NeurIPS-20-12276

Learning Causal Effects via Weighted Empirical Risk Minimization

Yonghan Jung PURDUE UNIVERSITY.

Jin Tian Iowa State UNIVERSITY

Elias Bareinboim

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Learning causal effect: 2-step procedures

Learning causal effect: 2-step procedures

Step 1. Q=F(P)) from causal assumption A. (Identification)

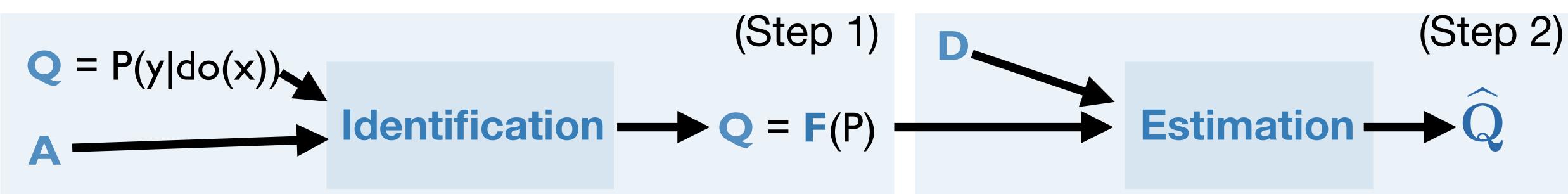
Represent the causal query Q=P(y|do(x)) as a function of P (i.e.,

(Step 1)

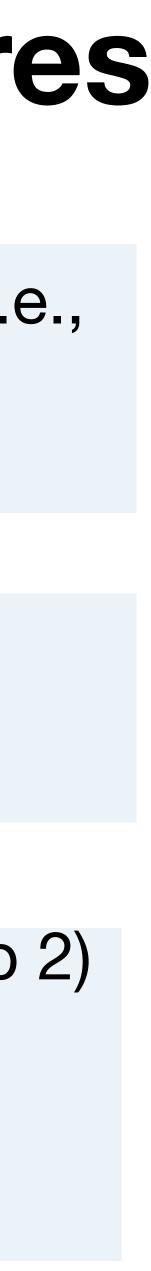
Learning causal effect: 2-step procedures

Step 1. Q=F(P)) from causal assumption A. (Identification)

Estimate the identified estimand Q=F(P) from finite samples D Step 2. (Estimation)



Represent the causal query Q=P(y|do(x)) as a function of P (i.e.,



Current status of causal inference

Current status of causal inference

Strength

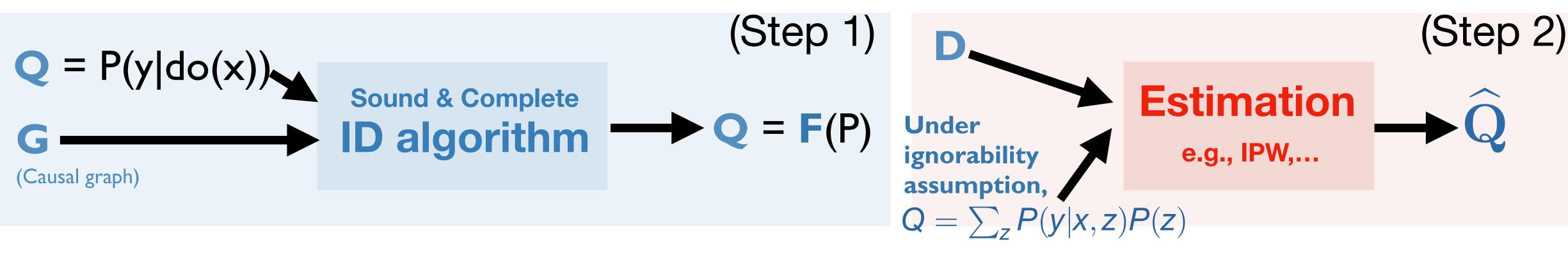
• We have a sound and complete identification algorithm — A procedure for determining whether a causal query Q is could be represented as a functional of P (i.e., Q=F(P)) from the causal assumption.

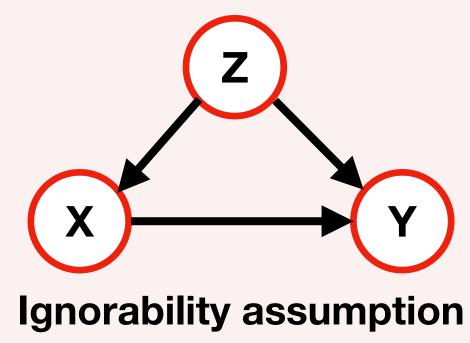
(Step 1)

Current status of causal infe

Strength

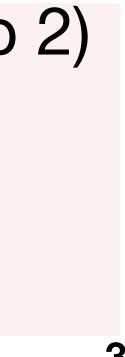
• We have a sound and complete identification algorithm — A procedure for determining whether a causal query Q is could be represented as a functional of P (i.e., Q=F(P)) from the causal assumption.





Weakness

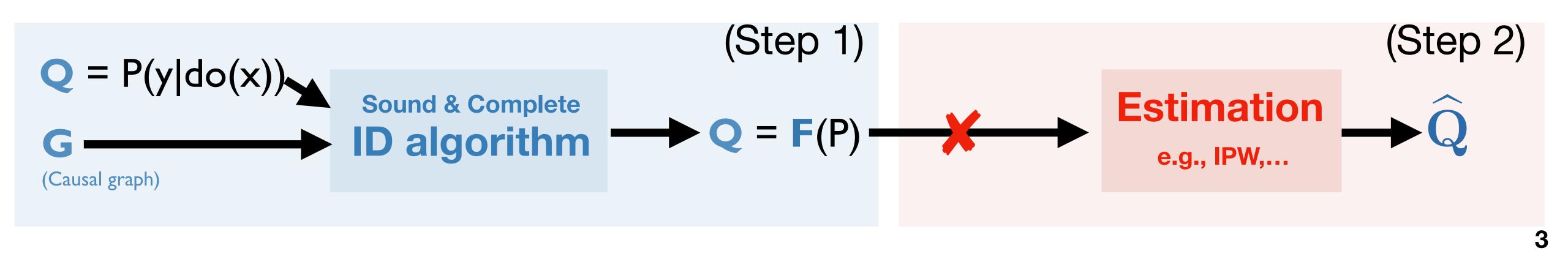
- Estimation has been mainly done on
- 'Ignorability' assumption.

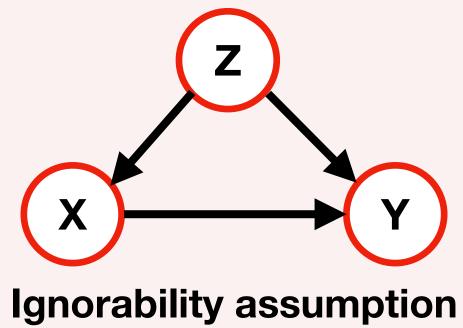


Current status of causal infe

Strength

• We have a sound and complete identification algorithm — A procedure for determining whether a causal query Q is could be represented as a functional of P (i.e., Q=F(P)) from the causal assumption.





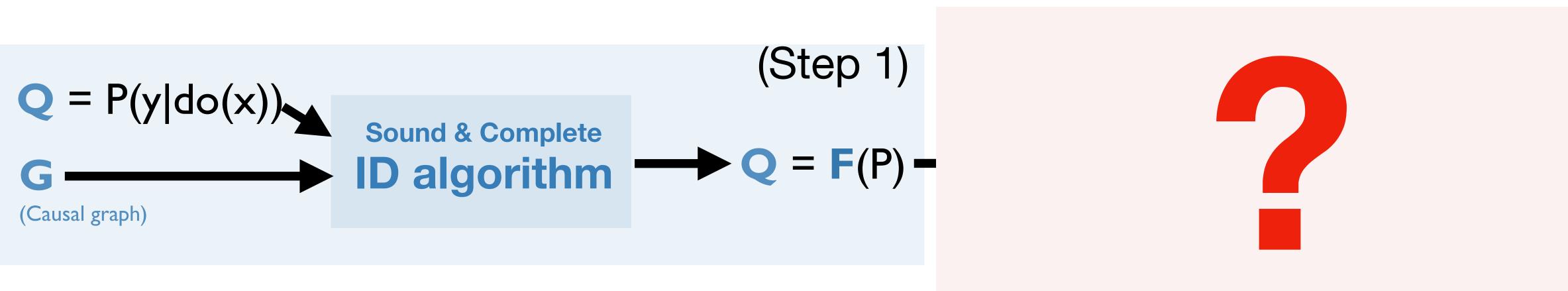
Weakness

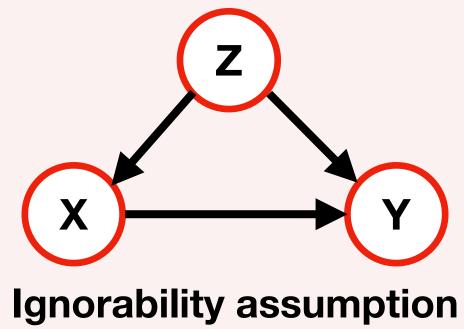
- Estimation has been mainly done on 'Ignorability' assumption.
- For the general identifiable estimand, it's unclear how to estimate the causal effect sample & time-efficiently.

Current status of causal infe

Strength

• We have a sound and complete identification algorithm — A procedure for determining whether a causal query Q is could be represented as a functional of P (i.e., Q=F(P)) from the causal assumption.





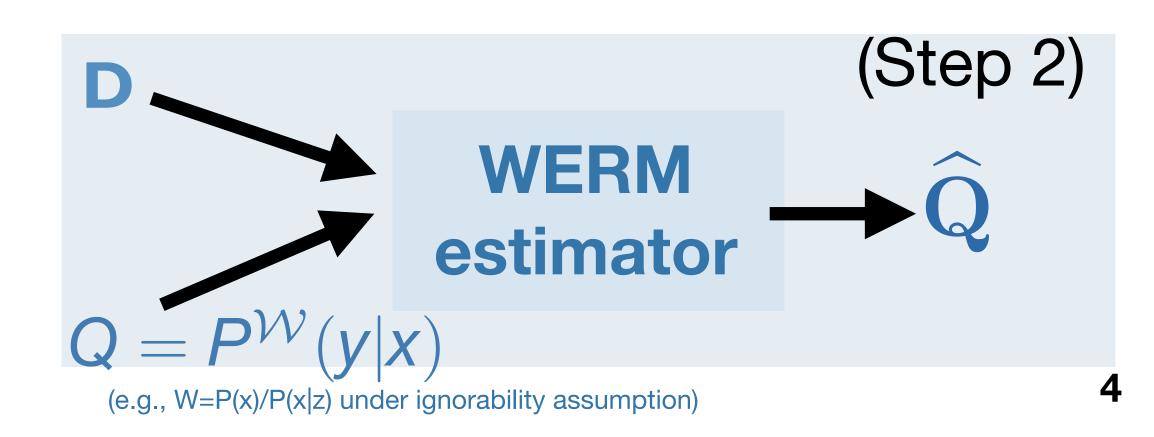
Weakness

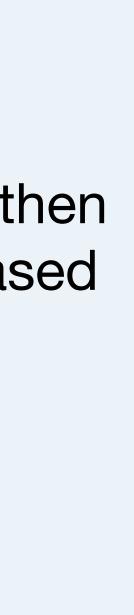
- Estimation has been mainly done on 'Ignorability' assumption.
- For the general identifiable estimand, it's unclear how to estimate the causal effect sample & time-efficiently.

Strength

 When Q=F(P) is given as weighed distribution (e.g., inverse probability weights (IPW) or importance sampling), then the empirical risk minimization (ERM) based estimators have been established.

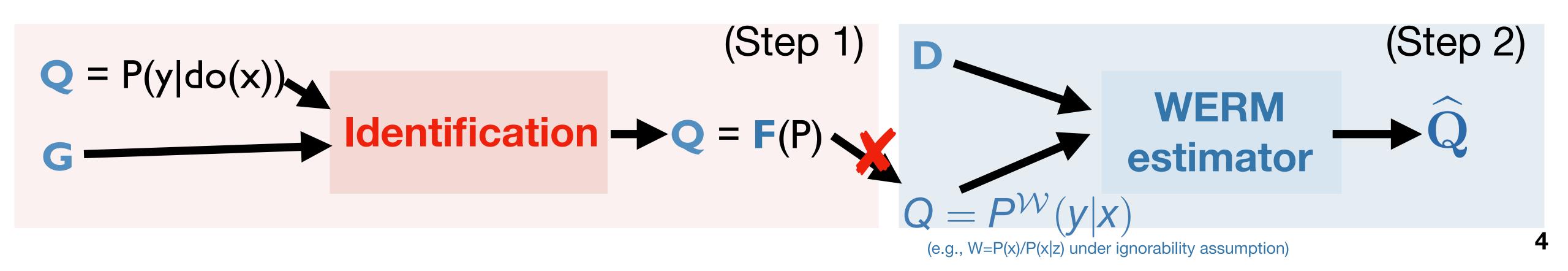
> **Counterfactual Risk Minimization** Swaminathan and Joachims (2015) **Re-weighted Risk Minimization** Johansson (2018, 2020)





Weakness

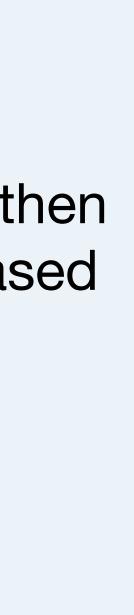
• When Q=P(y|do(x)) is identifiable, but the identified estimand is given arbitrarily, how to use the WERM based estimators is unclear.



Strength

 When Q=F(P) is given as weighed distribution (e.g., inverse probability weights (IPW) or importance sampling), then the empirical risk minimization (ERM) based estimators have been established.

> Counterfactual Risk Minimization Swaminathan and Joachims (2015) **Re-weighted Risk Minimization** Johansson (2018, 2020)



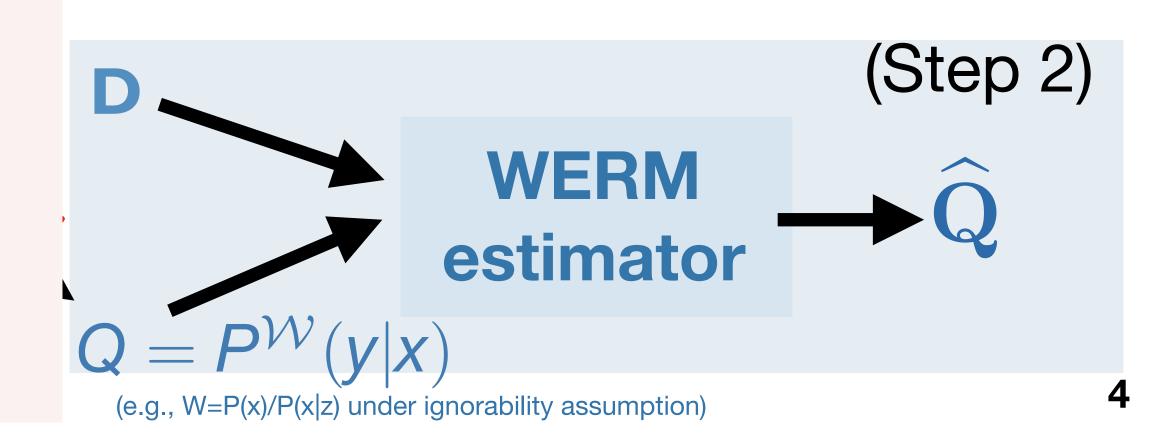
Weakness

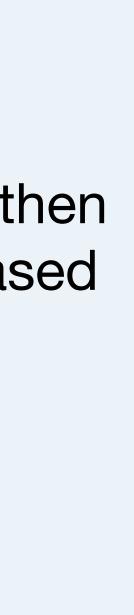
• When Q=P(y|do(x)) is identifiable, but the identified estimand is given arbitrarily, how to use the WERM based estimators is unclear.

Strength

 When Q=F(P) is given as weighed distribution (e.g., inverse probability weights (IPW) or importance sampling), then the empirical risk minimization (ERM) based estimators have been established.

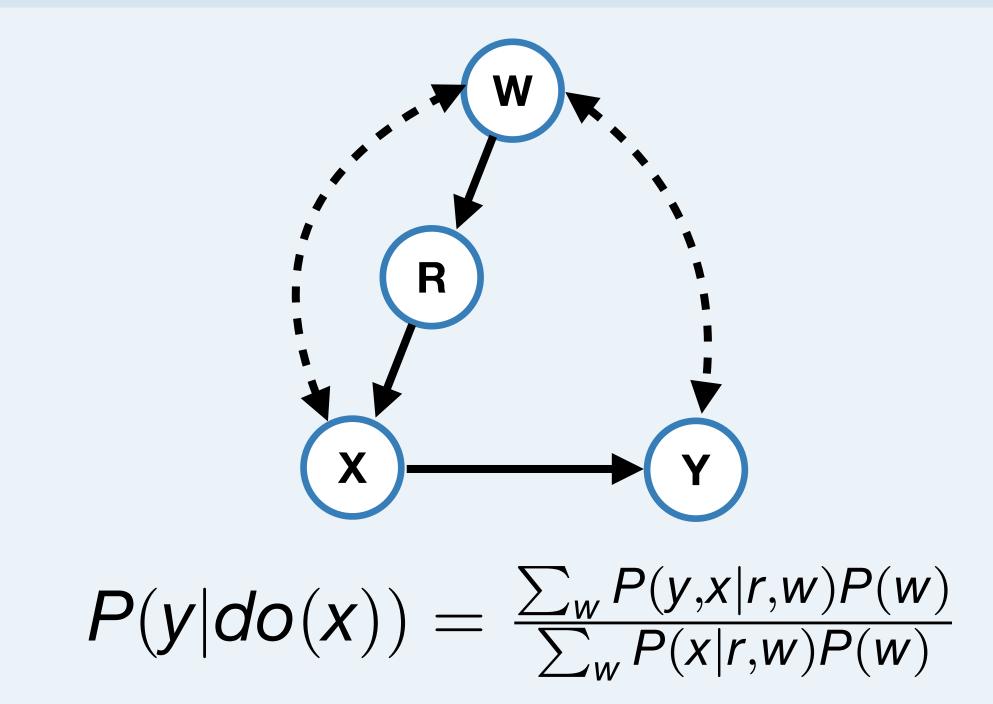
> Counterfactual Risk Minimization Swaminathan and Joachims (2015) **Re-weighted Risk Minimization** Johansson (2018, 2020)





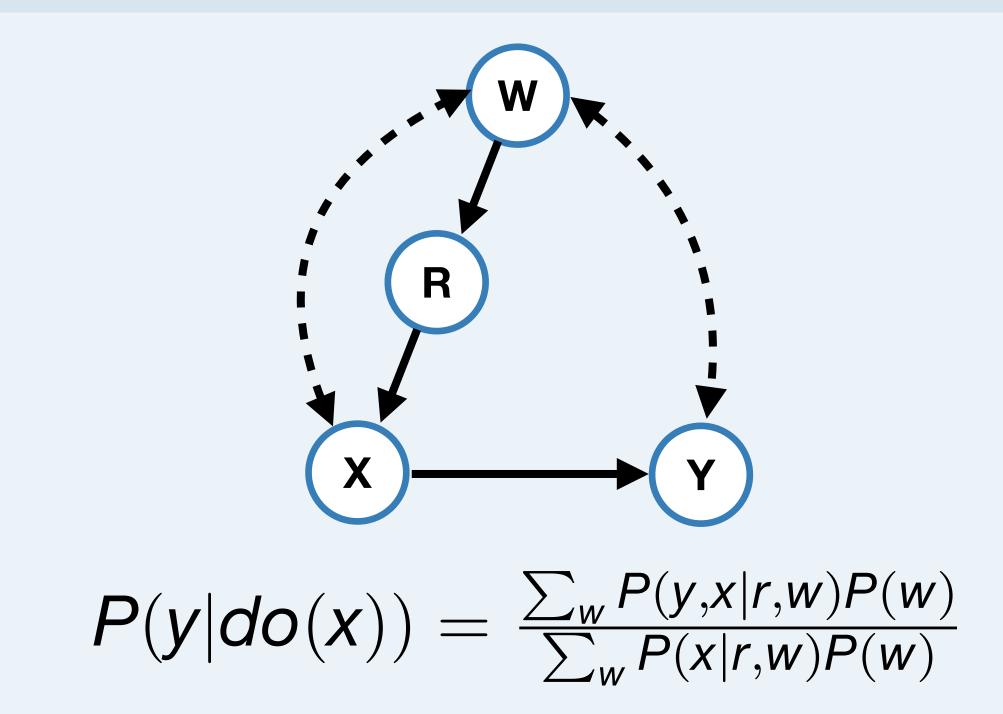
Connection b/w non-igno. and WERM

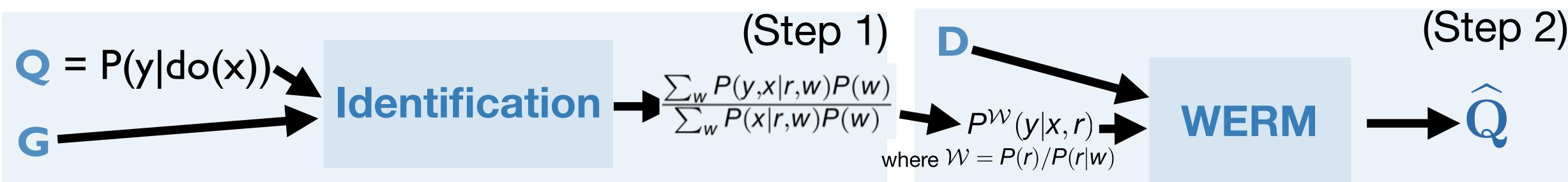
Connection b/w non-igno. and WERM Practical Scenario on Non-igno. case (Example 1)



The causal effect is identifiable, but the estimand is not a typical input for the WERM estimator.

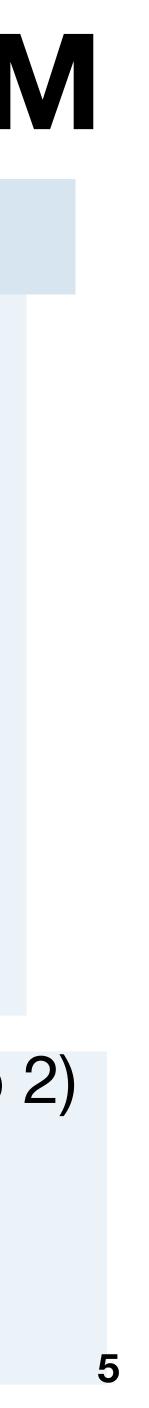
Connection b/w non-igno. and WERM Practical Scenario on Non-igno. case (Example 1)





- The causal effect is identifiable, but the estimand is not a typical input for the WERM estimator.
- However, we can represent the query Q=P(y|do(x)) as a weighted distribution

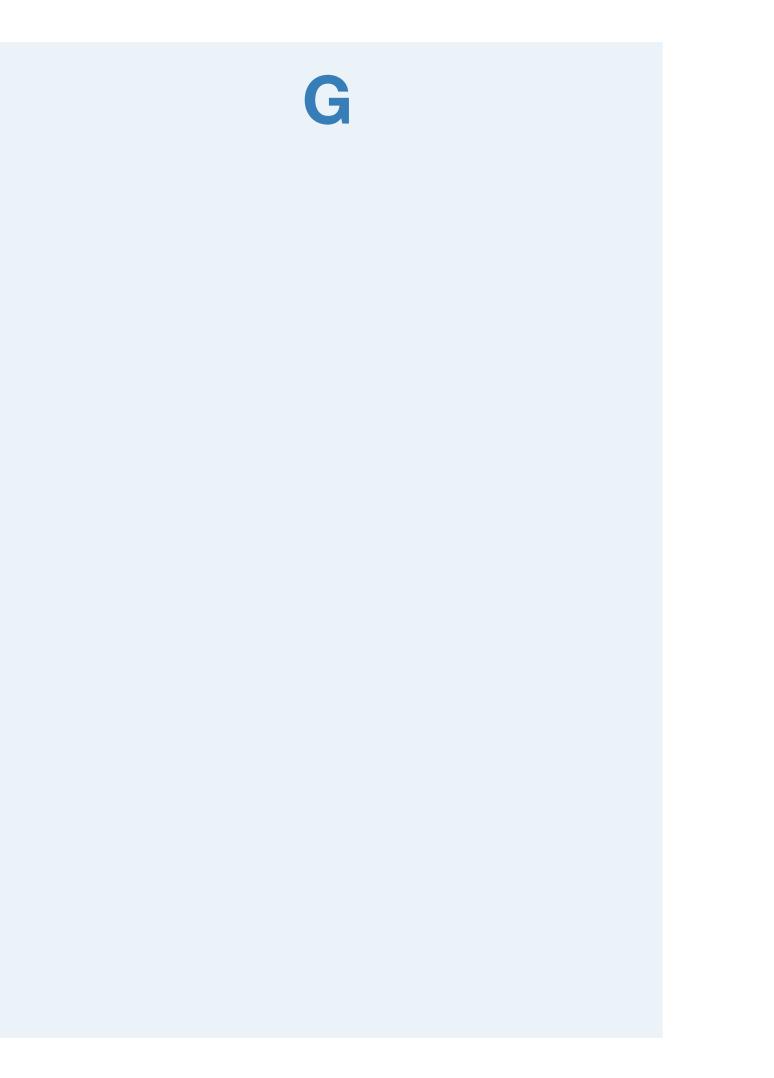
Taking W=P(r)/P(r|w). Then, $P(y|do(x)) = P^{\mathcal{W}}(y|x,r)$



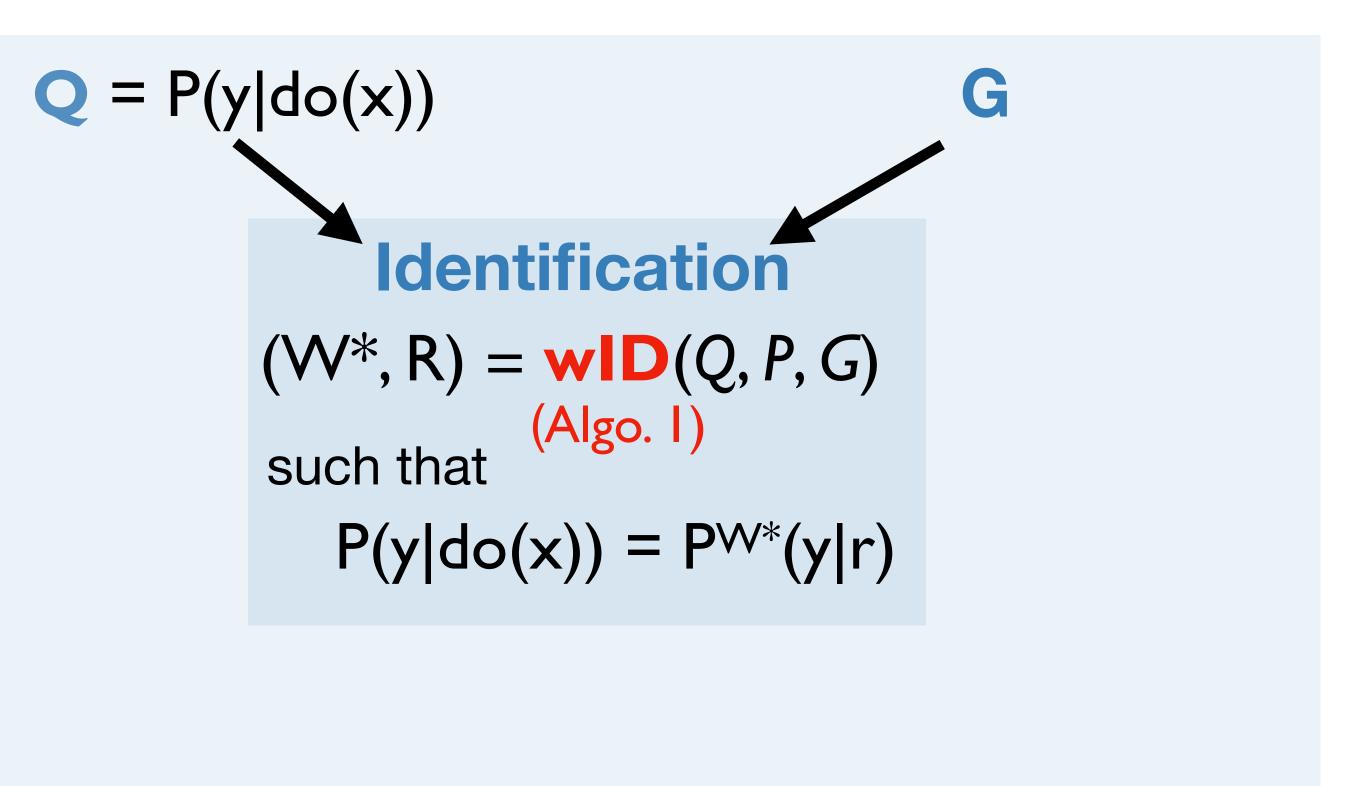
Contribution Filling the bridge between causal effect identification and the estimation

Contribution Filling the bridge between causal effect identification and the estimation

Q = P(y|do(x))

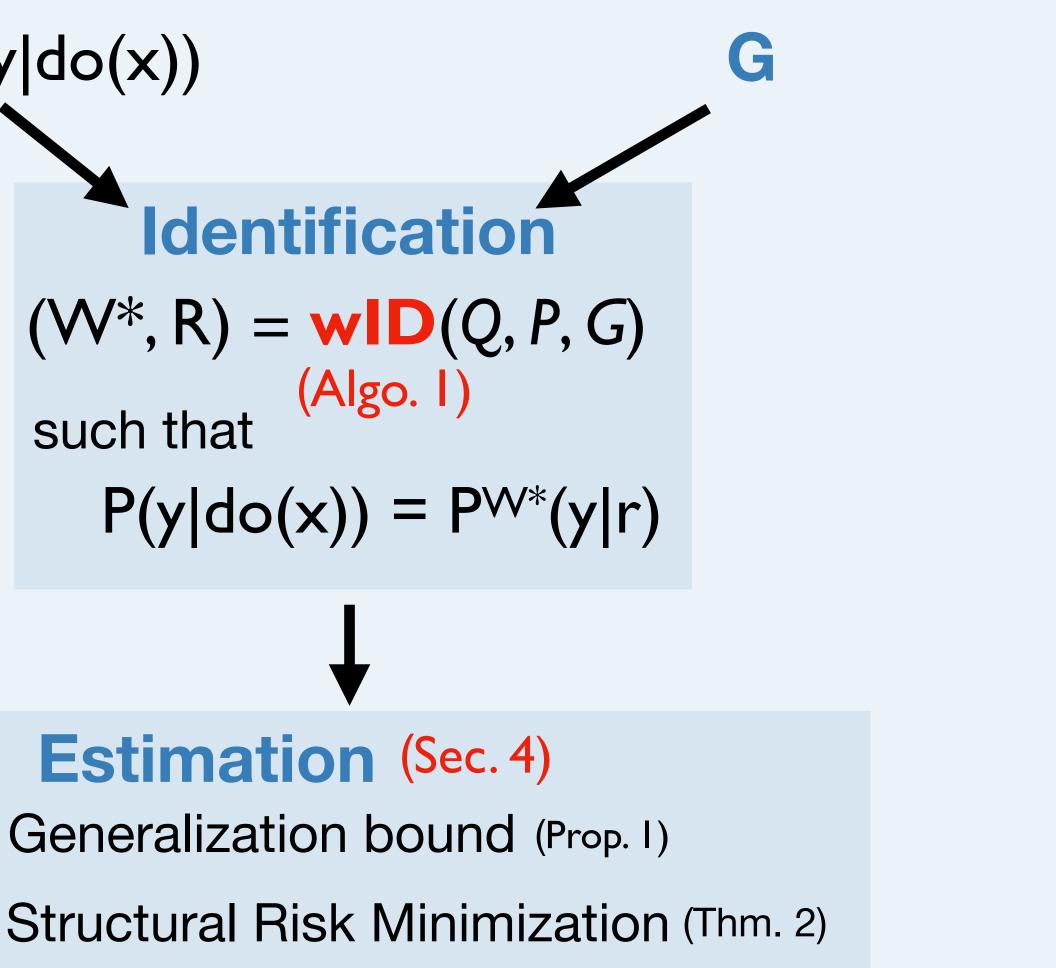


Contribution Filling the bridge between causal effect identification and the estimation

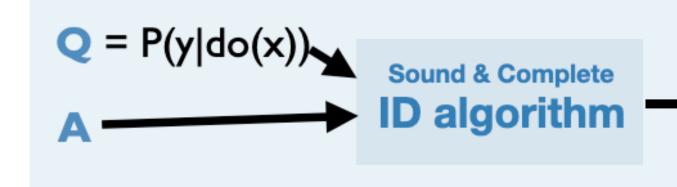


Contribution Filling the bridge between causal effect identification and the estimation

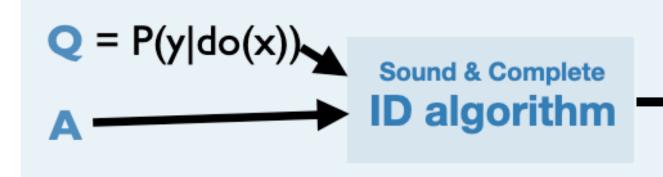
Q = P(y|do(x)) $(W^*, R) = WID(Q, P, G)$ such that



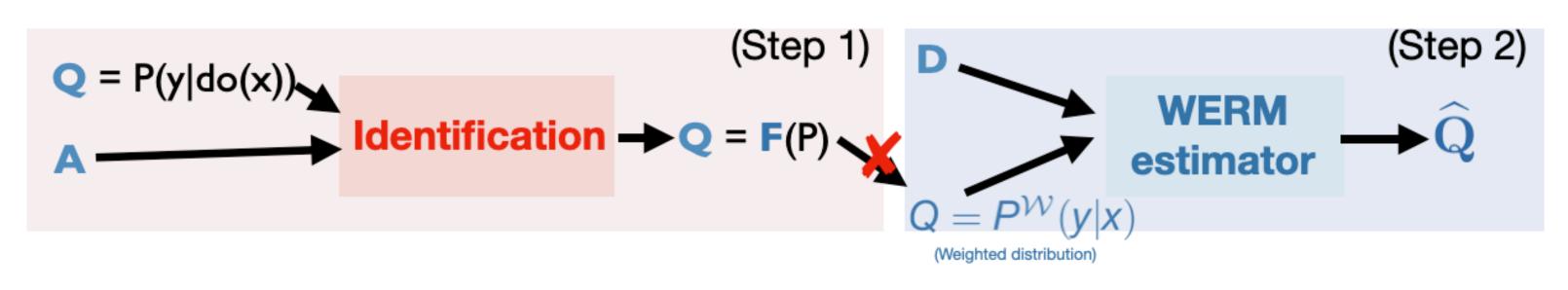
• A gap b/w causal effect Identification and estimation.



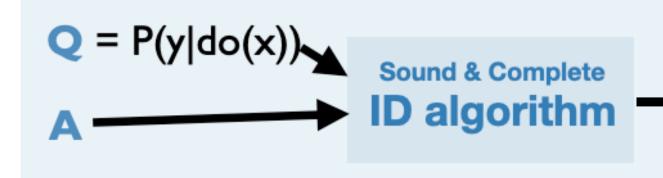
A gap b/w causal effect Identification and estimation.



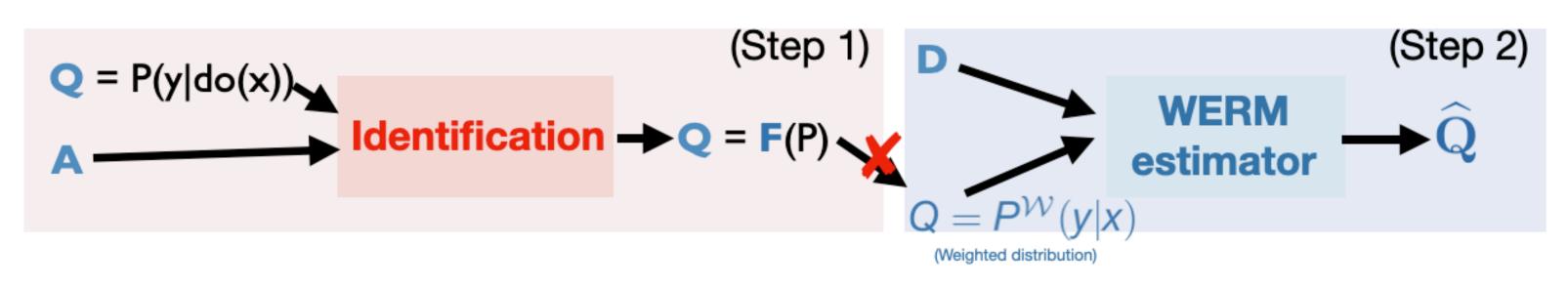
A gap b/w ERM based estimators and the causal inference.



A gap b/w causal effect Identification and estimation.



A gap b/w ERM based estimators and the causal inference.



$$Q = P(y|do(x))$$

$$A \longrightarrow Sound & Complete$$

$$(W^*, R) = WID(Q, P, G)$$

$$(Algo. 1)$$

$$such that$$

$$P(y|do(x)) = P^{W^*}(y|r)$$

We fill the gap between the causal inference and the ERM based estimation.

