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Step 2.
(Estimation)

Estimate the identified estimand Q=F(P, A) from finite samples D.

Estimation
(Step 2)
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A Q = F(P)
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functional is given as the below equation. 

P(y |do(x)) =
∑w P(x, y |r, w)P(w)

∑w P(x |r, w)P(w)

• Existing BD estimators are not 
applicable, b/c the functional is not in an 
adjustment form.  

• Observation — Causal functional P is a 
arithmetic of two adjustments:

 adjusting over W=wP(x, y |r, w)

 adjusting over W=wP(x |r, w)

💡A causal functional is expressible as a function 
of adjustments. Then, a BD estimator might be 
applicable in estimating such functional.  

Intuition

❓What BD estimators should we leverage? 
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 💪 Power of DML
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Our Approach for marrying DML + 
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Result 1. (DML-ID)

• Derive the Neyman orthogonal score when there are no unmeasured confounders b/w 
(X, Y) (called multi-outcome sequential back-door (mSBD)).
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• Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an 
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Result 2. (DML estimator)
• Construct a DML estimator working for any identifiable causal functional. 
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