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Example: 401(k) on the financial asset

Z X Y

W
Z 401(k) eligibility  

X 401(k) participation 

Y Net financial asset 

W Observed covariates (e.g., income, gender, family size, etc.) 

Query: Effect of the participation of 401(k) to the net financial asset 

 for participationX = 1

 for being eligibleZ = 1

Rewritten query: A causal effect of  to ; i.e.,  . X = x Y = y P(y |do(x))

↔ Presence of unmeasured confounders 
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Unidentifiability of Causal Effects

  is unidentifiableP(y |do(x))

Z X Y

W

 Therefore,  is not computable from the observational data. P(y |do(x))

(i.e., no unique representation of  w.r.t. the observational distribution  exists)P(y |do(x)) P
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Exclusion of Defiers 

• No eligibility  No participation; i.e., . ⇒ Z = 0 ⇏ X = 1

Z X Y

W

• This excludes a portion of samples called ‘defiers’. 

• If a sample is eligible, then the sample either participates or not. 
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Four types of samples 
Samples behaviors on  are always falling into one of the four types: {Z, X}

Z=1Z=0

X=0

X=1

Always-taker

  Z = 0 ⇒ X = 1

  Z = 1 ⇒ X = 1

Z=1Z=0

X=0

X=1

Never-taker

  Z = 0 ⇒ X = 0

  Z = 1 ⇒ X = 0

Z=1Z=0

X=0

X=1

Compliers 

  Z = 0 ⇒ X = 0

  Z = 1 ⇒ X = 1

Z=1Z=0

X=0

X=1

Defiers 

  Z = 0 ⇒ X = 1

  Z = 1 ⇒ X = 0
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Monotonicity: No defiers 
Suppose no defiers.

Z=1Z=0

X=0

X=1

Always-taker

  Z = 0 ⇒ X = 1

  Z = 1 ⇒ X = 1

Z=1Z=0

X=0

X=1

Never-taker

  Z = 0 ⇒ X = 0

  Z = 1 ⇒ X = 0

Z=1Z=0

X=0

X=1

Compliers 

  Z = 0 ⇒ X = 0

  Z = 1 ⇒ X = 1

Z=1Z=0

X=0

X=1

Defiers 

  Z = 0 ⇒ X = 1

  Z = 1 ⇒ X = 0
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Local Average Treatment Effect

Let  denote the complier. Under the monotonicity, the causal effect for compliers is 
identifiable and given as follow [🏆Imben and Angrist, 1994; Abadie, 2003]

C

Z X Y

W

𝔼[ f(Y) |do(x), C] =
𝔼[𝔼[ f(Y)Ix(X) |Z = x, W] − 𝔼[ f(Y)Ix(X) |Z = 1 − x, W]]

𝔼[P(X = 1 |Z = 1,W) − P(X = 1 |Z = 0,W)]

where  is a function of . f Y
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Insufficiency of LATE
• Most work considered  (with ) called ‘local average treatment 

effect (LATE)’. 
𝔼[Y |do(x), C] f(Y) = Y

• However, the LATE is insufficient to understand the treatment effect. 
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Plots for densities , where the  and .  p(y |do(x), C) 𝔼[Y |do(x), C] = 0 Var(Y |do(x), C) = 2

We need the density estimator!

LATE is insufficient to understand the 
treatment effect. 
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Challenges in estimating the density 

𝔼[ f(Y) |do(x), C] =
𝔼[𝔼[ f(Y)Ix(X) |Z = x, W] − 𝔼[ f(Y)Ix(X) |Z = 1 − x, W]]

𝔼[P(X = 1 |Z = 1,W) − P(X = 1 |Z = 0,W)]

• For discrete , by taking  (an indicator for ), we can have a 
distribution . 

Y f(Y) ← Iy(Y) Y = y
P(y |do(x), C)

• For a continuous , there is no function  linking  with the 
density  (called ‘non-regular’).

Y f(Y) 𝔼[ f(Y) |do(x), C]
p(y |do(x), C)

• One might think of Dirac delta for , but it’s not a valid function. Y = y

😊 We can leverage the existing method for estimating LATE. 

😔 The existing methods cannot be directly applied for 
estimating the density (non-regular estimand).
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Toward estimating the density 
We propose two methods for estimating the density .p(yx |C)

1. Kernel-smoothing based approach 

2. Model-based approach 

In , choose  such that approximates . 𝔼[ f(Y) |do(x), C] f 𝔼[ f(Y) |do(x), C] ≈ p(y |do(x), C)

Assume that the density can be modeled by a parametric model  (e.g.,  
can be modeled as a normal distribution ).

g(y; β) p(y |do(x), C)
g(y; β = {μ, σ})

Then, we can use the existing methods designed for estimating the LATE . 𝔼[Y |do(x), C]

Then, we estimate . β
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Approach 1 — Kernel-smooth based
In , choose  for approximating . 𝔼[ f(Y) |do(x), C] f 𝔼[ f(Y) |do(x), C] ≈ p(y |do(x), C)

We used  as a Kernel , which is a 
smooth approximation for denoting . 

f(Y) Kh,y( ⋅ )
Y = y

y

Kh,y(y′￼)

Value of Y = y′￼

Kh,y(y′￼) ≡
1

h 2π
exp (−

(y′￼− y)2

2h2 )
For example, Gaussian kernel is given as 
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Approach 1 — Kernel-smooth based

; ; .πz(w) ≡ P(z |w) ξx(z, w) ≡ P(x |z, w) θ(x, z, w)[ f(Y)] ≡ 𝔼[ f(Y)Ix(X) |x, w]

We propose a double/debiased machine learning (DML, Chernozhukov et al., 2018) 
based estimator which is a function of the followings; .̂ψ h(y) ≡ f( ̂π z, ̂ξ x, ̂θ [Kh,y(Y)])

The proposed estimator exhibits robustness property of DML: 

Thm. 2. Debiasedness property of ̂ψ h

 converges to  in -rate if  ̂ψ h p(y |do(x), C) nh

• , ,  converges in much slower  rate; or ̂π z
̂ξ x

̂θ n−1/4

•  or  are correctly specified. ̂π z { ̂ξ x, ̂θ}
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Approach 2 — Model-based

For example, suppose  is a normal distribution. Then, the DML 
estimates of  are given as a function  and .

g(y; β = {μ, σ})
μ, σ ̂μ = gμ( ̂π z, ̂ξ x, ̂θ ) ̂σ = gσ( ̂π z, ̂ξ x, ̂θ )

; ; .πz(w) ≡ P(z |w) ξx(z, w) ≡ P(x |z, w) θ(x, z, w)[ f(Y)] ≡ 𝔼[ f(Y)Ix(X) |x, w]

We propose a DML based estimator using the following parameters: 

Goal — Learn  that minimizes the divergence between  and .β p(y |do(x), C) g(y; β)
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Approach 2 — model-smooth based
The proposed model-based DML estimators estimates (e.g.,  and 

) exhibit robustness property of DML: 
̂μ = gμ( ̂π z, ̂ξ x, ̂θ )

̂σ = gσ( ̂π z, ̂ξ x, ̂θ )

Thm. 2. Debiasedness of the model-based approach

The proposed model-based DML estimator estimates  (e.g., ) in root-  
rate if 

̂β ̂β = { ̂μ , ̂σ} n

• , ,  converges in much slower  rate; or ̂π z
̂ξ x

̂θ n−1/4

•  or  are correctly specified. ̂π z { ̂ξ x, ̂θ}
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Results: Synthetic dataset
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Kernel-based DML 
estimator results in the 
most accurate result, 
capturing all modes. 
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Results: 401(k)
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• Since this is a real-dataset, there is no ground-truth density.

• For both of methods, our result is consistent with the known implication. 

• The implication —  has a positive causal effect on  — is well-known.X = 1 Y = y
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Conclusion 

Z X Y

W
For a well-known instrumental variable setting, 

• We provide the (1) Kernel-smoothing; and (2) model-based on the DML which 
exhibits robustness properties against the slow convergence of parameter 
estimates. 

• We illustrated the proposed method to the synthetic and real-dataset. 


