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We develop a data-driven information-theoretic framework for the sharp partial
identification of causal effects under unmeasured confounding. Existing approaches
often rely on restrictive assumptions, such as bounded or discrete outcomes, re-
quire external inputs (e.g., instrumental variables, proxies, or user-specified sen-
sitivity parameters), necessitate full structural causal model specifications, or fo-
cus solely on population-level averages while neglecting covariate-conditional treat-
ment effects. We overcome all four limitations simultaneously by establishing novel
information-theoretic, data-driven divergence bounds. Our key theoretical con-
tribution establishes that the f-divergence between the observational distribution
P(Y | A= a,X = z) and the interventional distribution P(Y | do(A = a), X = x) is
upper bounded by a function of the propensity score alone. This result enables sharp
partial identification of conditional causal effects directly from observational data,
without requiring external sensitivity parameters, auxiliary variables, full structural
specifications, or outcome boundedness assumptions. For practical implementa-
tion, we develop a semiparametric estimator satisfying Neyman-orthogonality (Cher-
nozhukov et al., 2018), which ensures \/n-consistent inference even when nuisance
functions are estimated via flexible machine learning methods. Simulation studies
and real-world data applications, implemented in Github repository, demonstrate
that our framework provides tight and valid causal bounds across a wide range of
data-generating processes.
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1. Introduction

Causal effect identification aims to characterize interventional quantities, such as Pr(Y = y |
do(A = a), X = x), as functionals of the observational distribution P(X, A,Y"). In the presence
of unmeasured confounders U, as depicted in Fig. 1a, point identification is generally impossible
without auxiliary variables or structural restrictions. In such settings, partial identification
seeks to recover bounds that provably contain the true causal quantity. However, as described
in literature review in Sec. 1.1, most existing methods suffer from one or more of the following
fundamental limitations:

(Lim-1) Bounded outcomes: Restricting outcomes to bounded or discrete supports (e.g.,
Y €[0,1]).

(Lim-2) Externality of parameters: Requiring auxiliary inputs—such as instrumental vari-
ables, proxies, or sensitivity parameters—to quantify confounding strength.

(Lim-3) Full SCM specification: Necessitating the specification of the entire structural
causal model (SCM) (Pearl, 2000), which is computationally intensive and prone to
error propagation.

(Lim-4) Neglect of heterogeneity: Focusing on population-level averages while neglecting
covariate-conditional treatment effects.

To universally address these limitations, we develop an information-theoretic framework that
provides (i) data-driven upper bounds on statistical divergences between observational and
interventional distributions, and (ii) sharp partial identification of conditional causal effects
E[Y | do(A = a),X = z]|. Our framework accommodates unbounded continuous outcomes
without requiring full structural modeling or external inputs. The core mechanism involves
deriving data-driven upper bounds on statistical divergences (e.g., f-divergence (Csiszar, 1967))
between the interventional law @), and the observational law P, ;, and then translating these
into sharp causal intervals. Specifically, we make three main contributions:

(i) We show that f-divergences (Csiszar, 1967) between P, ; and Q, 4 are upper bounded by
a function of the propensity score e, ().

(ii) We leverage these bounds to obtain sharp intervals for arbitrary expectations of the form
0(a,z) £ Eq,.[¢(Y)] for user-specified functions ¢ without imposing outcome bounded-
ness or support restrictions.

(iii) We develop a semiparametric estimator that satisfies Neyman-orthogonality (Cher-
nozhukov et al., 2018) ensuring robust inference even when nuisance components are
estimated via high-dimensional machine learning models.

Together, these results provide a principled path to data-driven partial identification of condi-
tional causal effects under unmeasured confounding.

1.1. Related Work

We organize existing work on partial identification based on which of the limitations (Lim-
(1,2,3,4)) they retain or address.

Bounded/discrete outcomes (Lim-1). Early work imposed restrictions requiring outcomes
to be bounded or discrete. For example, Manski (1990) derived nonparametric bounds using
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Figure 1: (a) Causal diagram with unmeasured confounding. (b) Systematic comparison of our
method against existing literature (detailed in Sec. 1.1).

the extreme values outcomes can attain. Linear-programming (LP)-based approaches (e.g.,
Balke and Pearl (1994), Tian and Pearl (2000)) yield sharp bounds with discrete variables.
Sachs et al. (2023) and Shridharan and Iyengar (2023) have extended these LP-based bounds to
general graphical settings but remain restricted to discrete outcomes. Zhang and Bareinboim
(2021) extended these LP ideas to continuous outcomes, but still rely on bounded-support
assumptions (e.g., Y € [0, 1]). These methods avoid auxiliary inputs (addressing Lim-2) but fail
to accommodate unbounded outcomes (Lim-1) or provide conditional effect bounds (Lim-4).

Auxiliary inputs (Lim-2). Another line of work leverages auxiliary inputs. While auxiliary-
variable methods can yield sharp bounds, most methods still assume bounded outcomes (Lim-1);
and valid auxiliary inputs are often not available in practice or not identifiable from data.

o Instrumental variables. Balke and Pearl (1997) provide tight nonparametric bounds on av-
erage treatment effects by leveraging instrumental variables, assuming bounded binary out-
comes. Kitagawa (2021) extends this framework to continuous outcomes while maintaining
bounded support assumptions (see Swanson et al. (2018) for a comprehensive survey). Re-
cently, Levis et al. (2025) develop covariate-assisted IV bounds to target conditional treat-
ment effects (addressing Lim-4), but also under bounded outcome assumptions (Lim-1).

o Additional assumptions or variables. Ghassami et al. (2023) leverage proxy variables of
hidden confounders to provide bounds on average effects, again requiring bounded outcomes
(Lim-1). Lee (2009) and Semenova (2025) avoid bounded outcomes for sharp bounds on the
average effect, but rely on structural assumptions about the selection mechanism.

o Sensitivity analysis. Sensitivity analysis introduces user-specified parameters to quantify
confounding strength (e.g., Rosenbaum (1987), Tan (2006), Yadlowsky et al. (2022), Jin et al.
(2022), Dorn and Guo (2023), Oprescu et al. (2023)). Unlike IV and proxy methods, modern
sensitivity approaches can accommodate unbounded outcomes (addressing Lim-1). Among
these, Jin et al. (2022) are most closely related to our approach, as they use an f-divergence-
based sensitivity model to constrain divergences between observational and interventional
distributions. Oprescu et al. (2023) extend sensitivity analysis to bound conditional effects
(addressing Lim-4). However, all sensitivity methods require external sensitivity parameters
(Lim-2) that are not identifiable from observational data alone.

Full SCM-modeling approaches (Lim-3). Another approach leverages machine-learning meth-
ods to learn entire SCMs consistent with observational data (e.g., Hu et al. (2021), Bal-



azadeh Meresht et al. (2022), Padh et al. (2023), Xia et al. (2022), Tan et al. (2024)). These ap-
proaches find the SCMs that maximize /minimize the target causal effect subject to observations,
using flexible neural architectures to model structural functions. In principle, such methods can
accommodate unbounded outcomes and target conditional effects (addressing Lim-(1,4)). How-
ever, they require estimating the entire SCM (Lim-3), which is computationally intensive and
sensitive to misspecification in high-dimensional structural components.

Our novelty. Existing methods each resolve some limitations; however, no existing approach
achieves all four limitations (Lim-1-Lim-4) universally. In contrast, our work simultaneously
addresses all four limitations by developing bounds that (Lim-1) accommodate unbounded con-
tinuous outcomes without support restrictions; (Lim-2) require no auxiliary variables or sensi-
tivity parameters; (Lim-3) avoid full SCM modeling; and (Lim-4) provide bounds for conditional
effects E[Y | do(A = a),X = z] beyond the population-level average. We compare our work
with representative existing methods in Fig. 1b.

2. Problem Setup & Preliminaries

Consider a treatment A € {0,1}, a covariates vector X € X C R%, and an outcome Y €
Y C R%. We consider the structural causal model (SCM) framework (Pearl, 2000) as the
data-generating process (DGP) for (X, A,Y):

UFfU(EU)a X<—fX(U76X)7 A<—fA(X7Ua€A)7 Y<—fY(XaA7U76Y)7 (1)

where U represents unmeasured confounding, f(.) are unknown structural functions, and
(ev,€x,€4,€y) are mutually independent exogenous noise variables. The causal diagram in-
duced by this SCM is depicted in Fig. 1a.

The operation do(A = a) denotes an intervention that replaces f4 with a constant a € {0, 1},
while keeping the other structural equations invariant. For each (a,z) € {0,1} x X', we define
the following conditional probability laws on ):

e Observational Law: P, , = P(Y | A = a, X = z), which is identifiable from data.
o Interventional Law: Q,, = P(Y | do(A = a), X = z), our target of interest.

Under unmeasured confounding (i.e., when f4 and fy share U as a common hidden parent),
the interventional law @), . is unidentifiable from the observational law P, ;. Consequently, any
causal functional 6 = Eq, , [¢(Y)] for some user-specified ¢ (e.g., the identity for ATE/CATE)
is also unidentifiable.

f-Divergence. To characterize the “distance” between the identifiable P, , and the unidentifi-
able Qg ., we use f-divergences (Ali and Silvey, 1966; Csiszar, 1967).

Definition 1 (f-Divergence). Let P and @ be probability measures on (), F) such that
P <« Q. For a convex function f : [0,00) — R with f(1) = 0, the f-divergence of P from

Q is

D(PIQ) [ 1 (Zg) aQ. 2)




Common specializations of f-divergence are as follows. Let p and ¢ be the Radon-Nikodym
derivatives of P and @ with respect to a common dominating measure u (e.g., Lebesgue or
counting measure).

« Kullback-Leibler (KL). f(t) = tlogt with f(0) = 0. Then,

DkiL(P[|Q) = / log <2Q> dp = /yp(y) log (Zg;) dp(y)- (3)

« Hellinger distance. f(t) £ (vt —1)? with f(0) = 1/2.
2
Du(P|Q) = ;/y (@— 1) dQ =1- /y VPW)ay)du(y). (4)

+ x’-divergence. f(t) = 3(t —1)? with f(0) = 1/2.

Derl =3 [ (50 1) do=j [ LA gy ®)

« Total variation (TV). f(t) £ 5|t — 1| with f(0) = 1/2.

Drv(PIQ) = 5 [ 1ow) = awlduty) = sup [P(B) - QB! 0

BeF
+ Jensen-Shannon. f(t) £ 1(tlogt — (t + 1) log(})) with f(0) = 2log2. Let M £ #.

Dis(PlQ) = 3 D (PIM) + 3 Dt (QI|M). 7

Integral Probability Metrics (IPMs) & Maximum Mean Discrepancy (MMD). Beyond the
f-divergence, the integral probability metric (IPM; Miiller 1997) and maximum mean discrep-
ancy (MMD; Gretton et al. 2012) are commonly used. Let ® £ {¢ : ¥ + [0,1]} be a class of
measurable functions. Then, each measures are defined as follows.

Definition 2 (Integral Probability Metric (IPM) (Miiller, 1997)). Let P and @
be probability measures on a measurable space (), F). Let ® be a class of measurable
real-valued functions on ). The integral probability metric (IPM) is

DIPMfD(PHQ)—ZlElp [Epp(Y)] - Eq[ep(Y)]]- (8)

Definition 3 (Maximum Mean Discrepancy (MMD) (Gretton et al., 2012)). Let
‘Hy. be a reproducing kernel Hilbert space (RKHS) associated with a positive-definite
kernel k£ : ) x Y — R. The maximum mean discrepancy (MMD) is

Dnin,i(PlQ) £ P [Ep[A(Y)] = Eq[h(Y)]]. (9)

When the function class ® is sufficiently rich (e.g., all bounded continuous functions), the
IPM fully characterizes distributional differences. Similarly, when the kernel k is characteristic,



the MMD fully characterizes distributional differences. In both cases, Dipm,ao(P||Q) = 0 (or
Dyivip k(P[|Q) = 0) if and only if P = (). These quantities can be viewed as special cases of
distributional discrepancies defined through restricted function classes, and serve as limiting or
simplified alternatives to the f-divergence—based bounds considered in the main text.

Problem Statement. Under the assumed DGP in Fig. la and Eq. (1), the interventional
law Q. and a target causal effect in the form of Eq,  [¢(Y)] (where ¢ is a user-specified
and potentially continuous and unbounded function) are generally not identifiable from the
observational law P, , due to unmeasured confounding. To address, (1) we derive the upper
limit of the f-divergence of the observational law F; , from the interventional law Qg .; i.e.,
D¢(Pyz||Qaz); (2) we translate the upper limit of the f-divergence into the sharp interval for
causal effects. Throughout the paper, we assume the following:

Assumption 1. For all a,z € A x X,

1. Positivity: e,(z) 2 Pr(A=a| X =) € [¢,1 — ] for some constant 0 < ¢ < 1/2.
2. Mutual absolute continuity: P, , < Q. and Q. < P, .
3. Regularity of f: For the generator function f in the f-divergence, f(0) < occ.

3. Divergence Bounds between Observational and Interventional
Distributions

We now derive a data-driven upper bound on the f-divergence between observational and
interventional distributions. Our main result is the following:

Theorem 1 (f-Divergence Bound). For any a € A and z € X such that P(a | ) > 0,

Dy (Pazl|Qaz) < By(ea()), (10)

where

By(ea(w) £ cala) () + (1 = cala)) £(0) (1)

€q()

Theorem 1 establishes that the f-divergence Dy(F; ;||Qa,x) is upper bounded by By(e.(x)), a
function of the propensity score that is directly computable from observational data. Notably,
By(eq(r)) = 0 as eq(x) — 1, since f is continuous (by convexity) and satisfies f(1) = 0. Thus,
higher propensity scores yield tighter divergence bounds.

We specialize Thm. 1 to standard divergences:

Corollary T1.1. For any a € A and x € X such that P(a | z) > 0,
o KL: f(t) £ tlogt (with f(0) = 0),

DKL(Pa,mHQa,x) < —log ea(x)- (12)




o Hellinger: f(t) = (vt —1)? (with f(0) = 1/2),
Du(Pog|Qap) <1 - \ ea(T). (13)
o x>-divergence: f(t) £ 1(t—1)? (with f(0) =1/2),

1- a
Do (Paall@us) < o0 (14)
« Total variation: f(t) £ 1|t — 1| (with f(0) = 3),
DTV(Pa,;BHQa,:c) < 1-— ea(x)' (15)

« Jensen-Shannon: f(t) = fis(t) = %(tlogt—(tjtl)log(%)) (with f;5(0) =
1log?2)
2

1 4eq(z)c(®)
Djs(Paz||Qaz) < Byys(ea(x)) = EIOg (1+ eq(z))teal® |- (16)

Bounds extend to stochastic policies as follows:

Corollary T1.2. For any stochastic policy 7(a | x),

Dy(Prl|Qr) 2 Ex | Y m(a| X)Ds(Pax|Qax)

acA

< Ex [Z m(a| X)Bf<ea<x>>] .

acA

Choosing 7(a | ) = eq(x) yields the global divergence bound:

D¢(Pax || Qax) =Ex [Z ea(X) D(Pox || Qa,x)| < Ex

acA

> ea(X) Bf(ea(X))] .

acA

We derive bounds on the maximum mean discrepancy (MMD; Gretton et al. 2012), and the
integral probability metric (IPM; Miiller 1997).

Corollary T1.3 (IPM and MMD Bounds). Let ® £ {p : Y  [0,1]} be a class
of measurable functions. Let Dipy #(P[|Q) be the IPM over a function class F = {f :
| flloc < C}. Let Dyivp x(P)|Q) be the MMD associated with an RKHS with a kernel k
such that k(-,-) < K. Then,

(IPM) Dipm 7 (Pag || Qaz) < 2C min {1 — eq(x), 4/ —% logeq(z)},
(MMD) Dynpx(Pag || Qaz) < 2V K min {1—eq(), \/—3logeq(z)}.

All results above extend to the marginal case (without covariates) by setting X = ) and
replacing e, (z) with the marginal propensity score e, = Pr(A = a). This yields bounds on the
divergence between the marginal interventional law Q, = P(Y | do(A = a)) and the marginal
observational law P, = P(Y | A = a).




3.1. Specialization for Exponential Family

Here, we derive a closed-form f-divergence when P, ;, @, are within the exponential family
(e.g., Bernoulli, Gaussian, Poisson, exponential, etc.) to exemplify the mechanism of Thm. 1.

Corollary 4 (Exponential Family). Suppose P, , and @, , are distributions from a
common exponential family:

Poa(y) £ exp (6, T(y) — A(6,))h(y), (17)
Qaz(y) £ exp (6, T(y) — A(6y))h(y), (18)

lI>

where 6,6, are natural parameters, T'(y) is the sufficient statistics, A(¢) is the log-
partition function (log normalizer), and h(y) is the base measure density. Define A =
0, — 0, and Ay = A(0,) — A(0,).

Df(Pa,m”Qa,ac) = EQa,z [f (eXp (ATT(Y) - AA))} o (19)

Bernoulli Distribution Suppose Y € {0,1} and both P, ; and Qg , are Bernoulli distributions
with success probabilities p and ¢, respectively. The Bernoulli distribution belongs to the
exponential family with sufficient statistic T(y) = y and natural parameter 6 = log 1f¥p.

The Radon—Nikodym derivative is given by

dP, ,
dQa,x

(y) = exp <y logigiq) + log 1= p) . (20)

P) 1—gq

Consequently, the f-divergence admits the representation

Dj(Pal|Qus) = Eq, . {f (exp (Y logm +log i :Z»] . (21)

Gaussian Distribution Suppose Y € R? and both P, and @, are Gaussian distributions
with means pip, ity and covariance matrices ¥, and X, respectively. In this case, the Gaussian
distribution forms an exponential family with sufficient statistic T'(y) = (y,yy').

The Radon-Nikodym derivative is given by

dP, ;
AQua.q

Y
AR

(y)

exp ( - %(y - up)TE,jl(y = pp) + %(y - Hq)TZq_l(y - Nq)) : (22)

Accordingly, using (22), the f-divergence can be written as
APy
=(Y) || - 2
(=) 23

Poisson Distribution Suppose Y € {0,1,2,...} and both P,, and Q,, are Poisson distri-
butions with rate parameters A, and A4, respectively. The Poisson distribution belongs to the
exponential family with sufficient statistic 7'(y) = y and natural parameter 6 = log \.

Df (PaJ:”Qa,ﬂc) = EQa,z




The Radon—Nikodym derivative takes the form

dP, . A
= (y) = exp <y10g == A )) : (24)
an,:p )\q P !
The corresponding f-divergence is therefore
A
Df<Pa,xHQa,x) =EqQ.. [f (exp <Y log /\*p —(Ap— Aq)))] . (25)
q

Exponential Distribution Suppose Y > 0 and both F,, and Q,, follow exponential dis-
tributions with rate parameters A\, and )y, respectively. The exponential distribution is an
exponential family with sufficient statistic T'(y) = y and natural parameter § = —\.

For y > 0, the Radon—Nikodym derivative is given by

dPa,:Jc
dQax

(v) = ip (=0 = A0)y). (26)

Accordingly, the f-divergence can be expressed as

Df(Pa,:c”Qa,x) =EqQ.. [f <i\\p exp (—(Ap — )‘q)Y)>] . (27)

q

4. A Distributionally Robust Formulation of Causal Bounds

In this section, we leverage the upper bounds on statistical divergence derived in Section 3 to
construct bounds on the target causal effect 6(a,z) = Eq, , [¢(Y)], where (Y) is an arbitrary
measurable function with finite first and second moments. This framework encompasses diverse
causal quantities: setting ¢(Y) £ 1(Y < t) yields the cumulative distribution function Q, (Y <
t), while choosing p(Y) £ £(Y;6) (a loss function for 6) yields the risk function over Qg .
Crucially, we impose no restrictions requiring ¢ to be discrete or bounded.

Using the divergence bound Djf(P,;||Qaz) < Bf(ea(x)) from Thm. 1, we define the f-
divergence-based ambiguity set, which is a collection of distributions over Y within the By (e, (z))
radius around the observational law P, ;:

Qa,z S pa,:p(y) : Df(PCL,:E H Qa,x) < Bf(ea(w));} (28)

Ambiguity set) Qf(a,z; P, ;) =
( guity ) f( a,r) { Pry < Qus

where P, ,(Y) is a collection of probability laws given A = a and X = z. The target causal
effect Eq, , [¢(Y)] is bounded by expectations over the extremal distributions in this ambiguity
set:

(Bounds) O10(a, ) < H(a,z) < Oup(a, x) (29)
———— —— ———
infQegy(a,2) Qe EQaole(Y)]  supgeo (am) Eqle(Y)]

The lower and upper bounds are symmetric: by Proposition 1 below, the lower bound can be
obtained from the upper bound by negating the function ¢. Therefore, we focus on deriving
the upper bound 6y, (a, x) without loss of generality.

10



Proposition 1 (Lower bound as a subproblem of upper bound). Let

Oo(a,z;0) 2 inf  Eg[p(Y)],  Ouwla,z;0) 2 sup Eglp(Y)].  (30)
Q€0 (a,z) QeQ;(a,z)

Then,

010(a7$;90) = _Gup(%w;_(p)- (31)

By Proposition 1, it suffices to compute 6,(a,z). However, computing 6,,(a, z) directly from
Eq. (29) is intractable, as it requires optimizing over the infinite-dimensional space of all proba-
bility measures in Qf(a, z). To overcome this computational barrier, we reformulate the problem

using convex duality:

Theorem 2 (Primal and Dual Formulations). Let s(Y) £ fl%"m (Y') denote the
).

likelihood ratio, gs(Y) £ s(Y) - f(1/s(Y)), and ns(a,x) £ By(eq(x)
Oup(a, x) admits the following equivalent representations:

The upper bound

up(a,2) = sup {Ep, . [s(V)p (V)] st. Ep, [s(V)] =1, Ep,.[5s(V)] < nsle, 1)} (32)

_ g x(p(Y)—u
= nf_ {vy(a,2) +ut ABr,, [o(2574)] ), (33)

where g*(t) £ supy.o{st — g(s)} is the convex conjugate (also known as the Legen-
dre—Fenchel conjugate or c-transform) of g.

The following proposition provides a general recipe for computing the convex conjugate g*:

Proposition 2 (Convex Conjugate ¢g*). Let f : (0,00) — (—00, 00| be proper, convex,
and lower semi-continuous function. Define for s > 0,

g(s) £ sf(1/s), g"(t) = sup{st — g(s)} (34)
Let 7 2 1/s. Then,
() 2 sup =0, (39)

Moreover, if the supremum is attained at some r* > 0, then there exists a subgradient
a € Of(r*) such that

t=f(r*)—r*a, and g¢*(t)=—a. (36)

If f is differentiable at 7*, then a = f/(r*) and hence g*(t) = — f'(r*).

[YJ - (Make this as more verbally accessible and easier statement for explaining Prop. 2) Prop. 2
basically conducts the change-of-variables » = 1/s, and, applies the optimality condition, stating
that if the maximizer r* exists, then there is a subgradient a € 9f(r*) such that t = f(r*) —r*a

and ¢*(t) = —a. |

We apply Prop. 2 to standard f-divergences:

11



Corollary P1. Let g(s) £ sf(1/s) for s > 0. Then,

o KL: gki.(s) = —logs, and

—1 —log(—t) ift<O0;

. (37)
+00 if t > 0.

gk (t) = {

« Hellinger: gi(s) = (1 —2/s +s), and

L ift < 1/2;
np) =% ! 38
9 () {—I—oo if ¢ >1/2. (38)

+ Chi-square: g,2(s) = %, and
. 1—VI—2t ift<1/2
g (1) = e (30)
+o0 ift>1/2.
e TV: grv(s) = 5|1 — s, and
1 : 1
—9 lft S )
gyt =<7, if —f<t<i, (40)
+oo, ift>1.
+ Jensen-Shannon: gjs(s) = % (slogs — (1 + s)log(1 + s) + (1 + s)log2), and
1 : 1
. —5log (2 —exp(2t)), ift< 5log2,
gist) =12 . ; (41)
~+00, if £ > 5 log 2.
All results above extend to the marginal case (without covariates) by setting X = ) and

replacing e, (z) with the marginal propensity score e, = Pr(A = a). This yields bounds on the
marginal causal effect Eg,[Y] £ E[Y | do(A = a)], where Q, = P(Y | do(A = a)).

5. Debiased Semiparametric Estimation of Causal Bounds

Solving the dual problem in Eq. (33) pointwise for each (a,x) is computationally intractable,
as it requires estimating the conditional expectation Ep,  [g*(-)] separately for each pair of
covariate X = x and treatment A = a at every optimization iteration. We circumvent this by
amortizing the optimization as follows: we view A(a,z) and u(a,z) as functional parameters
to be learned globally. Parameterizing A(a,z) 2 exp(h(a,z)) to enforce positivity, the dual
problem transforms into:

Proposition 3. Let n¢(a,z) £ Bf(eq(z)). Then,

bup(a,@) = inf Ep,, | exp(h(4, X)) {np(A, X) + g (S50} + w(4, X)|. (42)
u(a,z)€ER

To operationalize this optimization, we define a loss function and corresponding risk function

12



for the functional parameters h and u:

Definition 4 (Risk Function for Causal Bound). Let V = (X, A,Y). Let hg,uy :
A x X — R be maps parametrized by § € RP1 and v € RP2. The risk function for causal
bounds is

R(B,7;e) = Ep[L(V;(8,7),e)], (43)

where e = e4(X) and 7y = nf(A, X) = Bf(ea(X)), and

UV;(8,7),€) 2 exp(hg(A, X)) {ns(4, X) + g* (L EdN) b +up(4, %), (49)

The following proposition shows that this risk minimization is equivalent to solving the pointwise
dual problem:

Proposition 4 (Justification of Risk Function). Define, for each (a, x), the following
loss

0(h, usy, a,7) 2 exp(h(a, ) {ns(a,2) + " (ZLEN L 4 u(a, ). (45)

Let R(h,u) £ Ep[l(h,u;Y, A, X)] be a risk function. Assume R(h,u) < oo for all
h,u € F, where F is a function class rich enough that for any (hy,uq), (ho,us) € F
and VB C A x X, (W,u') =& (h1,u1)1p + (h2,u2)1ge also lies in F. Then, for any fixed
(h*,u*) € F, the followings are equivalent:

1. (h*,u*) minimizes R over F.

2. (h*,v*) minimizes Ep, ,[((h,u;Y,a,x)] for Py x-almost every (a,x).

Proposition 4 establishes that solving the pointwise dual problem in Eq. (42) is equivalent to
finding the global minimizer (h*,u*) of the risk function in Def. 4. This amortization substan-
tially improves tractability: instead of solving a separate optimization for each (a,x), we learn
functional parameters that generalize across the covariate space.

Since the risk function in Eq. (43) depends on the unknown propensity score e, we must estimate
it from data. However, estimating e introduces errors that can propagate into the bound
estimates. To mitigate this, we construct a debiased risk function that achieves first-order
insensitivity (Neyman-orthogonality) to perturbations in e:

Definition 5 (Debiased Risk). Let 1;(A, X) be the first-order derivative of 7y (A, X)

w.r.t. e. The debiased risk function is
RP(B,7;€) £ EY (V5 (8,7), €)], (46)

where
* —u~ (A4,
(V3 (8,7),€) 2 exp(hp(4, X)) {ns (4, X) + g" (Srotfg  +u,(4, %) (47)
Eq. (44)
+ > ea(X) exp(hg(a, X))n(a, X) (L(A = a) — ea(X)) (48)
acA

Here, Eq. (48) is an error correction terms, which makes ¢4*(V; (8,7), e) invariant to the small
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perturbation to first-order perturbations in e (i.e., Neyman-orthogonal (Chernozhukov et al.,
2018)):

Lemma 1 (Orthogonality). For any direction functions {s,(:)}4ec4 and any perturba-
tion path e q £ ¢, + ts, with sufficiently small |¢], %Rdb(ﬁ,fy; et)‘t:O =0 for all (5,7).

We now present our estimation procedure based on cross-fitting:

Definition 6 (Debiased Causal Bound Estimators). Fix a functional ¢ and an f-
divergence. Let ¢9” and R be as in Def. 5. The debiased estimator of the upper causal
bound 6, (a, z) for any (a,z) € A x X is constructed as follows:

1. Randomly split the dataset D (with size n) into K disjoint folds Dy, .-, Dg.
2. For each k fold, learn é* using D_j, £ D\ D}, for all a € A.

3. For each fold k, solve U), £ (By, 1) € arg ming y 3;|v;eD, 40V (8,7), ).

4. For each fold k, evaluate

hi(a,z) 2 hs (a,2),  Bx(a,x) £ ug, (a,2), (49)
Mr(a,z) £ exp{hp(a,z)},  Af(a,7) = Br(E(x)). (50)

5. For each fold k£ and each i € Dy, evaluate Zz-k = g*(%)a and learn a
k 39427
regressor iy by regressing ZF onto (A, X) using Dy.

6. Evaluate 51(1];)(@ z) 2 Ap(a, z) (ﬁf(a,a:) + ig(a, x)) + Ux(a, z) and return Gyp(a, z)

(1/K) oK, 0% (a, ).

A

We now analyze the error of the proposed debiased estimator under following set of assumptions:

Assumption 2 (Regularity-1). Let e 2 {e,(-) : a € A} be the true propensity score,
9 £ (8,7) and do £ (S0, 70) € argming , RI*(5,7;e).

1. Positivity: eq(z) € [¢,1 — ¢] for some constant 0 < ¢ < 1/2 for all a,z € A x X.

2. f-divergence regularity: f is convex and twice continuously differentiable; and the
induced radius By (e, (x)) is twice continuously differentiable on [c, 1 —¢], with bounded
first and second derivative; i.e., supee(e1-q [Br(€)] + [B}(e)| + [ B} (e)| < oo.

3. Loss regularity: For each fixed e € [¢,1 — ¢, the map ¥ +— (I°(V:9,¢) is twice
continuously differentiable, with

Sup 16 (V5 9, €) 13 < oo, Sup Vot (V59,€)|5 < oo, SUp V356 (V; 9, €)|15 < oo.
e e e

4. Higher-order smoothness: Let H(9;e) = V2,R®(9;e). There exists a neighbor-
hood @y of ¥ containing Y9 and constants 0 < k < ko < oo such that

kil <X H(¥;e) =< kol for all ¥ € 6©y. (51)

5. Uniform LLN: For each fold k, define the empirical risk w.r.t. 4" with the training

14



fold is Egb (9,e%). Then, we have a uniform law-of-large-number:

sup |RP(9;e%) — R (9;8%)| = O, (n~1/?), (52)

. . * Y)—u~(A,X
Assumption 3 (Regularity-2). For ¥ 2 (8,7), let Zy £ ¢ (W) and
my(a,z) = E[Zy | A = a,X = z]. Let m; be the estimate for my using the k-fold

data.
1. Bounded nuisances: hg,, t,, th,u% are bounded by some constant M.

2. Lipschitz parameterization: The map (8,v) — (hg(a, ), uy(a,x)) is Lipschitz in
Y = (B, ) uniformly over all (a,x) with constant Ly; i.e.,

86}1}:) (|hg(a,z) — hg(a,z)| + Juy(a, z) — uy(a, z)|) < Ly||Y — Y. (53)

3. Smoothness of ¢g*: The convex conjugate g* is continuously differentiable with
bounded derivative; i.e., sup;e7 [(¢%)'(t)| < oo where T is a range where g*(t) is well-
defined.

4. Assumption on regression: ||m; — mngg = Op(sn), where s, is some sequence
sp — 0; There exists a constant L, s.t. |[my —myr|l2 < Ly |0 — |

5. Correct model choice: Let E;,O(a,x) £ E[(V;(Bo,70),¢e) | A= a,X = x]. Then
?;70((1, x) 2 E[(V;(Bo,Y0),e) | A=a, X =2] = 0, (a, ) for all (a,z).

We now formalize the convergence rate of the proposed debiased estimator:

Theorem 3 (Error Analysis). Under Assumption 2, fix a fold k. Let e be the true
propensity score, and ¥y £ (8o, 70) € argming R (9;e) for ¥ £ (3,7). Let Ux £ (Br, k)
be the minimizer from Step 3 in Def. 6 with *. Define r,, = Op(||e* — e||2). Then,

9% = Yoll3 = Op (012 +17). (54)

Furthermore, let Zy = g*(%) and my(a,z) = E[Zy | A = a,X = x|. Define
sp = Op(||my — mngg) where my, is from Step 5 in Def. 6. Let 51(1@ be the estimated

upper causal bound for the fold k. Under additional Assumption 3,

||§1(1];>) - gupHZ = Op(”_1/2 + 7“721 + 5121) (55)

Thm. 3 demonstrates the sample efficiency of our debiased estimator. Even when the nuisance
components (the propensity score and the pseudo-outcome regression) converge slowly (e.g.,

o(k)

at rate n=Y 4), both the dual parameters 1% and the upper-bound estimator 9u]f3 achieve the
faster rate (e.g., at rate n=/2). Specifically, the sample-efficiency gain is of order O p(r2) rather
than Op(r,) that would result from using the non-debiased risk function (Eq. (43)). This
improvement stems from the orthogonal construction of the debiased risk, which eliminates
first-order sensitivity to propensity score errors (Lemma 1). Consequently, nuisance components
can be estimated using flexible machine learning methods while the estimator retains faster
convergence rates.
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5.1. Ensemble Bound Aggregation

Different f-divergences encode distinct notions of distributional discrepancy, and no single di-
vergence uniformly dominates others in tightness across all data distributions. Consequently, we
estimate bounds using a collection F of f-generators (e.g., F = {fkr, frv, fy2, - }), yielding a
family of upper bound estimates éup = {gup’ 51 f € F} where HAup, ¢ is an upper-bound estimate
for a fixed f € F. Let 510 be defined similarly. To construct the tightest valid interval, we ag-
gregate these bounds while accounting for potential finite-sample violations due to estimation
error and numerical instability.

Our aggregation strategy addresses this challenge via order statistics:

Definition 7 (k-th order statistics aggregator). Let 510, éup denote candidate lower
and upper bounds, respectively, with ng £ |6j,] = |6yp|. For k € {1,...,n¢}, the k-th
order-statistics aggregator (k-agg) is defined as the pair (6f,60%,), where 6f is the k-th

~

largest element of 510 and é?jp is the k-th smallest element of 8.

The following lemma formalizes the validity condition for the k-th order aggregator:

Lemma 2 (Valid Coverage under Partial Correctness). For a fixed (a,x),
. 5{2(@, x) < 0(a, x) iff at least (ny —k+1) elements of 6y, are smaller or equal to 6(a, z).

. §ﬁp(a,x) > 0O(a,x) iff at least (ny — k + 1) elements of éup are greater or equal to
O(a,x).

Lemma 2 guarantees that the k-agg produces valid bounds as long as at least (ny — k + 1)
divergences yield correct estimates. This robustness property is critical: even if a minority of
divergences fail (due to finite-sample violations or numerical issues), the aggregator automati-
cally discards outliers by selecting the k-th order statistic. In practice, the k-agg is implemented
by initializing k = 1 (selecting the tightest bounds) and iteratively incrementing k < k+ 1 until
éff) < §§p is satisfied.

5.2. Debiased Estimation for Average Causal Effects

When covariates are absent (X = ()), the estimation procedure simplifies substantially. The
marginal propensity score e, £ Pr(A = a) can be estimated at rate op(n~'/2) via sample
proportions, eliminating the need for the debiasing correction in Eq. (48). We now specialize
our framework to this covariate-free setting.

Definition 8 (Risk Function (Marginal Case)). Let h = {h, € RT : a € A} and
u2 {u, ERT :a € A} Let V£ (A,Y) and n% £ By(eq). A risk function for causal
bound when X = () is

R(h,u;€) £ Epll(V; (h,u),n5)], (56)
where
UV (h,u), €) 2 exp(ha) {nf + 0" (Botr)} + ua. (57)
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The estimator for the marginal case directly minimizes the risk in Def. 8 without debiasing:

Definition 9 (Bound Estimator (Marginal Case)). Fix a functional ¢ and an f-
divergence. Let £ and R be as in Def. 8. Let the observed sample be ii.d. {V; =

A

(A;,Yi)},. Define n, = 7" 1(A; = a). The estimator of the upper causal bound

f,(a) for any a € A is constructed as follows:
1. Estimate the marginal propensity &, = n,/n.
2. Solve U 2 (h, @) € argminy, , X7 £(Vi; (h,w), &).

3. Evaluate A, 2 exp(ha).

4. Define the pseudo-outcome Z; = g*(%) and evaluate Mg = (1/na) Yj4,—a Z;.
A

3

5. Return @p’f(a) =), ('ﬁfﬂ + ﬁza) + Uy, for a € A.

We now analyze the error of the proposed debiased estimator under following set of assumptions:

Assumption 4 (Regularity (Marginal Case)). Let ¢ = {e, : a € A} where ¢, 2
Pr(A = a), ¥ = (8,7) and Jg € argming R(J;e) where ¥ = (h,u) £ {(hg,uq) : a € A}.

Let Zy 2 g*(ig’;ggjf). Let mg o 2 Ep,[Zy].

1. Positivity: e, € [¢,1 — ¢] for some constant 0 < ¢ < 1/2 for all a € A.

2. f-divergence regularity: f is convex and twice continuously differentiable; and the
induced radius By is twice continuously differentiable on [c, 1 —¢| with bounded deriva-
tives; i.e., Supeefe1—q |Byr(e)] + |By(e)| + [Bj(e)| < oo.

3. Loss regularity: For each fixed e € [¢,1 — ¢, the map ¢ — £(V;3,e) is twice
continuously differentiable, with

sup 16(V59,)|3 < oo, sup||[Vel(V;9,e)|3 < oo, sup [V256(V;9,€)13 < oc.

Y,e

4. Higher-order smoothness: Let H(0;e) £ V2, R(¥;¢). There exists a neighborhood
©g of ¥ containing ¥y and constants 0 < k < k9 < 0o such that

k1l <X H(W;e) = kol for all ¥ € Oy. (58)

5. Uniform LLN: Define the empirical risk w.r.t. ¢ with the training fold is E(ﬂ,@).
Then, we have a uniform law-of-large-number:

S%p ]]?2(79; ¢) — R(v;e)| = Op(n~1/?). (59)

6. Bounded parameters: h,,u, are bounded by some constant M.

7. Smoothness of g¢g*: The convex conjugate g* is continuously differentiable with
bounded derivative; i.e., sup;c7[(¢9%)'(t)| < oo where T is a range where g*(t) is well-
defined.

The following theorem establishes the convergence rate for the marginal case:
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Figure 2: (a) Bounds vs. propensity scores; (b) Penalized width vs. sample size, where the
penalized width is p-width £ width x (1 +a x max(0, (1 — a)) — coverage)) with a = 10
and a = 0.95; (c) Convergence rate comparison

Theorem 4 (Error Analysis (Marginal Case)). Assume Assumption 4. Let ey £
{e0q : a € A} with egq = Pr(A = a) and let e, = n,/n. Let ¥y € argmingecg R(?;ep)
and ¥ € arg mingecg Rn(ﬁ; €). Let 5@ and @0 be the population target and the estimator
defined in Def. 9 (marginal case). Then

19 = 9oll3 = Op(n™Y2), |8, — 8,|I3 = Op(n~1/?). (60)

Thm. 4 shows that in the marginal case, both the dual parameters and the bound estimator
achieve a squared error rate of O,(n~'/2) (implying a parameter convergence rate of O,(n~'/4))
without requiring debiasing. This is because the marginal propensity score €, = n,/n converges
at rate Op(n~1/2), which is fast enough that first-order bias terms vanish asymptotically. This
contrasts with the conditional case (Thm. 3), where debiasing is essential to handle slower
convergence rates of nonparametric nuisance estimators.

6. Experiments

This section empirically validates our framework across both synthetic and real-world data.
Our goal is to bound the conditional causal mean 6(1,2) 2 E[Y | do(A = 1), X = z] using our
proposed bounds in Def. 6. All implementation can be found in the Github repository.

Across all experiments, we estimate the propensity score via XGBoost (Chen and Guestrin,
2016) and fit the dual functions A(a,x) = exp(h(a, z)) and u(-) using a neural network trained
with two-fold cross-fitting. We consider the f-divergences in Cor. T1.1 (KL, Jensen—Shannon,
Hellinger, TV, and x?), and the order-statistics aggregator (Def. 7). In the figures below, the
label tight_kth denotes the aggregated interval with k = 5.

Synthetic data experiments. We generate synthetic data from the SCM in Fig. la with X €
R®, binary treatment A € {0,1}, and a continuous outcome Y with heavy-tail noise following
a Student’s t-distribution with 3 degrees of freedom, which has substantially thicker tails than
the standard normal distribution. Fig. 2a demonstrates the validity of our method: the true
effect curve for 0(1,x) lies within the estimated tight_kth bounds across all propensity score
regimes, even under heavy-tailed noise. This plot also shows how interval width shrinks as
ea(x) — 1, as expected from our theory. Notably, the x? divergence consistently produces the
tightest bounds among all f-divergences considered.

We next examine the debiasing benefit formalized in Thm. 3. Fig. 2b compares penalized
width, defined as p-width £ width x (1 4+ a x max(0, (1 — ) — coverage)) with a = 10 and
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a = 0.95, where coverage denotes the fraction of evaluation points {zj,---,z,} satisfying
0(1,z;) € [@O(l,xi),gup(l,xi)], between debiased and non-debiased estimators. As expected,
the debiased estimator achieves tighter penalized width as n increases, reflecting improved
finite-sample efficiency. Fig. 2c further illustrates robustness to nuisance estimation error: we
add convergence noise € ~ N (n_l/ 4 =1/ 4) to the estimated propensity score and compare
convergence rates using an oracle estimator equipped with the true propensity score. The
debiased estimator maintains its convergence rate despite slower propensity score estimation,
confirming the theoretical guarantee of first-order insensitivity.

Causal bound vs. Propensities

tight_kth bounds
—— Truth

Semi-synthetic IHDP benchmark. We also validate
our method on the well-known IHDP (Infant Health

un
N

and Development Program) benchmark (Hill, 2011, jlo

Louizos et al., 2017; AMLab Amsterdam, 2020). This 2 ° WMWW
dataset originates from a randomized trial studying the & ©

effect of home visits by specialists on future cognitive e — — ~ —
test scores, with confounders X € R?® capturing char- e(A=1[X)

acteristics of the children and their mothers. Following
Louizos et al. (2017), we de-randomize the treatment
assignment to introduce confounding. In our experi-
ment, we observe only five covariates and treat the remaining 20 as hidden confounders. Fig. 3
confirms that our bounds tightly contain the true causal effect E[Y | do(A = 1), X = x| across
the full range of estimated propensity scores €(x) for z € X.

Figure 3: IHDP data analysis

7. Conclusion

This paper develops an information-theoretic framework for partial identification of causal ef-
fects under unmeasured confounding. The key contribution is deriving data-driven bounds on
f-divergences between observational and interventional distributions using only the propen-
sity score, without requiring auxiliary variables or user-specified sensitivity parameters. These
divergence bounds translate into causal effect bounds that simultaneously address four key lim-
itations of existing methods: (1) accommodating unbounded continuous outcomes, (2) avoiding
full structural causal model specification, (3) providing heterogeneous effect bounds conditional
on covariates, and (4) achieving computational tractability through debiased semiparametric
estimation. Our debiased semiparametric estimators achieve y/n-consistency even when nui-
sance components converge at slower nonparametric rates, leveraging Neyman-orthogonality to
eliminate first-order bias. Experiments on synthetic and semi-synthetic benchmarks confirm
valid coverage across propensity score regimes and demonstrate robustness to heavy-tailed out-
come distributions. Future work includes extending the framework to continuous treatments
and deriving sharper bounds by incorporating additional structural information or auxiliary
data.
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Supplement of Data-Driven Information-Theoretic Causal Bounds
under Unmeasured Confounding

A. Simulation Details

This section provides the technical specifications for the synthetic and semi-synthetic experi-
ments presented in Section 6.

A.1l. Synthetic Data Generating Process

We consider a nonlinear structural causal model (SCM) where the observational data (X, A,Y)
is generated as follows. The features X € R? are sampled from a uniform distribution: Xj ~
Uniform(—2,2) for j = 1,...,d. A latent confounder U is sampled from a standard normal
distribution, U ~ N(0, 1).

The treatment assignment A follows a Bernoulli distribution with a propensity score dependent
on both X and U. Specifically, we define the logits L as:

L(X,U) = X "w +0.8U 4 0.5sin(Xp) — 0.25X2, (61)

where w € R? is a fixed weight vector sampled from N(0,0.6%). The treatment is assigned as
A ~ Bernoulli(e(X,U)), with

e(X,U) =0.054 0.9 - sigmoid(L(X,U)), (62)
which ensures overlap by constraining the propensity score to [0.05,0.95].
The outcome Y is generated as:

Y = u(X)+7(X,e(X,U))A+0.7U +¢, (63)

where € follows a Student’s ¢-distribution with 3 degrees of freedom (e ~ ¢3(0,1)) to introduce
heavy-tailed noise. The functions (X ) and 7(X, p) are defined to capture complex nonlineari-
ties and heterogeneity:

(X)) = 0.5 4 0.8tanh(Xy) 4 0.25X7 — 0.15sin(Xo), (64)
7(X,p) = 0.7+ 0.2sin(Xp) + 0.1Xo + 0.8(p — 0.5), (65)

where p is the treatment assignment probability. This SCM introduces both selection bias via
U and heterogeneous treatment effects that depend on the propensity score.

A.2. Neural Network Architecture and Training

For estimating the dual functions and the nuisance components (outcome models and propensity
scores), we use Multi-Layer Perceptrons (MLPs) and XGBoost.
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Architecture for Dual Functions The dual functions h are parameterized by an MLP with
two hidden layers of 64 units each, using ReLLU activations. We apply a clipping operation to
the output of the dual network such that h(X) € [—20,20] to ensure numerical stability during
optimization. No dropout is used.

Optimization and Hyperparameters The dual networks are trained using the Adam optimizer
with a learning rate of 5 x 1074 and weight decay of 1 x 107%. We employ 2-fold cross-fitting
to avoid overfitting and ensure the validity of the debiased estimator. For each fold, we train
the dual network for 256 epochs. Early stopping with a patience of 10 epochs (monitored on a
20% validation split of the training fold) is used to prevent overtraining.

Nuisance Models Propensity scores and outcome means are estimated using XGBoost with
the following hyperparameters:

e« Number of estimators: 300 for propensity, 400 for outcome.
e Maximum depth: 10.
e Learning rate: 0.005.

o Subsample / Colsample: 0.8.

A.3. IHDP Benchmark Details

The IHDP benchmark is a semi-synthetic dataset based on a real-world randomized trial from
the Infant Health and Development Program. We use the version where selection bias is intro-
duced by removing a non-random subset of the treated group.

In our experiments, we treat 5 of the 25 covariates as observed and the remaining 20 as hidden
confounders to simulate a scenario with unmeasured confounding. The evaluation is performed
on a fixed set of units to compare the estimated bounds against the ground truth interventional
effects provided by the benchmark. Training is conducted for 200 epochs for the IHDP-specific
experiments.

B. Proofs

Proof of Thm. 1

We first declare some useful results:

Lemma 3 (f-divergence with Conditional Measure). Let P on (2, F) be an arbi-
trary probability measure. Let E € F be a fixed event such that P(E) =p € (0,1). Let
Pg(-) £ P(- | E). Then,

Dy(Pg||P) = pf(;) + (1 = p)£(0) (66)
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Proof. Define the conditional-on-an-event measure Pg by

P(BNE)

Ps(B) = P(B| B) = = 5™

VB e F, (67)

where P(E) =p € (0,1). Then Pg < P since P(B) =0= P(BNE)=0= Pg(B)=0.
Hence, by the Radon—Nikodym theorem, there exists a measurable function g = dlp

(unique P-a.e.) such that "
Pu(B) = /B g(w) P(dw), VBEF. (68)

A valid version is g(w) = 1 15(w) since, for any B € F,
[, s16) Plds) = S PN E) = T EE — po(s) (69)

Therefore,

Ds(elP) = [ () Plae) (70)
e
=pf()+ =010 (72)
O

Lemma 4 (Data Processing Inequality (Csiszar, 1967)). Let Px and Qx denote
probability measures on (X, Fx). Let Py|x be a Markov kernel from (X, Fx) to (), Fy).
Let Py,Qy be the transformation of Px,Qx, respectively, when pushed through Py x;

e., Py(B) = [y Pyix(B | )dPx(x), and Qy is defined similarly. Then, for any f-
divergence, we have

D¢(Py||Qy) < Dp(Px||Qx). (73)

For any fixed X = =, define the event £ := {A = a} under the measure P 4 x—,, so that
PE|xz)=P(A=a|X =) = eq(x). Let

Pp(- | 2) = Py ajx=2(" | E) = Py A|x=2,4=a- (74)
By Lemma 3,
1

eq(x)

Dy (Puaxzeazall Praxes) = cal@)f () + (1 = cal@)S(0) = Byleala)). ()

Define the (Markov) transition kernel K, , from (U x A, Fy a) to (), Fy) by, for any B € Fy,
Kor(Blu,d)=PY €B|U=uA=a,X =), (76)

(note K, is constant in a’).
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Pushing Py 4| x—, through K, , yields

/KWC(B | u,a") Py ajx=y(duda’) = /P(Y € Bl u,a,z) Py g x=p(duda’) = P(Y € B |do(A = a), X = z).
(77)

Similarly, pushing Py 4|x—, 4—, through K, . yields

[ Ko | 0,0) P e amaldudal) = [ POV € B ,0,2) Pyixegacaldu) = POV € B| A = 0, X = 1),
(78)

By the data processing inequality (Lemma 4),

Dy (PY\A:Q,X:J; I PY|do(A:a),X:;v) < Dy (PU,A\X:x,A:a I PU,A|X::5) = By(ea(z)). (79)

[ J
Proof of Cor. T1.1
KL. With f(t) = tlogt with f(0) = 0, we have
Blea(z). f) = —ea(w) — ogea(x) = ~ logen() (80)
Therefore,
Dii(P(Y | a,2)[Q(Y | a,2)) < — log eu(a). (s1)
Hellinger. With f(t) = 3(vt — 1) with f(0) = 1/2, we have
Blea(x). f) = eale) f(155) + (1~ ea(@)) (0) (2)
= se@) (o —1) + 501 —eala) (3)
—1— \Jea(2). (84)

To tighten, we use the following lemma:

Lemma 5 (Hellinger divergence vs. KL divergence). For any P, such that
P <Q,

Du(PIQ) < 3 Die(PIQ). (35)

Proof. We start with

2(PQ) 2 / Vde =1 — / /ol (86)

Define BC(P,Q) = [/p z)dz. Then, Dy(P||Q) = 1 — BC(P, Q). Define Dg(P||Q) =
—log BC(P @), which is known as Bhattacharyya distance.
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Define r(X) = % Then,

50(P,Q) = [ \otw@dr = [\[1p@ar =sp[ r()].  (57)

By Jensen’s inequality, we have

logBC(P, Q) = log Ep[y/r(X)| > Ep|log/r(X)| = pr llog r(X)]. (88)
Also,
Erllog ()] = [ p(a)log 4 ds = ~Da(P. Q) (39)
Combining,

—5Du(PlQ) < 10gBA(P,Q) & 1-exp( — 3 Da(PI@) 2 1-B0(P, Q). (90)

Finally,

1

Du(PYQ) =1-B0(P,Q) < 1—exp ( ~ L Die(PQ)) < 1

5Dku(Pl@),  (91)

where the last inequality holds since 1 — e™ < u for any u > 0. OJ

As a result, we can derive
1
Du(P(Y | a,2)|Q(Y | a,2)) < — logea(x). (92)

Finally, for e,(z) € (0, 1), the following holds:

1 —y/eq(z) < —%log eq(). (93)

x?-divergence. Set f(t) £ 1(t —1)%. Then, By(e,) = 122?(;)")

Total variation. First, By, (e) =1 —e.

Second, by Pinsker’s inequality and the above inequality,

Drv(PIQ) < |/ s Dku(PIQ) < |/~ logea(z). (94)

By Bretagnolle-Huber bound (Bretagnolle and Huber, 1979) and the above inequality,

Dry(Pl|Q) < /1 — exp(~Dw(P[Q)) < /1 — eala). (95)

Finally, min (1 —eq(z), /1 —eq(x),1/—3 5 logeq(w ) =1—eq(x) for all e,(z) € (0,1).
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Jensen-Shannon. With fs(t) £ L (tlogt — (t + 1) log(E1)) and fys(0) = 5 log2, we have:

Bjys(ealw)) = ea<x>st( o) + (1= cala)fis(0) (96)
_eg(z) [ 1 1 1 1+ eq4(7)
2 [ea(x) log (ea(az)> B (ea(m) + 1> 10g< 2eq(1) )]
L= 2( )10g2 (97)
% —logey(x) — (14 eq(z)) log <12—z:&§)@> + (1 — eq(x)) log 2} (98)
; [—logeq(z) — (1 + eq(x))[log(1l + eq(x)) — log eq(z) — log 2] + log 2 — eq(z) log 2]
(99)
= %[— loge,(z) — (14 eq(x))log(1 + eq(z)) + log eq ()
+ ea() log ea(x) + 2108 2 + ea(x) log 2 — ea(x) log 2| (100)
= % [eq(x)logeq(z) — (1 + eq(x)) log(l + eq(x)) + 21og 2] (101)
1 deq(x)c @)
2 ((1 v ea<x>>l+€a<w>> | "
|

Proof of Cor. T1.3

By definition, for any class of functions F, the Integral Probability Metric (IPM) satisfies:

Dipm,7(PllQ) = Sup [Ep[f(Y)] = EQlf(Y)]]- (103)

If f(Y) € [a,b] for all y € Y, then for any probability measures P, Q:
[Ep[f(Y)] —Eq[f(Y)]| < (b —a)Drv(P, Q). (104)
For Fo 2 {f : ||fllc < C}, we have f(y) € (—C, C), so the range is 2C. Consequently,

DIPM,}'C (Pa,$HQa,:c) < 2C - DTV(Pa,zHQa,w)- (105)

From Corollary T1.1, we have Dy (P, 2||Qaz) < 1—eq(x). Furthermore, by Pinsker’s inequality
and the KL bound from Corollary T1.1:

DTV(Pa,mHQa,x) S \/;DKL(Pa,xHQa,x) S \/_élog €a<l')- (106)

Combining these yields the result for IPM.

For MMD, let Hj, be an RKHS with kernel k such that k(y,y) < K for all y. For any h € Hy,
with [[hls, < 1, we have [h(y)] = |{h, k)| < [l VEG ) < VE. Thus, h(y) € [-VE, VE],

and the range is 2v/K. Following similar logic:

DMMD,k<Pa,wHQa,z) S 2\/[? : DTV(Pa,:vHQa,w)~ (107)
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Using the TV bounds derived above, we obtain the MMD bound. ]

Proof of Prop. 1

We will prove the following statement: For any arbitrary function f over some space X, the

following holds: infyex f(z) = —sup,cx (— f(2)).
Inf f(z) = —sup (— f(z)). (108)

For any z € X,

—f(z) < —inf f(2'), Vo € X = inf f(z) < —sup(—f(z)). (109)
x/ TEX zEX

Also, by the definition of infimum, for any € > 0, there exists z. such that

flae) < inf f(z) +e. (110)
Then,
—f(xe) > —inf f(z) —e = sup(—f(x)) > — inf f(z) —e. (111)
x TeEX reX

By taking € | 0, we have sup,cy(—f(x)) > —infzex f(x). The proof is done by combining
these two inequalities. |

Proof of Thm. 2

Fix (a,z) and write P, , and Qg for the observational and interventional laws on (), F). By
Assumption 1 (mutual absolute continuity), the Radon-Nikodym derivative

d a,r
W) = )

(112)
exists and satisfies s(Y) > 0 P, ;-a.s. For any measurable ¢ with Eq, ,[|¢(Y)]] < oo,
Eq,. [00V)) = [ 6(5) Qualdy) = [ 69) s(y) Paldy) =Ep, [s(V)6(V)].  (113)

Moreover, Ep, ,[s(Y)] = [ dQa. = 1. Define g(s) == sf(1/s) for s > 0. Then

dP, ;
dQua.q

Ep,,lg(s(Y))] = /S(y)f(l/S(y))Pa,z(dy) = /f< (y)> Qa,z(dy) = Dy(PozQayx)-

(114)

Hence the constraint Dy (P, .||Qaz) < nf(a,x) is equivalent to Ep, ,[g(s(Y))] < ny(a,z), and
the upper bound admits the primal form

Oup(a,2) = sup {Bp,  [s(V)6(V)] : Br, . [s(V)] = 1, Er g5V < ny(a0)}. (1)

This is a convex optimization problem (equivalently, minimize —Ep, ,[s¢]) with an affine equal-
ity and a convex inequality constraint. Slater’s condition holds because s(-) =1 is feasible and
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satisfies Ep, ,[g(1)] = f(1) = 0 < ny(a,z) (for ns(a,z) > 0). Therefore, strong duality applies
and the optimal value equals the dual optimal value.

Introduce Lagrange multipliers u € R for Ep, ,[s] = 1 and A > 0 for Ep, ,[g(s)] < ny(a,z). The
Lagrangian is

L(s, A\ u) =Ep,,[s(Y)s(Y)] +u(l —Ep,,[s(Y)]) + A(ns(a,z) — Ep,.[9(s(Y))]),  (116)
L(s, A\ u) =u+Anp(a,z) +Ep, [s(Y) (oY) —u) — Ag(s(Y))]. (117)
Thus

Oup(a, ) = )\ZaﬂgeRiggﬁ(s,)\, u). (118)

For A > 0, define t(Y) = (¢(Y) — u)/\. Using separability of the integrand in s(-) and the
standard interchange theorem for integral functionals (equivalently, the conjugate-of-integral
identity), we have

supEp, [s(Y)H(Y) — g(s(Y))] = Ep, [sup{st(Y) — g(s)}] =Ep, " (¢:(Y))],  (119)

s>0 s>0

where g*(t) = sup,-g{st — g(s)} is the convex conjugate of g. Consequently,

ig}gﬁ(s, A\u) =u+ Ang(a,z) + AEp, , [g* (qﬁ(Y))\—u)] . (120)

Minimizing over (\,u) yields the stated dual representation:

Oup(a,z) = inf {)\nf(a, z)+u+ AEp,, [g* (gﬁ(Y)}\—u)] } . (121)

A>0, ueR

Proof of Prop. 2

Substitute » = 1/s. Then, st — g(s) = st — sf(1/s) = =10 Taking SUp,~( is the same as

"
taking sup,q. Therefore, g*(t) = sup,-q %

For the optimality condition, define

Hy(r) =" _f(r), r>0. (122)

Assume the supremum is attained at some r* > 0, and set

v = g*(t) = Hy(r*) = t_f(?‘) (123)
Then for every r > 0,
t_f(r) <v = fr)>t—or (124)
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At r = r* we have equality: f(r*) =t — vr*. Hence for all r > 0,

flr) = f(r) —o(r —r") = f(r7) + a(r —17), (125)

where a := —v. By the supporting-hyperplane characterization of the convex subdifferential,
this implies a € df(r*). Finally, f(r*) =t — vr* gives

t=f(r*) —r*a, g (t) =v=—a. (126)

If f is differentiable at 7*, then f(r*) = {f'(r*)} and the conclusion follows.

Proof of Coro. P1

KL. fkr(r) = rlogr. Then,

gkL(s) = sficw(1/s) =5+ log(1/s) = ~ logs (127)

Now, compute gy, (t) = supyo{st +logs}. Let ¢(s) = st + logs. Then, ¢'(s) =t +1/s. If
t < 0, the stationary point is s* = —1/t > 0, giving gy (t) = ¥ (s*) = (=1/t)t + log(—1/t) =
—1 —log(—t). If t > 0, then st +logs — 0o as s — 00, s0 giy,(t) = +o0.

gH(s):sfH(l/s):fs(g———i-l) :%(1—2\/54—3). (128)

Note g7;(t) = sup,~q {st —2(1—-2ys+ s)} Let u = /s > 0 so s = u%. The objective becomes
F(u) = tu® — 3(1 —2u+u?) = (t - %)u2 +u—3. Ift <1/2, F is concave quadratic in u. Since

F'(u) =2(t —1/2)u+ 1, u* = . Plugging in,

1 1 1 t

e 129
20?7 1-2t 2 1-2 (129)

gir(t) = F(u’) = (t - 3)

If t > 1/2, then F(u) = oo as u — 00, so gjy(t) = +oo.

2 a2 L
X2 gye(s) = sfie(1/s) = %8(% - 1) - % Also, g72(t) = sup,.g {St - (125) }, where
% = %(% -2+ s). Then, the objective is

1,1

_ Sy b
st—i(E—Q—i-s)—l—i-s(t ) o (130)
Differentiate w.r.t. s:
d N
£(1+s(t—§)—2—8)—(t—§)+2—§. (131)
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Plugging in (using 1/s* = /1 — 2t):

! —1—\/1_%—\/1_2’5:1—\/1—275. (132)

Gall)=1+s(t—4) -5 =1-*— 5

At t = 1/2, this becomes 1. If t > 1/2, the term s(¢t— 1) drives the supremum to 400 as s — co.

TV. grv(s) =sfrv(l/s) = %s % — 1) = %]1 — s]. Also, g1y (t) = sups~g {st — %\1 — s\} Split
this into two regions, where s > 1 and 0 < s < 1.

When s > 1, |1 —s| = s — 1. So,
st — (s —1) _—s(t—l)+l. (133)
2 2 2

If ¢ > 1/2: this goes to +00 as s — oo. If ¢ < 1/2, the maximum over s > 1 occurs at the
smallest s; i.e., s = 1, giving value t.

When 0 < s <1,[1—-s]=1-3s,s0
st—3(1—s) =s(t+3) -1 (134)

If t < —1/2, then its maximum is —1/2. If ¢ > —1/2, then it’s maximized at s = 1, giving value
t. As a result,

—3,  ift<—3,
grv(t) =qt.  if —3<t<y, (135)
+oo, ift>1.

|
Jensen-Shannon. gjs(s) = %(s logs — (14 s)log(l+s)+ (1+s)log 2). To compute gjq(t) =
supgsof{st — gis(s)}, let F(s) = st — gys(s).
We have
1 1 2s
’ _t . _ =
g3s(s) = 2(log3 log(1+s)+log2) 210g<1+8). (136)
Set F'(s) = 0, which means t = g4(s); i.e.,
2s 2s
2t =1 = = : 137
o8 (1 + s) ¢ 1+s (137)
Solving this for s gives
2t * €2t

This requires 2 — e?! > 0, ie., t < %log 2. Ift > %10g 2, the objective grows like s(t — %log 2)
for large s, hence the supremum is +oo.

Now evaluate the objective at s*. Let z £ €?! so that s* = 2/(2 — 2) and 1+ s* = 2/(2 — 2).
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Then,
log s* =logz —log(2 — 2), log(1+ s*) =log2 —log(2 — z). (139)

Plug into gjs(s):
* 1 * * * * * 1 *
gis(s™) = 5(3 logs® — (14 s")log(l+s")+(1+s )log2) = 5(3 log z + log(2 — z)) (140)
Since log z = 2¢, this is gjs(s*) = ts* + % log(2 — €**). Therefore,
1
g35(t) = st — gys(s¥) = —3 log(2 — e, for t < 1log2, (141)

and gjg(t) = 400 otherwise. [ |

Proof of Prop. 4

((1) = (2)). For each fixed (a,z), define

Ala,z) 2 ((h*,u*;a,x) — essinf £(h, u; a, ). (142)

hueF

Assume, for contradiction, that (2) fails; i.e., P4 x(B) > 0 for B £ {(a,z) : A(a,z) > 0}. By
the definition of the essential infimum and the decomposability of F, there exists a measurable
pair (h,u) € F such that £(h,@;a,x) < £(h*,u*;a,z) on a set of positive measure B’ C B.

Define h/(a,z) £ h(a,2)1((a,z) € B') + h*(a,z)1((a,z) ¢ B') and define u'(a,z) similarly. By
the decomposability assumption, (h',u’) € F. Then,
R(I*,u*) = E[((h*, v, A, X)1((A, X) & B')| + B[¢(h*, u*, A, X)1((A, X) € B)]  (143)
> E[U(h*,u*, A, X)1((A, X) ¢ B')] + E[t(h, @, A, X)1((4,X) € B)] (144)
=R(K ). (145)
This contradicts the optimality of (h*,u*) in (1). Therefore, Py x(B) = 0; i.e., (h*,u*) is a
minimizer of £(h,u;a,z) for P4 x-almost every (a,x).

((2) = (1)). Since ¢(h*,u*;a,z) < l(h,u;a,z) for all (h,u) € F and for P4 x-almost every
(a, x), integrating yields R(h*,u*) < R(h,u) for all (h,u) € F. [

Proof of Lemma 1

Define
ea = Pr(A=a| X) (146)
Ao £ exp(hg(a, X)) (147)
Bq(e) & By(ea(X)) (148)
ug = u(a, X) (149)
ca o (P(Y)—u(4 X)
e (TN (150
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Then,
(V5 (B,7),€) & Aa(Ba + g4) +ua(X).
Define
Li(e) 2 Aa(Ba + gi) +ua(X).
The correction term is

23 eadaBi{1(A =a) — e,}.
Then, R (e) £ E[L;(e) + La(e)]. Then,

0
= —E[Li(ea +tsa)]
=g Ot t=0

=E [)\AB,(GA)SA] .

0
SELa(en)]

Also,
e) £ eq aBy {1(A=10a) —e.}.
o
Ua(ea) Va(ea)

Then,

0 ou, oV,

~E|L =E “a; Ya 5, Ya )

sElLaAe| =B (GEve+ Geu )]

acA
where
]Elz Ul(e)V, ] Ex lZU e)E 4 x[1 A:a)—ea]] =0,
acA acA
and
E lz Ua(e)Va’(ea)] =-E |} Ua(e)sa] = -Eyx lz ea)\aBgsa] :
acA acA acA
Then,
db
ORT _ E[AaB'(ea)sa] —Ex | > eaXaBsa
ot acA
=Ex lz ea/\aBgsa] —Ex | Y eaAaBgsa]
acA acA

=0.
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Proof of Theorem 3

Lemma 6 (Higher-order smoothness = Local quadratic expansion inequality).
Higher-order smoothness in Assumption 2 implies the local quadratic expansion inequal-

ity:

%||19—190||2 < RI(D; e9) — R (g3 €0) < %Hﬁ—ﬁoHQ, for 9 € Oy. (163)

Proof of Lemma 6. Let r(t) = R(0¢; ), where 9; 2 g + t(9 — ) for t € [0,1]. By
Taylor’s theorem with integral remainder,

1
r(1) = #(0) + #(0) +/ (1 — £)r" () dt. (164)
0
Since 9y is a local minimizer, r/(0) = (9 — 99)TVyR(Po; e0) = 0. The second derivative is
T’”(t) = (19 — ﬁo)TH(ﬁt; 60)(19 — 190) (165)

Under the Higher-order smoothness assumption (k11 =< H(9;e9) < kol for 9 € Oy), and
assuming convexity of @g so that the path lies in Oy, we have

1 K
"o ol < [ (1~ 00~ D) HOs )0~ do)d < 20— vol. (160

O

Proof of Eq. (54)

For brevity, we write R(J;¢’) £ R (¢9;¢') for any ¢ and ¢’. Let Ry, denote the empirical risk of
R using the k’th fold dataset.

We decompose the population excess risk using a telescoping sum:

R(Jx: e0) — R(Do; e0) = R(Dg: eo) — R(Dp; ") + R(Dg;@") — Ry(9y; @) (167)
(A) (B)
+ R(0; €") — Rp(90;€") + Ri(do; ") — R(Yo; e*) (168)
<0 ()
+ R(90; ") — R(do; eo) - (169)
(D)

The term < 0 is due to the optimality of Q% for the empirical risk objective. We will show that
1. (B) + (C) = O,(n~"/?) by the uniform LLN in Assumption 2.
2. (A) + (D) = O,(r2) by the orthogonality and smoothness in Assumption 2.

As a result,

R(9y; e0) — R(Vo; €0) = Op(n™/2) + O, (r2). (170)
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Bounds for (B) + (C). Terms (B) + (C) are bounded by Uniform LLN as follows:

(B) +(C) = 2sup [R(9;8%) — Ry(9;5)] = Op(n~"/?). (171)

Bounds for (A) + (D). Assume that the risk functional e — R(9;e) is twice Fréchet differen-
tiable with bounded second derivatives on the positivity region. Fix a 1. Consider a parametric
submodel ¢ 5 el £ e + (" — ep). Let deg 2 € — eg.

By Taylor’s theorem, there exists el between ey and é* such that:
R(9; %) = R(0; e0) + VeR(9;co)ldeo] + 5 Vee (95 1) 6o, deo]. (172)
Rearranging for term (D) where 9 = 9y:
(D) = R(9o; ) — R(do: e0) = Ve R(Do; co)[de0] + %VECR(%; eNoeo, deg].  (173)

By Lemma 1 (Orthogonality), V.R(0o; ep)[deo] = 0. Using the boundedness of V.. R (Assump-
tion 2), we have (D) = Op(||e¥ — egl|2) = Op(r2).

For term (A) where 9 = U
(A) = R(@\k, eo) — R(@k, é\k) = —VeR(ng; eo)[deo] + OP(TT%) (174)

Crucially, Lemma 1 states that orthogonality holds for all o (not just ¥Jp). Therefore,
VeR(Vy;e0)[0eg] = 0 directly. This implies that the first-order error term vanishes exactly,
and we are left only with the second-order remainder:

(4) = Op(ry). (175)
Combining yields:

(A) + (D) = Op(ry). (176)
Bound Derivation. Combining all terms:
R(Jy; e0) — R(Yo; e0) = Op(n~/?) + Op(r2). (177)
Assuming consistency (so Q% € ©p w.h.p), we apply Lemma 6:
K1 .~ ~
?1||19,€ —9g|? < R(Uy; e0) — R(Yo; eo). (178)
Solving the quadratic inequality for [|J), — ¥o|| establishes:
19 = Dol* = Op(n™ "2 +17). (179)
Proof of Eq. (55)

For brevity, we just write

O 200, N2 XN, e 2AF, mp i, w2 (180)
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All the true parameters are indexed as 0. For each (a,x),

Ok(a,z) — O,(a,2) = (Ag — Ao) (o +mo) + (A — Ao)(mk — 10) (181)
() (1)
+ Mok —10) + Ar(mg —mo) + (ug — uo) - (182)
(111) (V) W)

We bound the squared Lo norm of each term. By Lipschitz parametrization (Assumption 3):

I3 = Op 19k — doll3). (183)

For (I), using the boundedness of nuiances (Assumption 3, |9 + mo| < C):

I3 < C2lxk = Xoll3 < €195 = Doll3 = Op([|9% — Doll3)- (184)

For (II1), using [Ag| < eM and Lipschitz continuity of n (via By) with respect to e:

I(ID)3 < e |l — m0l13 = Op(r7)- (185)

For (II), we use the supremum bound on A: |[Ax — Ao|leo < 2¢M. Then:

IIDZ < 112k = Aol 2l — m0ll3 < 4e*M77 = Op(r7). (186)
Finally, consider (IV). Define m(a, z) £ E[ZF | A = a,X = 2]. Decompose my —mgy =
(my, —mgz) + (mgz—mo). By Assumption 3, ||my —msll2 = Op(syn). By Lipschitz, [|mg—myll2 <
L||0 — 9| Therefore,

IIV)I3 < M (llmy, = mgllz + [mg —moll2)* = Op(s7,) + Op(||9k — doll?). (187)

Combining all terms shows that

16 — 0,012 = Op(n™ Y2 472 + 52). (188)

Proof of Lemma 2

Let the sorted elements of 0Aup be denoted by wu) < up) < -+ < Unp)- By Definition 7,
HAkup = (). The inequality ug) > 6 holds if and only if at least ny — k + 1 elements satisfy

u; > 60 (since this is equivalent to having at most k£ — 1 elements strictly less than 6).

Similarly, let the sorted elements of 510 belqy <--- <l 5. By definition, 5{2 is the k-th largest
element, which corresponds to [, F—kt1)- The inequality [, f—kt1) S f holds if and only if at
least ny —k+ 1 elements satisfy [; < 6 (since this is equivalent to having at most k£ — 1 elements
strictly greater than 6). |
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Proof of Thm. 4

Write R = En. Decompose the population excess risk:

0 < R(U; e0) — R(Y0; e0) = R(J; e0) — R(V; €) + R(J; €) — R(J; €)
(4) (B)
+ R(0;8) — R(V0; €) + R(Yo; €) — R(¥0;€) + R(Wo; €) — R(Vo; o) -
<0 () (D)

By the uniform LLN in Assumption 4,

(B) +(C) < 2328 |R(0;€) — R(9;8)| = Op(n~Y/?).

By Lipschitz continuity of R(¢J;-) in e uniformly over 9 € ©,
[(A)| 4 |(D)| < 2Lg||e — eolly = Op(n~"?),

since &, = n,/n implies ||€ — egll1 = Op(n~1/2) under positivity.

Hence R
0 < R(J;e0) — R(Yo; e0) = Op(n~?).

Let ©¢ be the neighborhood from the quadratic growth condition (Lemma 6). Since R(4; ep) —
R(VYo;€0) is bounded away from 0 on O \ ©p, the above display implies Pr(¢ € 0p) — 1.
Therefore, on this event,

K ~ ~
510 = 90ll3 < R e0) = R(9o: e0) = Opln™"/?),

50 |9 —do[13 = Op(n™"72).

Next, write (as in Def. 9, marginal case)

~

Hap(a) = Xa (ﬁa + ma) + ﬂa, ecp(a) = )\O,a (770,(1 + mO,a) + Uo,a,
where A, = exp(hq), N = By(eq), Zy = g*(p(Y) —ua)/Aa), myo = E[Zy | A = a], and

Ma =g Y i di—a Z ;- Decompose, for each a,

990(0’) - 5¢(a) = (Xa - )\O,a)(n(),a + mO,a) + (Xa - /\O,a)(ﬁa - "70,@) + /\O,a(ﬁa - 770,(1)
+ Xa(Mg = m0a) + (e —u0a) =: () + (I1) + (ITT) + (IV) + (V)

By boundedness of h and smoothness of exp(-) on bounded sets, ||XA— Xollz < |1h = holl2 <
19— Doll2, and @ — uoll2 < [|9 — Doll2. Thus [[(D)[I3 + (V)13 = Op(l9 — doll3) = Op(n~"/?).

Also, || — 720||2 < ||€ = eoll1 = Op(n~'/?) (bounded B}), so |(II1)|]3 = Op(n~1). Moreover,
1Dz < IA=Xoll2llT=m0lloc = Op(n~1/*)-Op(n™1/2) = Op(n=**), hence [|(I1)[|3 = Op(n=?/?).

For (IV), decompose

mOa_i Z _Zﬂo, { Z Zﬁoz_ Zﬁo|A_a]}+(m790va_ml/‘}\a)'
a bl

azA—a i:A;=a —
(e)

(a) (0)
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By bounded derivative of g* and bounded parameters, Zy is Lipschitz in 9, so (a) = Op(\|1§ -
Yoll2) = Op(n=Y%) and (¢) = O,(||9 — Yo|l2) = Op(n~Y/*). By positivity n, =< n and CLT,

(b) = O,(n~1/%). Hence || — mg|la = Op(n~'/*). Since X is bounded, ||(IV)|2 = O, (n=1/2%).

Collecting terms, the dominant squared contributions are O,(n~'/2) from (I), (IV), and (V),
50 |0, — 0,15 = Op(n=1/2). u
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