Estimating Identifiable Causal Effects through Double Machine Learning

Yonghan Jung Purpue UNIVERSITY.

Jin Tian Iowa State UNIVERSITY

Elias Bareinboim

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Learning causal effect: 2-step procedures

Learning causal effect: 2-step procedures

Represent the causal query Q = P(y|do(x)) as a function of P and Step 1. set of causal assumption A (i.e., Q = F(P, A)). (Identification, ID)

Learning causal effect: 2-step procedures

Represent the causal query Q = P(y|do(x)) as a function of P and Step 1. set of causal assumption A (i.e., Q = F(P, A)). (Identification, ID)

Estimate the identified estimand Q = F(P, A) from finite samples D. Step 2. (Estimation)

Strength Completeness of Identification algorithm

 There exist *sound* and *complete* identification algorithms for determining whether a causal query **Q** can be represented as a functional of P (i.e., Q=F(P, A)) from a given causal graph.

Ζ

Χ There exist sound and c identification algorithms **Backdoor graph** whether a causal query G can be represented as a functional of P (i.e., Q=F(P, A)) from a given causal graph.

Weakness **No sample-efficient estimator**

 Estimation has been mainly done on backdoor/ignorability assumption.

Ζ

Χ There exist sound and c identification algorithms **Backdoor graph** whether a causal query G can be represented as a functional of P (i.e., Q=F(P, A)) from a given causal graph.

Weakness **No sample-efficient estimator**

- Estimation has been mainly done on backdoor/ignorability assumption.
- For general identifiable estimands, it's not known (neither obvious) how to estimate the causal effect sample-efficiently.

Causal effect is identifiable and the functional is given as the below equation.

- Causal effect is identifiable and the functional is given as the below equation.
- Existing BD estimators are not applicable, b/c the functional is not in an adjustment form.

- Causal effect is identifiable and the functional is given as the below equation.
- Existing BD estimators are not applicable, b/c the functional is not in an adjustment form.
- **Observation** Causal functional P is a arithmetic of two adjustments:

P(x, y | r, w) adjusting over W=w

 $P(x \mid r, w)$ adjusting over W=w

A causal functional is expressible as a function of adjustments. Then, a BD estimator might be applicable in estimating such functional.

 $P(y \mid do(x)) = \frac{\sum_{w} P(x, y \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)}$

ntuition

Observation — Causal functional P is a arithmetic of two adjustments:

P(x, y | r, w) adjusting over W=w

 $P(x \mid r, w)$ adjusting over W=w

ntuition

A causal functional is expressible as a function of adjustments. Then, a BD estimator might be applicable in estimating such functional.

> **Observation** — Causal functional P is a

What BD estimators should we leverage?

Recap: Classic BD estimators $Q = \sum P(y | x, z) P(z)$

Backdoor graph

Estimand (Q)

Estimator (\widehat{Q})

For correct estimation

For \sqrt{N} -consistency

Recap: Classic BD estimators $Q = \sum P(y | x, z) P(z)$ **Backdoor graph Inverse Probability Weight**

Estimand (Q)

Estimator (\hat{Q})

For correct estimation

For \sqrt{N} -consistency

Inverse Probability Weight

BD	estimators	

 $Q = \sum P(y | x, z) P(z)$

Inverse Probability Weight

C BD estimators $Q = \sum_{z} P(y x, z) P(z)$				
ability Weight	Regression			
$-I_y(Y_{(i)})$				

BD estimators				
$Q = \sum_{z} P(y x, z) P(z)$				
ability Weight	Regression			
	$\mathbb{E}_{\mathbf{z}}\left[P(y \mid x, Z)\right]$			
$-I_y(Y_{(i)})$				
	·			

ic BD estimators $Q = \sum_{z} P(y x, z) P(z)$				
ability Weight	Regression			
	$\mathbb{E}_{\mathbf{z}}\left[P(y \mid x, Z)\right]$			
$-I_y(Y_{(i)})$	$\frac{1}{N} \sum_{i=1}^{N} \widehat{P}(y \mid x, Z_{(i)})$			

 $Q = \sum P(y | x, z) P(z)$

Risk of classic estimators

Incorrectly estimated if estimates of nuisances are misspecified.

Not \sqrt{N} -consistent if estimates of nuisances converges slower

 $Q = \sum P(y | x, z) P(z)$

Risk of classic estimators

Model misspecification is common in practice when the data generating process is complicated \Rightarrow Incorrect estimation.

Incorrectly estimated if estimates of nuisances are misspecified.

Not \sqrt{N} -consistent if estimates of nuisances converges slower

Backdoor graph

-consistency.

than $o_P(N^{-1/2})$

Estimand (*Q*)

Estimator (Q)

For correct estimation

For \sqrt{N} -consistency

 $Q = \sum P(y | x, z) P(z)$

Risk of classic estimators

- Model misspecification is common in practice when the data generating process is complicated \Rightarrow Incorrect estimation.
- Slow convergence is common for flexible ML models \Rightarrow Not \sqrt{N}
- **Incorrectly estimated** if estimates of nuisances are **misspecified**.
- Not \sqrt{N} -consistent if estimates of nuisances converges slower

Recap: <u>Classic BD estimators</u>

Estimand (Q)

Estimator (\widehat{Q})

For correct estimation

For \sqrt{N} -consistency

Model misspecification is common in practice when the data generating process is complicated \Rightarrow Incorrect estimation.

Slow convergence is common for flexible ML models \Rightarrow Not \sqrt{N} -consistency.

Incorrectly estimated if estimates of nuisances are **misspecified**.

than $o_P(N^{-1/2})$

I NEED SOMETHING ROBUST

tors

Not \sqrt{N} -consistent if estimates of nuisances converges slower

Backdoor graph

Double Machine Learning Estimator

Estimand

Representation of ${\boldsymbol{\mathcal{Q}}}$

Estimators

Estimator \widehat{Q}

For correct estimation

For \sqrt{N} -consistency

$Q = \sum_{z} P(y | x, z) P(z)$

Backdoor graph

Double Machine Learning Estimator

Estimand

Representation of Q

Estimators

Estimator \widehat{Q}

For correct estimation

For \sqrt{N} -consistency

 $\mathbb{E}\left[\frac{I_x}{P(X)}\right]$

$$Q = \sum_{z} P(y | x, z) P(z)$$

$$\frac{P(X)}{X|Z} \left(I_{y}(Y) - P(y|x,Z) \right) + P(y|x,Z) \right]$$

Backdoor graph

Double Machine Learning Estimator

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

For \sqrt{N} -consistency

$$Q = \sum_{z} P(y | x, z) P(z)$$

$$\frac{A(X)}{X|Z} \left(I_{y}(Y) - P(y|x,Z) \right) + P(y|x,Z) \right]$$

$$I_y(Y) - \widehat{P}(y|x,Z) + \widehat{P}(y|x,Z)$$

Backdoor graph

Double Machine Learning Estimator

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

For \sqrt{N} -consistency

$$Q = \sum_{z} P(y | x, z) P(z)$$

$$\frac{P(X)}{X|Z} \left(I_{y}(Y) - P(y|x,Z) \right) + P(y|x,Z) \right]$$

 $\frac{1}{N}\sum_{i=1}^{N} \frac{I_{x}(X_{(i)})}{\widehat{P}(X_{(i)}|Z_{(i)})} \left(I_{y}(Y) - \widehat{P}(y|x,Z)\right) + \widehat{P}(y|x,Z)$ where training and evaluation of \widehat{P} are done with two distinct sets of samples ("**Cross fitting**")

Backdoor graph

Double Machine Learning Estimator

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

("Doubly robustness")

For \sqrt{N} -consistency

$$Q = \sum_{z} P(y | x, z) P(z)$$

$$\frac{P(X)}{X|Z} \left(I_{y}(Y) - P(y|x,Z) \right) + P(y|x,Z) \right)$$

$$I_y(Y) - \widehat{P}(y|x,Z) + \widehat{P}(y|x,Z)$$

where training and evaluation of Pare done with two distinct sets of samples ("Cross fitting")

Either one of two nuisances should be correctly **botemitad**

Backdoor graph

Double Machine Learning Estimator

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

For \sqrt{N} -consistency

("Doubly robustness")

$$Q = \sum_{z} P(y | x, z) P(z)$$

$$\frac{P(X)}{X|Z} \left(I_{y}(Y) - P(y|x,Z) \right) + P(y|x,Z) \right)$$

$$I_y(Y) - \widehat{P}(y|x,Z) + \widehat{P}(y|x,Z)$$

where training and evaluation of Pare done with two distinct sets of samples ("Cross fitting")

Either one of two nuisances should be correctly <u>botemitad</u>

("Debiasedness") Estimates for nuisance converges at $O_P(N^{-1/4})$.

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

("Doubly robustness")

For \sqrt{N} -consistency

$$Q = \sum_{z} P(y | x, z) P(z)$$

DML estimator is robust!

Either one of two nuisances should be correctly octimatod

("Debiasedness") Estimates for nuisance converges at $O_P(N^{-1/4})$.

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

("Doubly robustness")

For \sqrt{N} -consistency

$$Q = \sum_{z} P(y | x, z) P(z)$$

DML estimator is robust!

• Robust against model misspecification — Either one of nuisance is misspecified, the estimate could be correct.

> Either one of two nuisances should be correctly octimatod

("Debiasedness") Estimates for nuisance converges at $O_P(N^{-1/4})$.

Estimand

Representation of Q

Estimators

Estimator Q

For correct estimation

For \sqrt{N} -consistency

- nuisance converges slowly.

("Doubly robustness")

$$Q = \sum_{z} P(y | x, z) P(z)$$

DML estimator is robust!

• Robust against model misspecification — Either one of nuisance is misspecified, the estimate could be correct.

• Robust against slow convergence $-\sqrt{N}$ -consistency even when

Either one of two nuisances should be correctly octimatod

("Debiasedness") Estimates for nuisance converges at $O_P(N^{-1/4})$.

Estimand

Representation of Q

Estimators Estimator Q

В

- nuisance converges slowly.

Is DML estimators applicable for estimating any identifiable causal functional?

$$Q = \sum_{z} P(y | x, z) P(z)$$

DML estimator is robust!

• Robust against model misspecification — Either one of nuisance is misspecified, the estimate could be correct.

• Robust against slow convergence $-\sqrt{N}$ -consistency even when

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left| \phi(\mathbf{V}; \psi, \eta_0) \right| = 0$ where η_0 is a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P \left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0} = 0.$

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left[\phi(\mathbf{V}; \psi, \eta_0) \right] = 0$ where η_0 is a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

DML estimator

An estimator for ψ that is composed of $\hat{\eta}$, such that

- 1. (Neyman orthogonal score) the estimand is based on Neyman orthogonal score; and
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ is done with two distinct sets of samples.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a **Neyman orthogonal** score if

- 1. (Moment condition) $\mathbb{E}_{P}\left[\phi(\mathbf{V};\psi,\eta_{0})\right] = 0$ where η_{0} is a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

Debiasedness

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\hat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

DML estimator

An estimator for ψ that is composed of $\hat{\eta}$, such that

- 1. (Neyman orthogonal score) the estimand is based on Neyman orthogonal score; and
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ is done with two distinct sets of samples.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a **Neyman orthogonal** score if

- 1. (Moment condition) $\mathbb{E}_{P}\left[\phi(\mathbf{V};\psi,\eta_{0})\right] = 0$ where η_{0} is a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

Debiasedness

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\widehat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

DML estimator

An estimator for ψ that is composed of $\hat{\eta}$, such that

- 1. (Neyman orthogonal score) the estimand is based on Neyman orthogonal score; and
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ is done with two distinct sets of samples.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left[\phi(\mathbf{V}; \psi, \eta_0) \right] = 0$ where η_0 a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\hat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left[\phi(\mathbf{V}; \psi, \eta_0) \right] = 0$ where η_0 a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\hat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left[\phi(\mathbf{V}; \psi, \eta_0) \right] = 0$ where η_0 a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\hat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left[\phi(\mathbf{V}; \psi, \eta_0) \right] = 0$ where η_0 a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\widehat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

Neyman orthogonal score ϕ

For the target estimand ψ (e.g., $\psi = P(y | do(x)))$ and nuisances η (e.g., $\eta = \{P(y | x, z), P(x | z)\})$, a function $\phi(\mathbf{V}; \psi, \eta)$ is called a Neyman orthogonal score if

- 1. (Moment condition) $\mathbb{E}_P \left[\phi(\mathbf{V}; \psi, \eta_0) \right] = 0$ where η_0 a true nuisance, and
- 2. (Orthogonality) $(\partial/\partial\eta)\mathbb{E}_P\left[\phi(\mathbf{V};\psi,\eta)\right]|_{\eta=\eta_0}=0.$

- Without any smoothness & complexity constraints on the model for $\hat{\eta}$, DML estimator achieves debiasedness property:
 - (**Debiasedness**) \sqrt{N} -consistent whenever $\widehat{\eta}$ converges to true nuisance at $N^{-1/4}$ rate.

Samples D from joint distribution $P(\mathbf{v})$

Samples D from joint distribution $P(\mathbf{v})$

Query (Q) = P(y | do(x))

Samples D from joint distribution $P(\mathbf{v})$

Query (Q) = P(y | do(x))

Research question

Construct a DML estimator \widehat{Q} that is

Samples D from joint distribution $P(\mathbf{v})$

Query (Q) = P(y | do(x))

Research question

Construct a DML estimator \hat{Q} that is

 robust against model misspecification (doubly robust) and slow convergence (debiased); and

Samples D from joint distribution $P(\mathbf{v})$

Query (Q) = P(y | do(x))

Research question

Construct a DML estimator \hat{Q} that is

- robust against model misspecification (doubly robust) and slow convergence (debiased); and
- working for any identifiable causal functional. (Complete)

Statistical p

Doubly robustness

Statistical property		Causal property	
Doubly robustness	Debiasedness	Beyond BD	Any identifiable

Statistical property

Doubly robustness

Jung, Tian, Bareinboim (2020a)

Fulcher et al (2019), Bhattacharya et al (2020)

Statistical property

Doubly robustness

Jung, Tian, Bareinboim (2020a)

Fulcher et al (2019), Bhattacharya et al (2020)

Jung, Tian, Bareinboim (2020b)

Statistical property

Doubly robustness

Jung, Tian, Bareinboim (2020a)

Fulcher et al (2019), Bhattacharya et al (2020)

Jung, Tian, Bareinboim (2020b)

DML-ID (Jung, Tian, Bareinboim, 2021)

Result 0. (mSBD)

Result 0. (mSBD)

(X, Y) (called multi-outcome sequential back-door (mSBD)).

Derive the Neyman orthogonal score when there are no unmeasured confounders b/w

Result 0. (mSBD)

(X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

Derive the Neyman orthogonal score when there are no unmeasured confounders b/w

Result 0. (mSBD)

(X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

ratio, marginalization) of mSBDs.

Derive the Neyman orthogonal score when there are no unmeasured confounders b/w

• Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication,

Result 0. (mSBD)

 Derive the Neyman orthogonal score when there are no unmeasured confounders b/w (X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

- Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication, ratio, marginalization) of mSBDs.
- Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an arithmetic of scores of mSBDs.

Result 0. (mSBD)

 Derive the Neyman orthogonal score when there are no unmeasured confounders b/w (X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

- Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication, ratio, marginalization) of mSBDs.
- Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an arithmetic of scores of mSBDs.

Result 2. (DML estimator)

Result 0. (mSBD)

 Derive the Neyman orthogonal score when there are no unmeasured confounders b/w (X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

- Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication, ratio, marginalization) of mSBDs.
- Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an arithmetic of scores of mSBDs.

Result 2. (DML estimator)

Construct a DML estimator working for any identifiable causal functional.

Result 0. (mSBD)

 Derive the Neyman orthogonal score when there are no unmeasured confounders b/w (X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

- Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication, ratio, marginalization) of mSBDs.
- Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an arithmetic of scores of mSBDs.

Result 2. (DML estimator)

Construct a DML estimator working for any identifiable causal functional.

Result 0. (mSBD)

 \bullet (X, Y) (called multi-outcome sequential back-door (mSBD)).

Derive the Neyman orthogonal score when there are no unmeasured confounders b/w

(Informal) Multi-outcome **Sequential Back-door (mSBD)**

 $\mathbf{Z} = \{\mathbf{Z}_1, \dots, \mathbf{Z}_n\}$ satisfies *mSBD* criterion relative to $\{\mathbf{X}, \mathbf{Y}\}$ if non-causal path b/w $X_i \in \mathbf{X}$ and $\mathbf{Y}_i \in \mathbf{Y}$ are blocked by \mathbf{Z}_i conditioned on { $\mathbf{X}^{(i-1)}, \mathbf{Y}^{(i-1)}, \mathbf{Z}^{(i-1)}$ }.

(Implication): No unmeasured confounders b/w X and Y.

(Informal) Multi-outcome **Sequential Back-door (mSBD)**

 $\mathbf{Z} = \{\mathbf{Z}_1, \dots, \mathbf{Z}_n\}$ satisfies *mSBD* criterion relative to $\{X, Y\}$ if non-causal path b/w $X_i \in X$ and $Y_i \in Y$ are blocked by \mathbf{Z}_i conditioned on { $\mathbf{X}^{(i-1)}, \mathbf{Y}^{(i-1)}, \mathbf{Z}^{(i-1)}$ }.

(Implication): No unmeasured confounders b/w X and Y.

mSBD adjustment

 $P(\mathbf{y} | do(\mathbf{x})) = \sum P(\mathbf{v}_i | \mathbf{v}^{(i-1)}),$ $z \quad V_i \in \{Y, Z\}$

• for $\mathbf{V}_i = \mathbf{Y}_i$, $\mathbf{V}^{(i-1)} = {\mathbf{X}^{(i)}, \mathbf{Z}^{(i)}, \mathbf{Y}^{(i-1)}};$ and • for $\mathbf{V}_i = \mathbf{Z}_i, \mathbf{V}^{(i-1)} = \{\mathbf{Y}^{(i-1)}, \mathbf{X}^{(i-1)}, \mathbf{Z}^{(i-1)}\}$.

(Informal) Multi-outcome **Sequential Back-door (mSBD)**

 $\mathbf{Z} = \{\mathbf{Z}_1, \dots, \mathbf{Z}_n\}$ satisfies *mSBD* criterion relative to $\{\mathbf{X}, \mathbf{Y}\}$ if non-causal path b/w $X_i \in \mathbf{X}$ and $\mathbf{Y}_i \in \mathbf{Y}$ are blocked by \mathbf{Z}_i conditioned on { $\mathbf{X}^{(i-1)}, \mathbf{Y}^{(i-1)}, \mathbf{Z}^{(i-1)}$ }.

(Implication): No unmeasured confounders b/w X and Y.

mSBD adjustment

 $P(\mathbf{y} | do(\mathbf{x})) = \sum P(\mathbf{v}_i | \mathbf{v}^{(i-1)}),$ $z \quad V_i \in \{Y, Z\}$

• for $\mathbf{V}_i = \mathbf{Y}_i$, $\mathbf{V}^{(i-1)} = {\mathbf{X}^{(i)}, \mathbf{Z}^{(i)}, \mathbf{Y}^{(i-1)}};$ and • for $\mathbf{V}_i = \mathbf{Z}_i, \mathbf{V}^{(i-1)} = \{\mathbf{Y}^{(i-1)}, \mathbf{X}^{(i-1)}, \mathbf{Z}^{(i-1)}\}$.

(Informal) Multi-outcome **Sequential Back-door (mSBD)**

 $\mathbf{Z} = \{\mathbf{Z}_1, \dots, \mathbf{Z}_n\}$ satisfies *mSBD criterion relative to* $\{\mathbf{X}, \mathbf{Y}\}$ if non-causal path b/w $X_i \in \mathbf{X}$ and $\mathbf{Y}_i \in \mathbf{Y}$ are blocked by \mathbf{Z}_i conditioned on { $\mathbf{X}^{(i-1)}, \mathbf{Y}^{(i-1)}, \mathbf{Z}^{(i-1)}$ }.

(Implication): No unmeasured confounders $b/w \mathbf{X}$ and \mathbf{Y} .

mSBD adjustment

 $P(\mathbf{y} | do(\mathbf{x})) = \sum P(\mathbf{v}_i | \mathbf{v}^{(i-1)}),$ $z V_i \in \{Y, Z\}$ • for $\mathbf{V}_i = \mathbf{Y}_i, \mathbf{V}^{(i-1)} = {\mathbf{X}^{(i)}, \mathbf{Z}^{(i)}, \mathbf{Y}^{(i-1)}};$ and

• for $\mathbf{V}_i = \mathbf{Z}_i, \mathbf{V}^{(i-1)} = \{\mathbf{Y}^{(i-1)}, \mathbf{X}^{(i-1)}, \mathbf{Z}^{(i-1)}\}$.

Neyman orthogonal score for mSBD

 $\phi(\mathbf{V}; \psi, \eta) = \sum_{i=1}^{n} W_i (H_{i+1} - H_i), \text{ where}$ $H_i = P_{\mathbf{X}}(\mathbf{y}^{\geq i-1} | \mathbf{Z}^{(i-1)}, \mathbf{y}^{(i-2)}) \text{ and}$ $W_i = \prod_{p=1}^{i} \frac{I_{x_p}(X_p)}{P(x_p | \mathbf{Z}^{(p)}, \mathbf{x}^{(p-1)}, \mathbf{y}^{(p-1)})}$

Neyman orthogonal score for mSBD

$$\begin{split} \phi(\mathbf{V}; \psi, \eta) &= \sum_{i=1}^{n} W_i \left(H_{i+1} - H_i \right), \text{ where} \\ H_i &= P_{\mathbf{X}}(\mathbf{y}^{\geq i-1} \mid \mathbf{Z}^{(i-1)}, \mathbf{y}^{(i-2)}) \text{ and} \\ W_i &= \prod_{p=1}^{i} \frac{I_{x_p}(X_p)}{P(x_p \mid \mathbf{Z}^{(p)}, \mathbf{x}^{(p-1)}, \mathbf{y}^{(p-1)})} \end{split}$$

DML estimator for mSBD

An estimator based on the above Neyman orthogonal score with cross-fitting is a DML estimator that is

Neyman orthogonal score for mSBD

 $\phi(\mathbf{V}; \psi, \eta) = \sum_{i=1}^{n} W_i \left(H_{i+1} - H_i \right), \text{ where}$ $H_i = P_{\mathbf{X}}(\mathbf{y}^{\geq i-1} | \mathbf{Z}^{(i-1)}, \mathbf{y}^{(i-2)}) \text{ and}$ $W_i = \prod_{p=1}^{i} \frac{I_{x_p}(X_p)}{P(x_p | \mathbf{Z}^{(p)}, \mathbf{x}^{(p-1)}, \mathbf{y}^{(p-1)})}$

DML estimator for mSBD

An estimator based on the above Neyman orthogonal score with cross-fitting is a DML estimator that is

- (Doubly robust) consistent whenever nuisances H_i or W_i are correctly estimated; and

Neyman orthogonal score for mSBD

$$\begin{split} \phi(\mathbf{V}; \psi, \eta) &= \sum_{i=1}^{n} W_i \left(H_{i+1} - H_i \right), \text{ where} \\ H_i &= P_{\mathbf{X}}(\mathbf{y}^{\geq i-1} \mid \mathbf{Z}^{(i-1)}, \mathbf{y}^{(i-2)}) \text{ and} \\ W_i &= \prod_{p=1}^{i} \frac{I_{x_p}(X_p)}{P(x_p \mid \mathbf{Z}^{(p)}, \mathbf{x}^{(p-1)}, \mathbf{y}^{(p-1)})} \end{split}$$

DML estimator for mSBD

An estimator based on the above Neyman orthogonal score with cross-fitting is a DML estimator that is

- (Doubly robust) consistent whenever nuisances H_i or W_i are correctly estimated; and
- (**Debiased**) \sqrt{N} -consistent whenever nuisances H_i and W_i converges at $N^{-1/4}$ rate.

Our Approach for marrying DML + Identification (DML-ID)

Result 0. (mSBD)

 Derive the Neyman orthogonal score when there are no unmeasured confounders b/w (X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

- Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication, ratio, marginalization) of mSBDs.
- Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an arithmetic of scores of mSBDs.

Result 2. (DML estimator)

Construct a DML estimator working for any identifiable causal functional.

Result 1. (DML-ID)

- ratio, marginalization) of mSBDs.
- arithmetic of scores of mSBDs.

• Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication,

• Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an

- connected by bidirected path.
- **C-component & C-factor** • **C-component** C: A set of variables s.t. C-factor Q[C]: A interventional distribution of C under the intervention $V\C$; i.e., $Q[\mathbf{C}] \equiv P(\mathbf{C} | do(\mathbf{V} \setminus \mathbf{C}))$

C-component & C-factor

- **C-component C**: A set of variables s.t. connected by bidirected path.
- **C-factor** $Q[\mathbf{C}]$: A interventional distribution of C under the intervention $V\C$; i.e., $Q[\mathbf{C}] \equiv P(\mathbf{C} \mid do(\mathbf{V} \setminus \mathbf{C}))$

Complete ID algorithm (Tian and Pearl, 2003).

• A causal functional $P(\mathbf{y} | do(\mathbf{x}))$ is identifiable if and only if it is represented as an arithmetic of C-factors of C-component C_i in G (Tian and Pearl, 2003, Huang and Valtorta 2006).

C-component & C-factor

- C-component C: A set of variables s.t. connected by bidirected path.
- **C-factor** $Q[\mathbf{C}]$: A interventional distribution of \mathbf{C} under the intervention $\mathbf{V}\setminus\mathbf{C}$; i.e., $Q[\mathbf{C}] \equiv P(\mathbf{C} | do(\mathbf{V}\setminus\mathbf{C}))$

Complete ID algorithm (Tian and Pearl, 2003).

 A causal functional P(y | do(x)) is identifiable if and only if it is represented as an arithmetic of C-factors of C-component C_i in G (Tian and Pearl, 2003, Huang and Valtorta 2006).

Q = P(y|do(x))G ID algorith

 $\sum_{w} Q[W, X, Y] \qquad \sum_{w} P(x, y \mid r, w) P(w)$ $= \overline{\sum_{w,y} Q[W, X, Y]} - \overline{\sum_{w} P(x \mid r, w) P(w)}$

 $\sum_{w} P(x, y \mid r, w) P(w)$ $\sum_{W} Q[W, X, Y]$ $\overline{\sum_{w,y} Q}[W, X, Y]$ $\sum_{w} P(x \mid \overline{r, w}) P(w)$

Result 1. Derivation of Neyman Orthogonal Score

Result 1. Derivation of Neyman Orthogonal Score

Given representation of $\mathbf{Q} = \mathbf{A}(M[\mathbf{C_1}], M[\mathbf{C_2}], \dots, M[\mathbf{C_d}])$, a Neyman orthogonal score is given as

- Thm. 2: Derivation of Neyman Orthogonal score

$\sum_{i=1}^{n} \phi_{M_{i}} \frac{\partial}{\partial M_{i}} A\left(M[\mathbf{C}_{1}], \cdots, M[\mathbf{C}_{d}]\right)$

Neyman orthogonal score for the mSBD adjustment M_i=M[**C**_i]

Result 1. Derivation of Neyman Orthogonal Score

Given representation of $\mathbf{Q} = \mathbf{A}(M[\mathbf{C_1}], M[\mathbf{C_2}], \dots, M[\mathbf{C_d}])$, a Neyman orthogonal score is given as

- Thm. 2: Derivation of Neyman Orthogonal score

 $\sum \phi_{M_i} \frac{o}{\mathcal{M}_i} A\left(M[\mathbf{C}_1], \cdots, M[\mathbf{C}_d]\right)$

Neyman orthogonal score for the mSBD adjustment M_i=M[C_i]

Our Approach for marrying DML + Identification (DML-ID)

Result 0. (mSBD)

 Derive the Neyman orthogonal score when there are no unmeasured confounders b/w (X, Y) (called multi-outcome sequential back-door (mSBD)).

Result 1. (DML-ID)

- Represent any identifiable causal estimand Q=F(P) as an arithmetic (multiplication, ratio, marginalization) of mSBDs.
- Derive the Neyman orthogonal score for any arbitrary causal functional in a form of an arithmetic of scores of mSBDs.

Result 2. (DML estimator)

Construct a DML estimator working for any identifiable causal functional.

Result 2. (DML estimator)

Construct a DML estimator working for any identifiable causal functional.

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

1. (Neyman orthogonal score) using the derived Neyman orthogonal score for estimating the estimand P(y | do(x)), where

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

- 1. (Neyman orthogonal score) using the derived Neyman orthogonal score for estimating the estimand P(y | do(x)), where
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ are done with two distinct sets of samples.

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

- 1. (Neyman orthogonal score) using the derived Neyman orthogonal score for estimating the estimand P(y | do(x)), where
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ are done with two distinct sets of samples.

Result 2 – DML Estimator

Properties

A proposed estimator is

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

- 1. (Neyman orthogonal score) using the derived Neyman orthogonal score for estimating the estimand P(y | do(x)), where
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ are done with two distinct sets of samples.

Result 2 – DML Estimator

Properties

A proposed estimator is

robust against model misspecification (doubly robust) and slow convergence (debiased); and

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

- 1. (Neyman orthogonal score) using the derived Neyman orthogonal score for estimating the estimand P(y | do(x)), where
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ are done with two distinct sets of samples.

Result 2 – DML Estimator

Properties

A proposed estimator is

- robust against model misspecification (doubly robust) and slow convergence (debiased); and
- working for any identifiable causal functional. (Complete)

Given derived Neyman orthogonal score, an estimator for P(y | do(x)) is constructed by

- 1. (Neyman orthogonal score) using the derived Neyman orthogonal score for estimating the estimand P(y | do(x)), where
- 2. (Cross-fitting) training and evaluating $\hat{\eta}$ are done with two distinct sets of samples.

Result 2 – DML Estimator

Properties

A proposed estimator is

- robust against model misspecification (doubly robust) and slow convergence (debiased); and
- working for any identifiable causal functional. (Complete)

Result 2 — Empirical evidence

 $P(y \mid do(x)) = \frac{\sum_{w} P(x, y \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)}$

$P(y \mid do(x)) = -$

$$\frac{\sum_{w} P(x, y \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)}$$

We compare this estimator with **Plug-in estimator**, which estimates cond.prob $\{P(x, y | r, w), P(x | r, w), P(w)\}$ and plugs those in for computing the estimand.

$P(y \mid do(x)) = -$

- arbitrary causal functional.

$$\frac{\sum_{w} P(x, y \mid r, w) P(w)}{\sum_{w} P(x \mid r, w) P(w)}$$

We compare this estimator with **Plug-in estimator**, which estimates cond.prob $\{P(x, y | r, w), P(x | r, w), P(w)\}$ and plugs those in for computing the estimand.

 A reason that we compare with the plug-in estimator is because this is only viable estimator that is working for

Debiasedness

Doubly robustness

Debiasedness

 $\widehat{P}(x, y | r, w), \ \widehat{P}(r | w) \text{ converges to}$ true P(x, y | r, w), P(r | w) at a rate $N^{-1/4}$ **Doubly robustness**

Doubly robustness

Doubly robustness

(x, y r, w) misspecified.	$P(r \mid w)$ misspecified.
	<u>.</u>

Conclusion

Conclusion

orthogonal score for estimands of any identifiable causal effects.

• **Result 1** — We develop a systematic procedure for deriving Neyman

Conclusion

- orthogonal score for estimands of any identifiable causal effects.
- bias.

Result 1 — We develop a systematic procedure for deriving Neyman

Result 2 — We develop DML estimators for any identifiable causal effect, which enjoy debiasedness and doubly robustness against model misspecification and

Thank you for listening!