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Simulation for Figure 1

‣In this paper, we developed robust DML estimators for any 
identifiable functional from a MEC, which doesn’t require fully 
specified graphs in prior. 

Causal effect identification on MEC

Theorem 1: Expressibility

An UIF for any identifiable causal effects can be expressed as a 
function of UIFs of CE-1 (in Lemma 1), through Algo. 1.

‣ (Debiasedness; Left)  DML converges (i.e., the error ‘MAAE’ 
decreases) faster even when nuisances converge slower rate (  ).N−1/4

‣DML-IDP is compared with the plug-in estimator, the only viable 
estimator working for identifiable causal functional for MEC. 

DML for Canonical Expression 

2. (DML estimator in Def. 5) constructs  based on the UIF.TN

Theorem 2: DML Properties
A DML estimator  (named DML-IDP) achieves doubly 

robustness and debiasedness, with respect to  and . 

TN

{θ} {ω}

‣ (Doubly Robustness; (Center, Right)) DML converges even when 
models for either  (center) or  (right) is misspecified. {θ} {ω}

‣ (DML-IDP) We developed algorithms to derive corresponding UIFs 
for any causal effects identifiable from the MEC.

‣ (DML estimator) We introduced a general purpose causal 
estimators achieving doubly robustness and debiasedness 
properties based on the derived UIF. 
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[Figure 1] Example for Markov equivalence class

Markov equivalence class: MEC is a collection of graphs compatible 
with data (i.e., Two graphs  are in the same MEC if the same 
conditional independences are implied by the graphs). 

G1, G2

Identification on PAG: A complete identification algorithm (i.e., the 
causal effect  is identifiable if and only if the algorithm 
returns an output) has been developed [3].  

P(y |do(x))
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‣ [Canonical Expression 1 (CE-1), Def. 3] is given as
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P(bi |Pre(bi))

where  are a subset of variables. A, Bi, C

‣ An uncentered influence function (UIF), a key ingredient in 
constructing DML estimators, for CE-1 is given as 

𝒱(V; η = {θ, ω}) ≡ θ0,1 + ∑k
ωk(θk,1 − θk,2)

where and  are parameters represented by the 
conditional expectations, and can be estimated through regressions.  

{θk,1, θk,2} {ωk}

Lemma 1: UIF for CE-1 

DML for any identifiable causal estimands 

‣ The DML estimator can be constructed based on the UIF; For 
 are randomly split samples and  are nuisances 

trained using data ,
(Da, Db) (ηa, ηb)

(Da, Db)
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𝒱(V(i); ηb)) +
2
N ∑

V(i)∈Db

𝒱(V(i); ηa))

1. (DML-IDP in Algo. 1) represents a causal effect as a function of 
CE-1 & derives/expresses a UIF for any identifiable causal effects 
as a function of UIFs of CE-1 in Lemma 1.

1. Doubly Robust: TN converges to  whenever  or  are correct. ψ {θ} {ω}

2. Debiasedness: TN converges at  rate to  even when 
converges  rate. 

N ψ η = {θ, ω}
N−1/4
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Illustration 1: Derivation of UIF for Figure 1 

A causal effect is expressed as CE-1, since

P(y |do(x1, x2)) = ∑
z,a,b,c

P(y |x2, x1, z, z, a, b, c)P(z |x1, a, b, c)P(a, b, c) .

The UIF can be derived by Lemma 1 (Illustration 1 in the paper) as, 

,𝒱 = θ0,1 + ω1(θ1,1 − θ1,2) + ω2(θ2,1 − θ2,2)

where  are specified in the Illustration 1 in the paper. {θ⋅,⋅, ω⋅}

‣Given observational data, we can only learn the Markov equivalence 
class (MEC) of the causal graph. A complete result for identifying 
causal effects from the Markov equivalence class has recently been 
developed [3]. 


