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Step 1. Represent the causal query Q=P(y|do(x)) as a function of P (i.e., 
Q=F(P)) from causal assumption A.
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Learning causal effect: 2-step procedures 

Step 1. Represent the causal query Q=P(y|do(x)) as a function of P (i.e., 
Q=F(P)) from causal assumption A.

(Identification)

Step 2.
(Estimation)

Estimate the identified estimand Q=F(P) from finite samples D 

Estimation

(Step 2)D

Identification
Q = P(y|do(x))

A Q = F(P)

(Step 1)
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Current status of causal inference
Strength
• We have a sound and complete 

identification algorithm — A procedure for 
determining whether a causal query Q is 
could be represented as a functional of P 
(i.e., Q=F(P)) from the causal assumption.  
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Learning causal effect: (Weighted) ERM

D

Strength
• When Q=F(P) is given as weighed 

distribution (e.g., inverse probability 
weights (IPW) or importance sampling), then 
the empirical risk minimization (ERM) based 
estimators have been established.

Counterfactual Risk Minimization
Swaminathan and Joachims (2015)

Re-weighted Risk Minimization 
Johansson (2018, 2020)
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StrengthWeakness
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weights (IPW) or importance sampling), then 
the empirical risk minimization (ERM) based 
estimators have been established.
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Counterfactual Risk Minimization
Swaminathan and Joachims (2015)

Re-weighted Risk Minimization 
Johansson (2018, 2020)

Identification
Q = P(y|do(x))
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Practical Scenario on Non-igno. case (Example 1)
W

R

X Y

Connection b/w non-igno. and WERM

• The causal effect is identifiable, but the 
estimand is not a typical input for the 
WERM estimator. 

⇒
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Q = P(y|do(x))

G

(Step 1)
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Practical Scenario on Non-igno. case (Example 1)
W

R

X Y

Connection b/w non-igno. and WERM

• The causal effect is identifiable, but the 
estimand is not a typical input for the 
WERM estimator. 

⇒

• However, we can represent the query 
Q=P(y|do(x)) as a weighted distribution

• Taking W=P(r)/P(r|w). Then, 

Identification
Q = P(y|do(x))

G

(Step 1)

WERM

(Step 2)D

where
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End-to-end solution to causal inference

Q = P(y|do(x)) G

Identification
(W*, R) = wID(Q, P, G)

such that
P(y|do(x)) = PW*(y|r)

(Algo. 1)
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End-to-end solution to causal inference

Q = P(y|do(x)) G

Identification
(W*, R) = wID(Q, P, G)

such that
P(y|do(x)) = PW*(y|r)

(Algo. 1)

• Generalization bound
• Structural Risk Minimization 

Estimation
(Prop. 1)

(Thm. 2)

(Sec. 4)
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Summary
• A gap b/w causal effect Identification and estimation.

• A gap b/w ERM based estimators and the causal inference. 

• We fill the gap between the causal inference and the ERM based estimation.
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