generated from the graph in Fig. F.4a by omitting a set of variables.
Details of the data generating process are provided in Appendix E. Throughout the simulation, we denote {ϕvi}ni=1 as the
ground-truth do-Shapley values.

Comparison Between Estimators. We compare the three estimators (IPW, REG, DML), denoted by {ϕipw
vi , ϕreg

vi , ϕdml
vi }

respectively, for scenarios depicted in graphs in Figs. (F.4a,F.4b). For all estimators, nuisances are estimated using gradient
boosting model called XGBoost (Chen & Guestrin, 2016).

Let ϕest
vi,k
∈ {ϕdml

vi,k
, ϕipw

vi,k
, ϕreg

vi,k
} denote an estimated importance of the ith feature of jth samples (i.e., Vi,k ∈ V(k) ∈ D).

As in Section 6, we assess the quality of the estimator by computing the L1 error as

L1(est, k) := (1/n)

n∑
i=1

∣∣ϕest
vi,k − ϕvi,k

∣∣ ,
(where n is the number of features). We ran the simulation for 100 randomly samples; i.e., k ∈ {1, 2, · · · , 100}, and with
sample size N := |D| ∈ {100, 1000, 5000, 10000} to observe convergence behaviors of estimators. We fix M = 100.

Data Generating Processes. Here, we present the structural causal model for the data generating processes used for
the data generating process, where the qualitative graphical description is provided as causal graphs in Fig. F.4a. We
will denote V0 : sales calls , V1 : interaction , V2 : economic factors , V3 : last upgrade , V4 : product needs , V5 :
discounts provided , V6 : monthly usage , V7 : Ad spend , V8 : bugs reported , Y : customer retention (target variable).



(a) Markovian, Non-noisy (b) Markovian, Noisy (c) Direct-cause, Non-noisy (d) Direct-cause, Noisy

Figure F.5: The L1-error plots for the scenario in Section F.

V0 ∼ P (UV0), V2 ∼ P (UV2
) V3 ∼ P (UV3

) where P (UV0
) is a Uniform distribution ranging over 0 to 4; P (UV2

) is
a Uniform distribution ranging over 0 to 1; and P (UV3

) is a Uniform distribution ranging over 0 to 20. For the rest of
variables,

V1 = V0 + UV1

V4 = 0.1 · V0 + UV4

V5 = 0.5(1− logit(V4)) + 0.5 · UV5

V6 = logit (0.3 · V4 + UV6)

V7 = V6 · UV6 + 1V3<1(V3) + 1V3<2(V3)

V8 = UV8(V6),

where UV1 is a Poisson random variable with the parameter 0.2, U4 ∼ Normal(0, 1), UV5 is a Uniform variable ranging
(0, 1), UV6

∼ normal(0, 1), UV6
is an Uniform variable ranging (0.9, 0.99), and UV8

(V6) is a Poisson random variable such
that its parameter follows 2V6, and 1Va<c(Va) is an indicator function for the variable Va for the event Va < c for some
constant c. Finally,

Y ′ = 0.9V ′
4 + 0.8V ′

6 − 0.2V ′
2 + 0.05V ′

5 − 0.015(1− V ′
8) + 0.2V ′

0 + 0.3V1 + 0.5(V3 + 0.25) + 0.6V7 − UY − 0.45,

where {V ′
4 , V

′
6 , V

′
2 , V

′
5 , V

′
8 , V

′
0} are random variables from the normal distribution where the variance is 1 and their means

are {V4, V6, V2, V5, V8, V0}. Finally, Y = logit(7Y ).

For the Case 2, we drop the variable V0, V4, V6, and we used

Y ′ = −0.2V ′
2 + 0.05V ′

5 − 0.015(1− V ′
8) + 0.3V1 + 0.5/(V3/4 + 0.25) + 0.6V7 − UY − 0.45.

We also recommend checking the code data_generator_1.py, data_generator_2.py for the detailed configu-
rations of the data generating processes.

Experimental Results. For the non-noisy setting, the L1-error plots for {Markovian, Direct-cause} cases are presented
in Figs. (F.5a, F.5c) respectively. The DML-based estimator {ϕdml

vi }
n
i=1 outperforms ({ϕipw

vi , ϕreg
vi }

n
i=1) for all N ∈

{100, 1000, 5000, 10000}, and it achieves the smallest variance compared to other estimators. This result corroborates
with the robustness property of the DML-based estimator (see Remark 4). The L1-error plots for the noisy setting for
{Markovian, Direct-cause} cases are presented in Figs. (F.5b, F.5d) respectively. In this case, the DML-based estimator
{ϕdml

vi }
n
i=1 exhibits the debiasedness property against the converging noise, while other estimators converge much slower.

Contrasting with the ICC Approach (Janzing et al., 2020a). We contrast the do-Shapley with the ICC approach (Janzing
et al., 2020a). The do-Shapley measures the feature importance based on the total effect of variables, while the ICC measures
based on their intrinsic effects. It is not possible to quantitatively compare these two contrasting definitions.

We compute the feature importance as proposed in (Molnar, 2020, Chap. 9.6.5), where the importance of the jth feature is
defined as:

Ij :=
1

|D′|
∑

V(j)∈D′

∣∣ϕi(V(j))
∣∣ ,



(a) do-DML-Shapley (b) ICC

Figure F.6: Feature importance plots for the do-DML-Shapley and the ICC approaches.

S P I M D L E A B
do-DML 0.07 0.12 0.05 0.05 0.03 0.06 0.03 0.12 0.13

ICC 0.12 0.13 0.12 0.13 0.13 0.12 0.12 0.12 0.12

Table 3: Average of feature importances produced by the do-DML-Shapley and ICC approaches.

where ϕi is the Shapley value, and D′ ⊆ D is a subset of samples.

In our experiments, we randomly selected 100 samples and compare the feature importance using the do-DML-Shapley
(ϕdml

vi ) and the ICC approach, denoted ϕicc
vi . The average of the estimated importance of each features described in Example 1

is presented in Table 3. In Fig. F.6, we present the bar-plot for both the do-DML-Shapley and the ICC approaches using the
observations {

∣∣ϕdml
i (V(j))

∣∣}V(j)∈D′ and {
∣∣ϕicc

i (V(j))
∣∣}V(j)∈D′ .

In our experiments, the do-Shapley approach gives that the production needs (P ) has the largest total effect where P is in
fact the variable with largest coefficient (0.9). in our data generating process, whereas ICC approach gives that all variables
have similar intrinsic effects.


