
Learning Causal Effects via Weighted 
Empirical Risk Minimization

Motivation — Gap between causal inference and 
machine learning 

‣(Step 1) There are complete identification algorithm for representing for determining 
whether a causal query Q can be represented as a functional of P (i.e., Q=F(P)) 
from a given causal graph.

‣(Step 2) Estimation has been mainly done on backdoor/ignorability’ assumption. For 
general identifiable estimands, it’s not known (neither obvious) how to estimate the 
causal effect sample & time-efficiently. 

‣(Step 2) Weighted ERM (WERM) provides sample and time efficient estimators 
when the estimand is given weighted distributions  (e.g., Causal 
effect  when the back-door holds). 

P𝒲(v) ≡ 𝒲(v)P(v)
Q = P(y |do(x))

‣(Step 1) When Q=P(y|do(x)) is identifiable, but the estimand is not of a weighted 
form, it’s not clear how to use WERM based-estimators.

Example — Connecting Identifiability Theory & WERM
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wID — Representing causal functional into 
weighted distribution  

P(y |do(x)) =
∑w P(x, y |r, w)P(w)

∑w P(x |r, w)P(w)

‣Consider Fig. 1. The causal effect is identifiable, 
and the causal effect is given as in Eq. 1. However, 
the estimand  is not in a form of an 
WERM estimator. 

P(y |do(x))

‣Still, the quantity Q=P(y|do(x)) can be represented 
as a conditional distribution of the weighted 
distribution. Specifically, for , the 
causal effect is written as 

𝒲 = P(r)/P(r |w)
[Fig. 1] Example graph

[Eq. 1] 

.P(y |do(x)) = P𝒲(y |x, r)

Example — WERM when Back-door holds
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Observation
P(z, x, y) = P(z)P(x |z)P(y |x, z) P𝒲(z, x, y) = P(z)P(x)P(y |x, z)

Interventional

‣Then, the weighted-ERM estimators (e.g., Counterfactual risk minimization [1], Re-
weighted risk minimization [2]) are available.   

‣When the back-door criterion holds, then , , where 
 for , a weighted distribution.

Q = P(y |do(x)) = P𝒲(y |x)
P𝒲(z, x, y) ≡ 𝒲P(z, x, y) 𝒲 = P(x)/P(x |z)

Theorem 1: Soundness and completeness of wID (in Algo. 1) 
A causal effect  is identifiable if and only if  (Algo. 1) 
returns  such that 

P(y |do(x)) 𝗐𝖨𝖣(x, y, G, P)
P𝒲(y |r) P(y |do(x)) = P𝒲(y |r)

‣Thm 1. states that any identifiable causal functional could be represented as a weighted 
distribution, a proper input for WERM. 

Learning causal effect using WERM
‣The weighted risk , for the loss 

function  of the hypothesis  and the weight  (where  with * mark is 
the weight s.t. ). The weighted empirical risk is given as 

. 

R𝒲*(h) ≡ 𝔼P𝒲*[ℓ(h(R), Y )] = 𝔼P[𝒲*(V)ℓ(h(R), Y )]
ℓ(h(R), Y ) h( ⋅ ) 𝒲* 𝒲*

P(y |do(x)) = P𝒲*(y |r)

̂R 𝒲*(h) ≡
1
N

N

∑
i=1

𝒲*(V(i))ℓ(h(R(i)), Y(i))

Proposition 1: Generalization bound for weighted risk [3] 

Let  denote the Pollard's pseudo-dimension of loss function  and 
denote the empirical distribution of . Then, for any , with probability at least 

, the following holds: 

 

where .

p ℓh ≡ ℓ(h(v), y) ̂P
P δ ∈ (0,1)

(1 − δ)

|R𝒲*(h) − ̂R 𝒲(h) | ≤ 𝔼P[ |𝒲*(V) − 𝒲(V) | ] + 25/4 max ( 𝔼P[𝒲2ℓ2
h], 𝔼 ̂P [𝒲2ℓ2

h]) F(p, m, δ)

F(p, m, δ) ≡ ((p log(2me/p) + log(4/δ))3/8)/(m3/8)

‣Question: Can we use weighted ERM based 
estimator for general identifiable estimands?

‣Based on the generalization bound in Prop. 1, the learning objective based on 
structural risk minimization principle is:  

ℒ(𝒲, h) ≡ ̂R 𝒲(h) +
λh

m
C(h)

=ℒh(h,𝒲,λh)

+
1
m (𝒲(V(i) − 𝒲*(V(i)))

2
+

λ𝒲

m
∥𝒲∥2

2

=ℒ𝒲(𝒲,λ𝒲;𝒲*)

Theorem 2: Learning guarantee

Let , and , where  is the model 

hypotheses class for . Suppose  is correctly specified such that . Then, 
 converges to  with a rate of . Specifically, .

h* ≡ arg min
h∈ℋ

R𝒲*(h) (𝒲m, hm) ≡ arg min
𝒲∈ℋ𝒲,h∈ℋ

ℒ(𝒲, h) ℋ𝒲

𝒲 ℋ𝒲 𝒲* ∈ ℋ𝒲

hm h* Op(m−1/4) R𝒲*(hm) − R𝒲*(h*) ≤ Op(m−1/4)

‣That is, the hypothesis  that minimizes the objective function  converges to 
, the target minimizer. 

hm ℒ(𝒲, h)
h*

Algo. 2 WERM-ID-R( )𝒟, G, x, y
1. Run  and derive  

s.t. . 
wID(x, y, G, P) (𝒲*, R)

P(y |do(x)) = P𝒲*(y |r)

2. Evaluate from samples .̂𝒲* 𝒟

3. Learn . 𝒲 ≡ arg min
𝒲′ ∈ℋ𝒲

ℒ𝒲(𝒲′ , λ𝒲, ̂𝒲* )

4. Learn . h ≡ arg min
h′ ∈ℋ

ℒh(h′ , 𝒲, λh)

‣Then, Algo. 2 provides the end-to-end 
procedure to causal effect estimation by 
combining Algo. 1 (wID) and the learning 
bounds (and learning guarantees) of the 
learning objective . ℒ(𝒲, h)

Theorem 3: Time complexity of Algo. 2.

Let and . Let  denote the time complexity for estimating 
conditional distribution;  denote the time complexity for optimizing  and 

. Then, Algo. 2 runs in .

n ≡ |V | m ≡ |𝒟 | T1(m)
T2(m) ℒh

ℒ𝒲 O (poly(n) + n(m + nT1(m)) + T2(m))

(Informal) 

‣Algo. 2 is time-efficient (i.e., Algo. 2 runs in polynomial w.r.t. sample sizes and 
the number of variables in G). 

Summary & Contribution 
‣  We develop a sound and complete algorithm (Algo. 1) that generates any 

identifiable causal functionals as weighted distributions, amenable to WERM 
method.

‣We formulate the causal estimation problem as an WERM optimization.  We 
introduce a learning objective, inspired by generalization error bound, and 
provide theoretical learning guarantee to the solution (Thm. 2).

‣We develop a practical and systematic algorithm (Algo. 2, Thm. 3) for learning 
target causal effects from finite samples given a causal graph, based on the 
proposed framework. The practical  effectiveness of this approach  is 
demonstrated through simulated studies.

Simulation

Simulation results — (Top) Comparing accuracies of the proposed estimators with plug-in estimator. (Bottom) Comparing 
the running time between the proposed vs. plug-in estimator. 

‣The simulation results for various causal instances implies that the proposed 
estimator is sample and time-efficient compared to the plug-in estimator, the 
only viable for arbitrary causal functional. 
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