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Example: 401(k) on the financial asset

Query: Effect of the participation of 401(k) to the net financial asset

W X  401(k) participation X = 1 for participation

Z  401(K) eligibility Z = 1 for being eligible
Y Net financial asset

W  Observed covariates (e.g., income, gender, family size, etc.)

/ X Y

Presence of unmeasured confounders

Rewritten query: A causal effect of X = xto Y = y; i.e., P(y|do(x)).



Unidentifiability of Causal Effects

i4

/ X Y

@ P(y|do(x)) is unidentifiable

(i.e., no unique representation of P(y | do(x)) w.r.t. the observational distribution P exists)

@ Therefore, P(y|do(x)) is not computable from the observational data.



Exclusion of Defiers

i4

/ X Y

e |f a sample is eligible, then the sample either participates or not.

 No eligibility = No participation;i.e.,Z=0 % X = 1.

* This excludes a portion of samples called ‘defiers’.



Four types of samples

Samples behaviors on {Z, X'} are always falling into one of the four types:

Always-taker
/=0=>X=1

/Z/=1=>X=1

X=1

X=0

Compliers

/=0=>X=0

/Z/=1=>X=1

X=1

X=0

—

Z=0 /=1

Never-taker
/=0=>X=0

/=1=>X=0

X=1

X=0

Defiers
/=0=>X=1

Z=1=>X=90

X=0

.

Z=0 Z=1



Suppose no defiers.

Monotonicity: No defiers

Always-taker Compliers

Z=0=>X=1 *1| @& ® Z=0=>X=0 %I

/=1=>X=1 X=0 /=1=>X=1 X=0 f///,
Z-0 71 Z-0 Z-1

Never-taker Defiers

Z/=0=>X=0 7=0=>X=1 X

Z=1=>X=0 xo| ® ° Z=1=X=0 xo .\-

Z=0 Z=1



Local Average Treatment Effect

4

o————
/ X Y

Let C denote the complier. Under the monotonicity, the causal effect for compliers is
identifiable and given as follow [¥Imben and Angrist, 1994; Abadie, 2003]

_[_[f(Y)Ix(X)‘Z:xa W] — _[f(Y)Ix(X)‘Z: 1 — X, W]]
PX=1|Z=1W)=PX=1|Z=0.W)]

=[A(Y) | do(x), C] =

where f is a function of Y.



Insufficiency of LAIE

» Most work considered E[Y | do(x), C] (with f(Y) = Y) called ‘local average treatment
effect (LATE)’.

We need the density estimator!

LATE iIs Insufficient to understand the
treatment effect.




Challenges in estimating the density

- @ We can leverage the existing method for estimating LATE.

© The existing methods cannot be directly applied for
estimating the density (hon-regular estimand).



Toward estimating the density

We propose two methods for estimating the density p(y, | C).

1. Kernel-smoothing based approach

In E[f(Y) | do(x), C], choose f such that approximates E[f(Y) | do(x), C] =~ p(y|do(x), C).

Then, we can use the existing methods designed for estimating the LATE E[Y | do(x), C].

2. Model-based approach

Assume that the density can be modeled by a parametric model g(y; f) (e.g., p(v | do(x), C)
can be modeled as a normal distribution g(y; f = {u, 6})).

Then, we estimate /.
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Approach 1 — Kernel-smooth based

In E[ /(Y) |do(x), C], choose f for approximating E[ f(Y) |do(x), C] =~ p(v|do(x), C).

We used f(Y) as a Kernel Kh,y( - ), which is a

: : : Kh,y(Y')
smooth approximation for denoting ¥ = .

For example, Gaussian kernel is given as

| 1 (y, - )7)2 y Value of Y =y’
h/2n 2h




Approach 1 — Kernel-smooth based

We propose a double/debiased machine learning (DML, Chernozhukov et al., 2018)

\

based estimator which is a function of the followings; ¥ ,(y) = f( %\Z, ¢ s A[Kh,y(Y)]).

T (w) = P(z|w); E(z,w) = P(x |z, w); O(x, z, w)[ f(Y)] =

=[J(VLLX) | x, wl.

The proposed estimator exhibits robustness property of DML.:

Thm. 2. Debiasedness property of

/l//\h converges to p(v|do(x), C) in A/ nh-rate if

/\

A ) - —1/4
. 1, &,, 0 converges in much slower n

rate; or

. 7T or{ 3 . 0 are correctly specified.
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Approach 2 — Model-based

Goal — Learn f that minimizes the divergence between p(y |do(x), C) and g(y; /).

We propose a DML based estimator using the following parameters:

r,(w) = P(z|w); E(z,w) = P(x|z,w); O(x, z, w)[[(Y)] =

=[S(Y)LX) | x, wl.

For example, suppose g(y; f = {u,0}) is a normal distribution. Then, the DML

estimates of u, 6 are given as a function i = gﬂ(n <§ 9) and 6 = g (7, 5 d).

VN
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Approach 2 — model-smooth based

N A\
\

The proposed model-based DML estimators estimates (e.g., 4 = gﬂ(fz\z, ¢ ., 0)and

c =g %\Z, 2 > A)) exhibit robustness property of DML:

Thm. 2. Debiasedness of the model-based approach

\

The proposed model-based DML estimator estimates 3 (e.g., B = { i, 5 }) in root-n
rate if

/\

A ) - —1/4
. 1, &,, 0 converges in much slower n

rate; or

. 7T or{ 3 . 0 are correctly specified.
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Results: Synthetic dataset

Inaccurate result due to
Inconsistent assumption
(Normal dist.) for the
model

Model-based. Model-based.

| Non-DML DML

0.50 H;?

o\ / Kernel-based DML

Sround-truth density /\ estimator results in the

| | [ oo _/ \ most accurate result,
o L L\ s L [ eapturing all modes.

Kernel-based. \ Kernel-based.
Non-DML \. DML



Results: 401(k)

0.03

0.06;

0.041
0.021

L] x1
- o \
/\

0.001 0.00
0 25 50 75 100 0 05 50 75

Model-based, DML Kernel-based, DML

* Since this is a real-dataset, there is no ground-truth density.

» The implication — X = 1 has a positive causal effect on ¥ = y — is well-known.

* For both of methods, our result is consistent with the known implication.



Conclusion

For a well-known instrumental variable setting,

* We provide the (1) Kernel-smoothing; and (2) model-based on the DML which

exhibits robustness properties against the slow convergence of parameter
estimates.

* We illustrated the proposed method to the synthetic and real-dataset.
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