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We develop a data-driven information-theoretic framework for the sharp partial
identification of causal effects under unmeasured confounding. Existing approaches
often rely on restrictive assumptions, such as bounded or discrete outcomes, re-
quire external inputs (e.g., instrumental variables, proxies, or user-specified sen-
sitivity parameters), necessitate full structural causal model specifications, or fo-
cus solely on population-level averages while neglecting covariate-conditional treat-
ment effects. We overcome all four limitations simultaneously by establishing novel
information-theoretic, data-driven divergence bounds. Our key theoretical con-
tribution establishes that the f -divergence between the observational distribution
P (Y | A = a,X = x) and the interventional distribution P (Y | do(A = a),X = x) is
upper bounded by a function of the propensity score alone. This result enables sharp
partial identification of conditional causal effects directly from observational data,
without requiring external sensitivity parameters, auxiliary variables, full structural
specifications, or outcome boundedness assumptions. For practical implementa-
tion, we develop a semiparametric estimator satisfying Neyman-orthogonality (Cher-
nozhukov et al., 2018), which ensures

√
n-consistent inference even when nuisance

functions are estimated via flexible machine learning methods. Simulation studies
and real-world data applications, implemented in Github repository, demonstrate
that our framework provides tight and valid causal bounds across a wide range of
data-generating processes.
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1. Introduction

Causal effect identification aims to characterize interventional quantities, such as Pr(Y = y |
do(A = a),X = x), as functionals of the observational distribution P (X,A,Y ). In the presence
of unmeasured confounders U , as depicted in Fig. 1a, point identification is generally impossible
without auxiliary variables or structural restrictions. In such settings, partial identification
seeks to recover bounds that provably contain the true causal quantity. However, as described
in literature review in Sec. 1.1, most existing methods suffer from one or more of the following
fundamental limitations:

(Lim-1) Bounded outcomes: Restricting outcomes to bounded or discrete supports (e.g.,
Y ∈ [0, 1]).

(Lim-2) Externality of parameters: Requiring auxiliary inputs—such as instrumental vari-
ables, proxies, or sensitivity parameters—to quantify confounding strength.

(Lim-3) Full SCM specification: Necessitating the specification of the entire structural
causal model (SCM) (Pearl, 2000), which is computationally intensive and prone to
error propagation.

(Lim-4) Neglect of heterogeneity: Focusing on population-level averages while neglecting
covariate-conditional treatment effects.

To universally address these limitations, we develop an information-theoretic framework that
provides (i) data-driven upper bounds on statistical divergences between observational and
interventional distributions, and (ii) sharp partial identification of conditional causal effects
E[Y | do(A = a),X = x]. Our framework accommodates unbounded continuous outcomes
without requiring full structural modeling or external inputs. The core mechanism involves
deriving data-driven upper bounds on statistical divergences (e.g., f-divergence (Csiszár, 1967))
between the interventional law Qa,x and the observational law Pa,x, and then translating these
into sharp causal intervals. Specifically, we make three main contributions:

(i) We show that f -divergences (Csiszár, 1967) between Pa,x and Qa,x are upper bounded by
a function of the propensity score ea(x).

(ii) We leverage these bounds to obtain sharp intervals for arbitrary expectations of the form
θ(a,x) ≜ EQa,x [φ(Y )] for user-specified functions φ without imposing outcome bounded-
ness or support restrictions.

(iii) We develop a semiparametric estimator that satisfies Neyman-orthogonality (Cher-
nozhukov et al., 2018) ensuring robust inference even when nuisance components are
estimated via high-dimensional machine learning models.

Together, these results provide a principled path to data-driven partial identification of condi-
tional causal effects under unmeasured confounding.

1.1. Related Work

We organize existing work on partial identification based on which of the limitations (Lim-
(1,2,3,4)) they retain or address.

Bounded/discrete outcomes (Lim-1). Early work imposed restrictions requiring outcomes
to be bounded or discrete. For example, Manski (1990) derived nonparametric bounds using
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Method Unbounded
Outcome

No Aux
Input

No Full
SCM

Cond.
Effect

LP / Discrete ✗ ✓ ✓ ✗

Additional Vars.
(IV, Proxy)

✗ ✗ ✓ ✓

Sensitivity ✓ ✗ ✓ ✓

Full SCM ✓ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓

(b)

Figure 1: (a) Causal diagram with unmeasured confounding. (b) Systematic comparison of our
method against existing literature (detailed in Sec. 1.1).

the extreme values outcomes can attain. Linear-programming (LP)–based approaches (e.g.,
Balke and Pearl (1994), Tian and Pearl (2000)) yield sharp bounds with discrete variables.
Sachs et al. (2023) and Shridharan and Iyengar (2023) have extended these LP-based bounds to
general graphical settings but remain restricted to discrete outcomes. Zhang and Bareinboim
(2021) extended these LP ideas to continuous outcomes, but still rely on bounded-support
assumptions (e.g., Y ∈ [0, 1]). These methods avoid auxiliary inputs (addressing Lim-2) but fail
to accommodate unbounded outcomes (Lim-1) or provide conditional effect bounds (Lim-4).

Auxiliary inputs (Lim-2). Another line of work leverages auxiliary inputs. While auxiliary-
variable methods can yield sharp bounds, most methods still assume bounded outcomes (Lim-1);
and valid auxiliary inputs are often not available in practice or not identifiable from data.

• Instrumental variables. Balke and Pearl (1997) provide tight nonparametric bounds on av-
erage treatment effects by leveraging instrumental variables, assuming bounded binary out-
comes. Kitagawa (2021) extends this framework to continuous outcomes while maintaining
bounded support assumptions (see Swanson et al. (2018) for a comprehensive survey). Re-
cently, Levis et al. (2025) develop covariate-assisted IV bounds to target conditional treat-
ment effects (addressing Lim-4), but also under bounded outcome assumptions (Lim-1).

• Additional assumptions or variables. Ghassami et al. (2023) leverage proxy variables of
hidden confounders to provide bounds on average effects, again requiring bounded outcomes
(Lim-1). Lee (2009) and Semenova (2025) avoid bounded outcomes for sharp bounds on the
average effect, but rely on structural assumptions about the selection mechanism.

• Sensitivity analysis. Sensitivity analysis introduces user-specified parameters to quantify
confounding strength (e.g., Rosenbaum (1987), Tan (2006), Yadlowsky et al. (2022), Jin et al.
(2022), Dorn and Guo (2023), Oprescu et al. (2023)). Unlike IV and proxy methods, modern
sensitivity approaches can accommodate unbounded outcomes (addressing Lim-1). Among
these, Jin et al. (2022) are most closely related to our approach, as they use an f -divergence-
based sensitivity model to constrain divergences between observational and interventional
distributions. Oprescu et al. (2023) extend sensitivity analysis to bound conditional effects
(addressing Lim-4). However, all sensitivity methods require external sensitivity parameters
(Lim-2) that are not identifiable from observational data alone.

Full SCM-modeling approaches (Lim-3). Another approach leverages machine-learning meth-
ods to learn entire SCMs consistent with observational data (e.g., Hu et al. (2021), Bal-
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azadeh Meresht et al. (2022), Padh et al. (2023), Xia et al. (2022), Tan et al. (2024)). These ap-
proaches find the SCMs that maximize/minimize the target causal effect subject to observations,
using flexible neural architectures to model structural functions. In principle, such methods can
accommodate unbounded outcomes and target conditional effects (addressing Lim-(1,4)). How-
ever, they require estimating the entire SCM (Lim-3), which is computationally intensive and
sensitive to misspecification in high-dimensional structural components.

Our novelty. Existing methods each resolve some limitations; however, no existing approach
achieves all four limitations (Lim-1–Lim-4) universally. In contrast, our work simultaneously
addresses all four limitations by developing bounds that (Lim-1) accommodate unbounded con-
tinuous outcomes without support restrictions; (Lim-2) require no auxiliary variables or sensi-
tivity parameters; (Lim-3) avoid full SCM modeling; and (Lim-4) provide bounds for conditional
effects E[Y | do(A = a),X = x] beyond the population-level average. We compare our work
with representative existing methods in Fig. 1b.

2. Problem Setup & Preliminaries

Consider a treatment A ∈ {0, 1}, a covariates vector X ∈ X ⊆ Rdx , and an outcome Y ∈
Y ⊆ Rdy . We consider the structural causal model (SCM) framework (Pearl, 2000) as the
data-generating process (DGP) for (X,A,Y ):

U ← fU (ϵU ), X ← fX(U , ϵX), A← fA(X,U , ϵA), Y ← fY (X,A,U , ϵY ), (1)

where U represents unmeasured confounding, f(·) are unknown structural functions, and
(ϵU , ϵX , ϵA, ϵY ) are mutually independent exogenous noise variables. The causal diagram in-
duced by this SCM is depicted in Fig. 1a.

The operation do(A = a) denotes an intervention that replaces fA with a constant a ∈ {0, 1},
while keeping the other structural equations invariant. For each (a,x) ∈ {0, 1} × X , we define
the following conditional probability laws on Y:

• Observational Law: Pa,x ≡ P (Y | A = a,X = x), which is identifiable from data.

• Interventional Law: Qa,x ≡ P (Y | do(A = a),X = x), our target of interest.

Under unmeasured confounding (i.e., when fA and fY share U as a common hidden parent),
the interventional law Qa,x is unidentifiable from the observational law Pa,x. Consequently, any
causal functional θ = EQa,x [φ(Y )] for some user-specified φ (e.g., the identity for ATE/CATE)
is also unidentifiable.

f-Divergence. To characterize the “distance” between the identifiable Pa,x and the unidentifi-
able Qa,x, we use f -divergences (Ali and Silvey, 1966; Csiszár, 1967).

Definition 1 (f-Divergence). Let P and Q be probability measures on (Y,F) such that
P ≪ Q. For a convex function f : [0,∞)→ R with f(1) = 0, the f -divergence of P from
Q is

Df (P∥Q) ≜
∫

Y
f

(
dP

dQ

)
dQ. (2)

5



Common specializations of f -divergence are as follows. Let p and q be the Radon–Nikodym
derivatives of P and Q with respect to a common dominating measure µ (e.g., Lebesgue or
counting measure).

• Kullback-Leibler (KL). f(t) ≜ t log t with f(0) = 0. Then,

DKL(P∥Q) =
∫

Y
log

(
dP

dQ

)
dP =

∫
Y
p(y) log

(
p(y)
q(y)

)
dµ(y). (3)

• Hellinger distance. f(t) ≜ 1
2(
√
t− 1)2 with f(0) = 1/2.

DH(P∥Q) = 1
2

∫
Y

(√
dP

dQ
− 1

)2

dQ = 1−
∫

Y

√
p(y)q(y)dµ(y). (4)

• χ2-divergence. f(t) ≜ 1
2(t− 1)2 with f(0) = 1/2.

Dχ2(P∥Q) = 1
2

∫
Y

(
dP

dQ
− 1

)2
dQ = 1

2

∫
Y

(p(y)− q(y))2

q(y) dµ(y). (5)

• Total variation (TV). f(t) ≜ 1
2 |t− 1| with f(0) = 1/2.

DTV(P∥Q) = 1
2

∫
Y
|p(y)− q(y)|dµ(y) = sup

B∈F
|P (B)−Q(B)|. (6)

• Jensen-Shannon. f(t) ≜ 1
2(t log t− (t+ 1) log( t+1

2 )) with f(0) = 1
2 log 2. Let M ≜ P +Q

2 .

DJS(P∥Q) = 1
2DKL(P∥M) + 1

2DKL(Q∥M). (7)

Integral Probability Metrics (IPMs) & Maximum Mean Discrepancy (MMD). Beyond the
f -divergence, the integral probability metric (IPM; Müller 1997) and maximum mean discrep-
ancy (MMD; Gretton et al. 2012) are commonly used. Let Φ ≜ {φ : Y 7→ [0, 1]} be a class of
measurable functions. Then, each measures are defined as follows.

Definition 2 (Integral Probability Metric (IPM) (Müller, 1997)). Let P and Q
be probability measures on a measurable space (Y,F). Let Φ be a class of measurable
real-valued functions on Y. The integral probability metric (IPM) is

DIPM,Φ(P∥Q) ≜ sup
φ∈Φ
|EP [φ(Y )]− EQ[φ(Y )]| . (8)

Definition 3 (Maximum Mean Discrepancy (MMD) (Gretton et al., 2012)). Let
Hk be a reproducing kernel Hilbert space (RKHS) associated with a positive-definite
kernel k : Y × Y → R. The maximum mean discrepancy (MMD) is

DMMD,k(P∥Q) ≜ sup
∥h∥Hk

≤1
|EP [h(Y )]− EQ[h(Y )]| . (9)

When the function class Φ is sufficiently rich (e.g., all bounded continuous functions), the
IPM fully characterizes distributional differences. Similarly, when the kernel k is characteristic,
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the MMD fully characterizes distributional differences. In both cases, DIPM,Φ(P∥Q) = 0 (or
DMMD,k(P∥Q) = 0) if and only if P = Q. These quantities can be viewed as special cases of
distributional discrepancies defined through restricted function classes, and serve as limiting or
simplified alternatives to the f -divergence–based bounds considered in the main text.

Problem Statement. Under the assumed DGP in Fig. 1a and Eq. (1), the interventional
law Qa,x and a target causal effect in the form of EQa,x [φ(Y )] (where φ is a user-specified
and potentially continuous and unbounded function) are generally not identifiable from the
observational law Pa,x due to unmeasured confounding. To address, (1) we derive the upper
limit of the f -divergence of the observational law Pa,x from the interventional law Qa,x; i.e.,
Df (Pa,x∥Qa,x); (2) we translate the upper limit of the f -divergence into the sharp interval for
causal effects. Throughout the paper, we assume the following:

Assumption 1. For all a,x ∈ A× X ,

1. Positivity: ea(x) ≜ Pr(A = a | X = x) ∈ [c, 1− c] for some constant 0 < c < 1/2.
2. Mutual absolute continuity: Pa,x ≪ Qa,x and Qa,x ≪ Pa,x.
3. Regularity of f : For the generator function f in the f-divergence, f(0) <∞.

3. Divergence Bounds between Observational and Interventional
Distributions

We now derive a data-driven upper bound on the f -divergence between observational and
interventional distributions. Our main result is the following:

Theorem 1 (f-Divergence Bound). For any a ∈ A and x ∈ X such that P (a | x) > 0,

Df (Pa,x∥Qa,x) ≤ Bf (ea(x)), (10)

where

Bf (ea(x)) ≜ ea(x)f
( 1
ea(x)

)
+ (1− ea(x))f(0) (11)

Theorem 1 establishes that the f -divergence Df (Pa,x∥Qa,x) is upper bounded by Bf (ea(x)), a
function of the propensity score that is directly computable from observational data. Notably,
Bf (ea(x))→ 0 as ea(x)→ 1, since f is continuous (by convexity) and satisfies f(1) = 0. Thus,
higher propensity scores yield tighter divergence bounds.

We specialize Thm. 1 to standard divergences:

Corollary T1.1. For any a ∈ A and x ∈ X such that P (a | x) > 0,

• KL: f(t) ≜ t log t (with f(0) = 0),

DKL(Pa,x∥Qa,x) ≤ − log ea(x). (12)
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• Hellinger: f(t) ≜ 1
2(
√
t− 1)2 (with f(0) = 1/2),

DH(Pa,x∥Qa,x) ≤ 1−
√
ea(x). (13)

• χ2-divergence: f(t) ≜ 1
2(t− 1)2 (with f(0) = 1/2),

Dχ2(Pa,x∥Qa,x) ≤ 1− ea(x)
2ea(x) . (14)

• Total variation: f(t) ≜ 1
2 |t− 1| (with f(0) = 1

2),

DTV(Pa,x∥Qa,x) ≤ 1− ea(x). (15)

• Jensen-Shannon: f(t) ≜ fJS(t) ≜ 1
2

(
t log t− (t+ 1) log

(
t+1

2

))
(with fJS(0) =

1
2 log 2)

DJS(Pa,x∥Qa,x) ≤ BfJS(ea(x)) = 1
2 log

(
4ea(x)ea(x)

(1 + ea(x))1+ea(x)

)
. (16)

Bounds extend to stochastic policies as follows:

Corollary T1.2. For any stochastic policy π(a | x),

Df (Pπ∥Qπ) ≜ EX

[∑
a∈A

π(a | X)Df (Pa,X∥Qa,X)
]
≤ EX

[∑
a∈A

π(a | X)Bf (ea(X))
]

.

Choosing π(a | x) = ea(x) yields the global divergence bound:

Df (PA,X ∥QA,X) = EX

[∑
a∈A

ea(X)Df

(
Pa,X ∥Qa,X

)]
≤ EX

[∑
a∈A

ea(X)Bf

(
ea(X)

)]
.

We derive bounds on the maximum mean discrepancy (MMD; Gretton et al. 2012), and the
integral probability metric (IPM; Müller 1997).

Corollary T1.3 (IPM and MMD Bounds). Let Φ ≜ {φ : Y 7→ [0, 1]} be a class
of measurable functions. Let DIPM,F (P∥Q) be the IPM over a function class F ≜

{
f :

∥f∥∞ < C
}
. Let DMMD,k(P∥Q) be the MMD associated with an RKHS with a kernel k

such that k(·, ·) < K. Then,

(IPM) DIPM,FC

(
Pa,x ∥Qa,x

)
≤ 2C min

{
1− ea(x),

√
−1

2 log ea(x)
}
,

(MMD) DMMD,k
(
Pa,x ∥Qa,x

)
≤ 2
√
K min

{
1− ea(x),

√
−1

2 log ea(x)
}
.

All results above extend to the marginal case (without covariates) by setting X = ∅ and
replacing ea(x) with the marginal propensity score ea ≜ Pr(A = a). This yields bounds on the
divergence between the marginal interventional law Qa ≜ P (Y | do(A = a)) and the marginal
observational law Pa ≜ P (Y | A = a).
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3.1. Specialization for Exponential Family

Here, we derive a closed-form f -divergence when Pa,x, Qa,x are within the exponential family
(e.g., Bernoulli, Gaussian, Poisson, exponential, etc.) to exemplify the mechanism of Thm. 1.

Corollary 4 (Exponential Family). Suppose Pa,x and Qa,x are distributions from a
common exponential family:

Pa,x(y) ≜ exp
(
θ⊤

p T (y)−A(θp)
)
h(y), (17)

Qa,x(y) ≜ exp
(
θ⊤

q T (y)−A(θq)
)
h(y), (18)

where θp, θq are natural parameters, T (y) is the sufficient statistics, A(θ) is the log-
partition function (log normalizer), and h(y) is the base measure density. Define ∆ ≜
θp − θq and ∆A ≜ A(θp)−A(θq).

Df (Pa,x∥Qa,x) = EQa,x

[
f
(
exp

(
∆⊺T (Y )−∆A

))]
. (19)

Bernoulli Distribution Suppose Y ∈ {0, 1} and both Pa,x and Qa,x are Bernoulli distributions
with success probabilities p and q, respectively. The Bernoulli distribution belongs to the
exponential family with sufficient statistic T (y) = y and natural parameter θ = log p

1−p .

The Radon–Nikodym derivative is given by

dPa,x
dQa,x

(y) = exp
(
y log p(1− q)

q(1− p) + log 1− p
1− q

)
. (20)

Consequently, the f -divergence admits the representation

Df (Pa,x∥Qa,x) = EQa,x

[
f

(
exp

(
Y log p(1− q)

q(1− p) + log 1− p
1− q

))]
. (21)

Gaussian Distribution Suppose Y ∈ Rd and both Pa,x and Qa,x are Gaussian distributions
with means µp, µq and covariance matrices Σp and Σq, respectively. In this case, the Gaussian
distribution forms an exponential family with sufficient statistic T (y) = (y, yy⊤).

The Radon–Nikodym derivative is given by

dPa,x
dQa,x

(y) = |Σq|1/2

|Σp|1/2 exp
(
− 1

2(y − µp)⊤Σ−1
p (y − µp) + 1

2(y − µq)⊤Σ−1
q (y − µq)

)
. (22)

Accordingly, using (22), the f -divergence can be written as

Df (Pa,x∥Qa,x) = EQa,x

[
f

(
dPa,x
dQa,x

(Y )
)]

. (23)

Poisson Distribution Suppose Y ∈ {0, 1, 2, . . . } and both Pa,x and Qa,x are Poisson distri-
butions with rate parameters λp and λq, respectively. The Poisson distribution belongs to the
exponential family with sufficient statistic T (y) = y and natural parameter θ = log λ.
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The Radon–Nikodym derivative takes the form

dPa,x
dQa,x

(y) = exp
(
y log λp

λq
− (λp − λq)

)
. (24)

The corresponding f -divergence is therefore

Df (Pa,x∥Qa,x) = EQa,x

[
f

(
exp

(
Y log λp

λq
− (λp − λq)

))]
. (25)

Exponential Distribution Suppose Y ≥ 0 and both Pa,x and Qa,x follow exponential dis-
tributions with rate parameters λp and λq, respectively. The exponential distribution is an
exponential family with sufficient statistic T (y) = y and natural parameter θ = −λ.

For y ≥ 0, the Radon–Nikodym derivative is given by

dPa,x
dQa,x

(y) = λp

λq
exp (−(λp − λq)y) . (26)

Accordingly, the f -divergence can be expressed as

Df (Pa,x∥Qa,x) = EQa,x

[
f

(
λp

λq
exp (−(λp − λq)Y )

)]
. (27)

4. A Distributionally Robust Formulation of Causal Bounds

In this section, we leverage the upper bounds on statistical divergence derived in Section 3 to
construct bounds on the target causal effect θ(a,x) ≜ EQa,x [φ(Y )], where φ(Y ) is an arbitrary
measurable function with finite first and second moments. This framework encompasses diverse
causal quantities: setting φ(Y ) ≜ 1(Y ≤ t) yields the cumulative distribution function Qa,x(Y ≤
t), while choosing φ(Y ) ≜ ℓ(Y ; θ) (a loss function for θ) yields the risk function over Qa,x.
Crucially, we impose no restrictions requiring φ to be discrete or bounded.

Using the divergence bound Df (Pa,x∥Qa,x) ≤ Bf (ea(x)) from Thm. 1, we define the f-
divergence-based ambiguity set, which is a collection of distributions over Y within the Bf (ea(x))
radius around the observational law Pa,x:

(Ambiguity set) Qf (a,x;Pa,x) ≜
{
Qa,x ∈ Pa,x(Y) : Df (Pa,x ∥Qa,x) ≤ Bf (ea(x)),

Pa,x ≪ Qa,x

}
, (28)

where Pa,x(Y ) is a collection of probability laws given A = a and X = x. The target causal
effect EQa,x [φ(Y )] is bounded by expectations over the extremal distributions in this ambiguity
set:

(Bounds) θlo(a,x)︸ ︷︷ ︸
infQ∈Qf (a,x) EQ[φ(Y )]

≤ θ(a,x)︸ ︷︷ ︸
EQa,x [φ(Y )]

≤ θup(a,x)︸ ︷︷ ︸
supQ∈Qf (a,x) EQ[φ(Y )]

(29)

The lower and upper bounds are symmetric: by Proposition 1 below, the lower bound can be
obtained from the upper bound by negating the function φ. Therefore, we focus on deriving
the upper bound θup(a,x) without loss of generality.
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Proposition 1 (Lower bound as a subproblem of upper bound). Let

θlo(a,x;φ) ≜ inf
Q∈Qf (a,x)

EQ[φ(Y )], θup(a,x;φ) ≜ sup
Q∈Qf (a,x)

EQ[φ(Y )]. (30)

Then,

θlo(a,x;φ) = −θup(a,x;−φ). (31)

By Proposition 1, it suffices to compute θup(a,x). However, computing θup(a,x) directly from
Eq. (29) is intractable, as it requires optimizing over the infinite-dimensional space of all proba-
bility measures inQf (a,x). To overcome this computational barrier, we reformulate the problem
using convex duality:

Theorem 2 (Primal and Dual Formulations). Let s(Y ) ≜ dQa,x
dPa,x

(Y ) denote the
likelihood ratio, gs(Y ) ≜ s(Y ) · f(1/s(Y )), and ηf (a,x) ≜ Bf (ea(x)). The upper bound
θup(a,x) admits the following equivalent representations:

θup(a,x) = sup
s>0

{
EPa,x [s(Y )φ(Y )] s.t. EPa,x [s(Y )] = 1, EPa,x

[
gs(Y )] ≤ ηf (a,x)

}
(32)

= inf
λ>0,u∈R

{
ληf (a,x) + u+ λEPa,x

[
g∗(φ(Y )−u

λ

)]}
, (33)

where g∗(t) ≜ sups>0{s t − g(s)} is the convex conjugate (also known as the Legen-
dre–Fenchel conjugate or c-transform) of g.

The following proposition provides a general recipe for computing the convex conjugate g∗:

Proposition 2 (Convex Conjugate g∗). Let f : (0,∞)→ (−∞,∞] be proper, convex,
and lower semi-continuous function. Define for s > 0,

g(s) ≜ sf(1/s), g∗(t) ≜ sup
s>0
{st− g(s)}. (34)

Let r ≜ 1/s. Then,

g∗(t) ≜ sup
r>0

t− f(r)
r

. (35)

Moreover, if the supremum is attained at some r∗ > 0, then there exists a subgradient
a ∈ ∂f(r∗) such that

t = f(r∗)− r∗a, and g∗(t) = −a. (36)

If f is differentiable at r∗, then a = f ′(r∗) and hence g∗(t) = −f ′(r∗).

[YJ - (Make this as more verbally accessible and easier statement for explaining Prop. 2) Prop. 2
basically conducts the change-of-variables r ≜ 1/s, and, applies the optimality condition, stating
that if the maximizer r∗ exists, then there is a subgradient a ∈ ∂f(r∗) such that t = f(r∗)− r∗a
and g∗(t) = −a. ]

We apply Prop. 2 to standard f-divergences:
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Corollary P1. Let g(s) ≜ sf(1/s) for s > 0. Then,

• KL: gKL(s) = − log s, and

g∗
KL(t) =

{
−1− log(−t) if t < 0;
+∞ if t ≥ 0.

(37)

• Hellinger: gH(s) = 1
2(1− 2

√
s+ s), and

g∗
H(t) =

{
t

1−2t if t < 1/2;
+∞ if t ≥ 1/2.

(38)

• Chi-square: gχ2(s) = (1−s)2

2s , and

g∗
χ2(t) =

{
1−
√

1− 2t if t ≤ 1/2;
+∞ if t > 1/2.

(39)

• TV: gTV(s) = 1
2 |1− s|, and

g∗
TV(t) =


−1

2 , if t ≤ −1
2 ,

t, if − 1
2 < t ≤ 1

2 ,
+∞, if t > 1

2 .
(40)

• Jensen-Shannon: gJS(s) = 1
2 (s log s− (1 + s) log(1 + s) + (1 + s) log 2), and

g∗
JS(t) =

{
−1

2 log (2− exp(2t)) , if t < 1
2 log 2,

+∞, if t ≥ 1
2 log 2.

(41)

All results above extend to the marginal case (without covariates) by setting X = ∅ and
replacing ea(x) with the marginal propensity score ea ≜ Pr(A = a). This yields bounds on the
marginal causal effect EQa [Y ] ≜ E[Y | do(A = a)], where Qa ≜ P (Y | do(A = a)).

5. Debiased Semiparametric Estimation of Causal Bounds

Solving the dual problem in Eq. (33) pointwise for each (a,x) is computationally intractable,
as it requires estimating the conditional expectation EPa,x [g∗(·)] separately for each pair of
covariate X = x and treatment A = a at every optimization iteration. We circumvent this by
amortizing the optimization as follows: we view λ(a,x) and u(a,x) as functional parameters
to be learned globally. Parameterizing λ(a,x) ≜ exp(h(a,x)) to enforce positivity, the dual
problem transforms into:

Proposition 3. Let ηf (a,x) ≜ Bf (ea(x)). Then,

θup(a,x) = inf
h(a,x)∈R
u(a,x)∈R

EPa,x

[
exp(h(A,X))

{
ηf (A,X) + g∗(φ(Y )−u(A,X)

exp(h(A,X))
)}

+ u(A,X)
]
. (42)

To operationalize this optimization, we define a loss function and corresponding risk function

12



for the functional parameters h and u:

Definition 4 (Risk Function for Causal Bound). Let V = (X,A,Y ). Let hβ,uγ :
A×X 7→ R be maps parametrized by β ∈ Rp1 and γ ∈ Rp2 . The risk function for causal
bounds is

R(β, γ; e) ≜ EP [ℓ(V ; (β, γ), e)], (43)

where e ≜ eA(X) and ηf ≜ ηf (A,X) ≜ Bf (eA(X)), and

ℓ(V ; (β, γ), e) ≜ exp(hβ(A,X))
{
ηf (A,X) + g∗

(
φ(Y )−uγ(A,X)

exp(hβ(A,X)

)}
+ uγ(A,X). (44)

The following proposition shows that this risk minimization is equivalent to solving the pointwise
dual problem:

Proposition 4 (Justification of Risk Function). Define, for each (a,x), the following
loss

ℓ(h,u; y, a,x) ≜ exp(h(a,x))
{
ηf (a,x) + g∗(φ(y)−u(a,x)

exp(h(a,x))
)}

+ u(a,x). (45)

Let R(h,u) ≜ EP [ℓ(h,u;Y ,A,X)] be a risk function. Assume R(h,u) < ∞ for all
h,u ∈ F , where F is a function class rich enough that for any (h1,u1), (h2,u2) ∈ F
and ∀B ⊂ A × X , (h′,u′) ≜ (h1,u1)1B + (h2,u2)1Bc also lies in F . Then, for any fixed
(h⋆,u⋆) ∈ F , the followings are equivalent:

1. (h⋆,u⋆) minimizes R over F .

2. (h⋆,u⋆) minimizes EPa,x [ℓ(h,u;Y , a,x)] for PA,X -almost every (a,x).

Proposition 4 establishes that solving the pointwise dual problem in Eq. (42) is equivalent to
finding the global minimizer (h⋆,u⋆) of the risk function in Def. 4. This amortization substan-
tially improves tractability: instead of solving a separate optimization for each (a,x), we learn
functional parameters that generalize across the covariate space.

Since the risk function in Eq. (43) depends on the unknown propensity score e, we must estimate
it from data. However, estimating e introduces errors that can propagate into the bound
estimates. To mitigate this, we construct a debiased risk function that achieves first-order
insensitivity (Neyman-orthogonality) to perturbations in e:

Definition 5 (Debiased Risk). Let η′
f (A,X) be the first-order derivative of ηf (A,X)

w.r.t. e. The debiased risk function is

Rdb(β, γ; e) ≜ E[ℓdb(V ; (β, γ), e)], (46)

where

ℓdb(V ; (β, γ), e) ≜ exp(hβ(A,X))
{
ηf (A,X) + g∗(φ(Y )−uγ(A,X)

exp(hβ(A,X))
)}

+ uγ(A,X)︸ ︷︷ ︸
Eq. (44)

(47)

+
∑
a∈A

ea(X) exp(hβ(a,X))η′
f (a,X)

(
1(A = a)− ea(X)

)
(48)

Here, Eq. (48) is an error correction terms, which makes ℓdb(V ; (β, γ), e) invariant to the small
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perturbation to first-order perturbations in e (i.e., Neyman-orthogonal (Chernozhukov et al.,
2018)):

Lemma 1 (Orthogonality). For any direction functions {sa(·)}a∈A and any perturba-
tion path et,a ≜ ea + tsa with sufficiently small |t|, ∂

∂tR
db(β, γ; et)

∣∣
t=0 = 0 for all (β, γ).

We now present our estimation procedure based on cross-fitting:

Definition 6 (Debiased Causal Bound Estimators). Fix a functional φ and an f -
divergence. Let ℓdb and Rdb be as in Def. 5. The debiased estimator of the upper causal
bound θu(a,x) for any (a,x) ∈ A× X is constructed as follows:

1. Randomly split the dataset D (with size n) into K disjoint folds D1, · · · ,DK .

2. For each k fold, learn êk
a using D−k ≜ D \ Dk for all a ∈ A.

3. For each fold k, solve ϑ̂k ≜ (β̂k, γ̂k) ∈ arg minβ,γ
∑

i|Vi∈Dk
ℓdb(Vi; (β, γ), êk).

4. For each fold k, evaluate

ĥk(a,x) ≜ h
β̂k

(a,x), ûk(a,x) ≜ uγ̂k
(a,x), (49)

λ̂k(a,x) ≜ exp{ĥk(a,x)}, η̂ k
f (a,x) ≜ Bf

(
ê k

a (x)). (50)

5. For each fold k and each i ∈ Dk, evaluate Zk
i ≜ g∗(φ(Yi)−ûk(Ai,Xi)

λ̂k(Ai,Xi)

)
, and learn a

regressor m̂k by regressing Zk
i onto (A,X) using Dk.

6. Evaluate θ̂(k)
up (a,x) ≜ λ̂k(a,x)

(
η̂ k

f (a,x) + m̂k(a,x)
)

+ ûk(a,x) and return θ̂up(a,x) ≜

(1/K)∑K
k=1 θ̂

(k)
up (a,x).

We now analyze the error of the proposed debiased estimator under following set of assumptions:

Assumption 2 (Regularity-1). Let e ≜ {ea(·) : a ∈ A} be the true propensity score,
ϑ ≜ (β, γ) and ϑ0 ≜ (β0, γ0) ∈ arg minβ,γ Rdb(β, γ; e).

1. Positivity: ea(x) ∈ [c, 1− c] for some constant 0 < c < 1/2 for all a,x ∈ A× X .

2. f-divergence regularity: f is convex and twice continuously differentiable; and the
induced radius Bf (ea(x)) is twice continuously differentiable on [c, 1−c], with bounded
first and second derivative; i.e., supe∈[c,1−c] |Bf (e)|+ |B′

f (e)|+ |B′′
f (e)| <∞.

3. Loss regularity: For each fixed e ∈ [c, 1 − c], the map ϑ 7→ ℓdb(V ;ϑ, e) is twice
continuously differentiable, with

sup
ϑ,e
∥ℓdb(V ;ϑ, e)∥22 <∞, sup

ϑ,e
∥∇θℓ

db(V ;ϑ, e)∥22 <∞, sup
θ,e
∥∇2

ϑϑℓ
db(V ;ϑ, e)∥22 <∞.

4. Higher-order smoothness: Let H(ϑ; e) ≜ ∇2
ϑϑR

db(ϑ; e). There exists a neighbor-
hood Θ0 of ϑ containing ϑ0 and constants 0 < κ ≤ κ2 <∞ such that

κ1I ⪯ H(ϑ; e) ⪯ κ2I for all ϑ ∈ Θ0. (51)

5. Uniform LLN: For each fold k, define the empirical risk w.r.t. ℓdb with the training
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fold is R̂db
k (ϑ, êk). Then, we have a uniform law-of-large-number:

sup
ϑ

∣∣R̂db
k (ϑ; ê k)−Rdb(ϑ; ê k)

∣∣ = Op(n−1/2), (52)

Assumption 3 (Regularity-2). For ϑ ≜ (β, γ), let Zϑ ≜ g∗(φ(Y )−uγ(A,X)}
exp(hβ(A,X))

)
and

mϑ(a,x) ≜ E[Zϑ | A = a,X = x]. Let m̂k be the estimate for mϑ using the k-fold
data.

1. Bounded nuisances: hβ0 ,uγ0 ,hβ̂k
,uγ̂k

are bounded by some constant M .

2. Lipschitz parameterization: The map (β, γ) 7→ (hβ(a,x),uγ(a,x)) is Lipschitz in
ϑ = (β, γ) uniformly over all (a,x) with constant Lϑ; i.e.,

sup
a,x

(
|hβ(a,x)− hβ′(a,x)|+ |uγ(a,x)− uγ′(a,x)|

)
≤ Lϑ∥ϑ− ϑ′∥. (53)

3. Smoothness of g∗: The convex conjugate g∗ is continuously differentiable with
bounded derivative; i.e., supt∈T |(g∗)′(t)| <∞ where T is a range where g∗(t) is well-
defined.

4. Assumption on regression: ∥m̂k − m
ϑ̂k
∥2 = Op(sn), where sn is some sequence

sn → 0; There exists a constant Lm s.t. ∥mϑ −mϑ′∥2 ≤ Lm∥ϑ− ϑ′∥.

5. Correct model choice: Let θ⋆
φ,0(a,x) ≜ E[ℓ(V ; (β0, γ0), e) | A = a,X = x]. Then

θ
⋆
φ,0(a,x) ≜ E[ℓ(V ; (β0, γ0), e) | A = a,X = x] = θφ(a,x) for all (a,x).

We now formalize the convergence rate of the proposed debiased estimator:

Theorem 3 (Error Analysis). Under Assumption 2, fix a fold k. Let e be the true
propensity score, and ϑ0 ≜ (β0, γ0) ∈ arg minϑRdb(ϑ; e) for ϑ ≜ (β, γ). Let ϑ̂k ≜ (β̂k, γ̂k)
be the minimizer from Step 3 in Def. 6 with êk. Define rn ≜ OP (∥êk − e∥2). Then,

∥ϑ̂k − ϑ0∥22 = Op
(
n−1/2 + r2

n

)
. (54)

Furthermore, let Zϑ ≜ g∗(φ(Y )−uγ(A,X)
exp(hβ(A,X))

)
and mϑ(a,x) ≜ E[Zϑ | A = a,X = x]. Define

sn ≜ OP (∥m̂k − mϑ̂k
∥2) where m̂k is from Step 5 in Def. 6. Let θ̂(k)

up be the estimated
upper causal bound for the fold k. Under additional Assumption 3,∥∥θ̂(k)

up − θup
∥∥2

2 = Op
(
n−1/2 + r2

n + s2
n

)
. (55)

Thm. 3 demonstrates the sample efficiency of our debiased estimator. Even when the nuisance
components (the propensity score and the pseudo-outcome regression) converge slowly (e.g.,
at rate n−1/4), both the dual parameters ϑ̂k and the upper-bound estimator θ̂(k)

up achieve the
faster rate (e.g., at rate n−1/2). Specifically, the sample-efficiency gain is of order OP (r2

n) rather
than OP (rn) that would result from using the non-debiased risk function (Eq. (43)). This
improvement stems from the orthogonal construction of the debiased risk, which eliminates
first-order sensitivity to propensity score errors (Lemma 1). Consequently, nuisance components
can be estimated using flexible machine learning methods while the estimator retains faster
convergence rates.
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5.1. Ensemble Bound Aggregation

Different f -divergences encode distinct notions of distributional discrepancy, and no single di-
vergence uniformly dominates others in tightness across all data distributions. Consequently, we
estimate bounds using a collection F of f -generators (e.g., F = {fKL, fTV, fχ2 , · · · }), yielding a
family of upper bound estimates θ̂up ≜ {θ̂up,f : f ∈ F} where θ̂up,f is an upper-bound estimate
for a fixed f ∈ F . Let θ̂lo be defined similarly. To construct the tightest valid interval, we ag-
gregate these bounds while accounting for potential finite-sample violations due to estimation
error and numerical instability.

Our aggregation strategy addresses this challenge via order statistics:

Definition 7 (k-th order statistics aggregator). Let θ̂lo, θ̂up denote candidate lower
and upper bounds, respectively, with nf ≜ |θ̂lo| = |θ̂up|. For k ∈ {1, . . . ,nf}, the k-th
order-statistics aggregator (k-agg) is defined as the pair (θ̂k

lo, θ̂k
up), where θ̂k

lo is the k-th
largest element of θ̂lo and θ̂k

up is the k-th smallest element of θ̂up.

The following lemma formalizes the validity condition for the k-th order aggregator:

Lemma 2 (Valid Coverage under Partial Correctness). For a fixed (a,x),

• θ̂k
lo(a,x) ≤ θ(a,x) iff at least (nf −k+1) elements of θ̂lo are smaller or equal to θ(a,x).

• θ̂k
up(a,x) ≥ θ(a,x) iff at least (nf − k + 1) elements of θ̂up are greater or equal to
θ(a,x).

Lemma 2 guarantees that the k-agg produces valid bounds as long as at least (nf − k + 1)
divergences yield correct estimates. This robustness property is critical: even if a minority of
divergences fail (due to finite-sample violations or numerical issues), the aggregator automati-
cally discards outliers by selecting the k-th order statistic. In practice, the k-agg is implemented
by initializing k = 1 (selecting the tightest bounds) and iteratively incrementing k ← k+1 until
θ̂k

lo ≤ θ̂k
up is satisfied.

5.2. Debiased Estimation for Average Causal Effects

When covariates are absent (X = ∅), the estimation procedure simplifies substantially. The
marginal propensity score ea ≜ Pr(A = a) can be estimated at rate oP (n−1/2) via sample
proportions, eliminating the need for the debiasing correction in Eq. (48). We now specialize
our framework to this covariate-free setting.

Definition 8 (Risk Function (Marginal Case)). Let h ≜ {ha ∈ R+ : a ∈ A} and
u ≜ {ua ∈ R+ : a ∈ A}. Let V ≜ (A,Y ) and ηa

f ≜ Bf (ea). A risk function for causal
bound when X = ∅ is

R(h,u; e) ≜ EP [ℓ(V ; (h,u), ηf )], (56)

where

ℓ(V ; (h,u), e) ≜ exp(hA)
{
ηa

f + g⋆(φ(Y )−uA

exp(hA)
)}

+ uA. (57)
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The estimator for the marginal case directly minimizes the risk in Def. 8 without debiasing:

Definition 9 (Bound Estimator (Marginal Case)). Fix a functional φ and an f -
divergence. Let ℓ and R be as in Def. 8. Let the observed sample be i.i.d. {Vi ≜
(Ai,Yi)}ni=1. Define na ≜

∑n
i=1 1(Ai = a). The estimator of the upper causal bound

θφ(a) for any a ∈ A is constructed as follows:

1. Estimate the marginal propensity êa ≜ na/n.

2. Solve ϑ̂ ≜ (ĥ, û) ∈ arg minh,u
∑n

i=1 ℓ(Vi; (h,u), ê).

3. Evaluate λ̂a ≜ exp(ĥa).

4. Define the pseudo-outcome Ẑi ≡ g∗
(

ϕ(Yi)−ûAi

λ̂Ai

)
and evaluate m̂a ≜ (1/na)∑i:Ai=a Ẑi.

5. Return θ̂φ,f (a) ≡ λ̂a

(
η̂f ,a + m̂a

)
+ ûa, for a ∈ A.

We now analyze the error of the proposed debiased estimator under following set of assumptions:

Assumption 4 (Regularity (Marginal Case)). Let e ≜ {ea : a ∈ A} where ea ≜
Pr(A = a), ϑ ≜ (β, γ) and ϑ0 ∈ arg minϑR(ϑ; e) where ϑ ≜ (h,u) ≜ {(ha,ua) : a ∈ A}.
Let Zϑ ≜ g∗(φ(Y )−uA

exp(hA)
)
. Let mϑ,a ≜ EPa [Zϑ].

1. Positivity: ea ∈ [c, 1− c] for some constant 0 < c < 1/2 for all a ∈ A.

2. f-divergence regularity: f is convex and twice continuously differentiable; and the
induced radius Bf is twice continuously differentiable on [c, 1−c] with bounded deriva-
tives; i.e., supe∈[c,1−c] |Bf (e)|+ |B′

f (e)|+ |B′′
f (e)| <∞.

3. Loss regularity: For each fixed e ∈ [c, 1 − c], the map ϑ 7→ ℓ(V ;ϑ, e) is twice
continuously differentiable, with

sup
ϑ,e
∥ℓ(V ;ϑ, e)∥22 <∞, sup

ϑ,e
∥∇θℓ(V ;ϑ, e)∥22 <∞, sup

θ,e
∥∇2

ϑϑℓ(V ;ϑ, e)∥22 <∞.

4. Higher-order smoothness: Let H(ϑ; e) ≜ ∇2
ϑϑR(ϑ; e). There exists a neighborhood

Θ0 of ϑ containing ϑ0 and constants 0 < κ ≤ κ2 <∞ such that

κ1I ⪯ H(ϑ; e) ⪯ κ2I for all ϑ ∈ Θ0. (58)

5. Uniform LLN: Define the empirical risk w.r.t. ℓ with the training fold is R̂(ϑ, ê).
Then, we have a uniform law-of-large-number:

sup
ϑ

∣∣R̂(ϑ; ê)−R(ϑ; ê)
∣∣ = Op(n−1/2). (59)

6. Bounded parameters: ha,ua are bounded by some constant M .

7. Smoothness of g∗: The convex conjugate g∗ is continuously differentiable with
bounded derivative; i.e., supt∈T |(g∗)′(t)| <∞ where T is a range where g∗(t) is well-
defined.

The following theorem establishes the convergence rate for the marginal case:
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(a) (b) (c)

Figure 2: (a) Bounds vs. propensity scores; (b) Penalized width vs. sample size, where the
penalized width is p-width ≜ width× (1 +a×max(0, (1−α)− coverage)) with a = 10
and α = 0.95; (c) Convergence rate comparison

Theorem 4 (Error Analysis (Marginal Case)). Assume Assumption 4. Let e0 ≜
{e0,a : a ∈ A} with e0,a ≡ Pr(A = a) and let êa ≡ na/n. Let ϑ0 ∈ arg minϑ∈ΘR(ϑ; e0)
and ϑ̂ ∈ arg minϑ∈Θ R̂n(ϑ; ê). Let θφ and θ̂φ be the population target and the estimator
defined in Def. 9 (marginal case). Then

∥ϑ̂− ϑ0∥22 = Op(n−1/2), ∥θ̂φ − θφ∥22 = Op(n−1/2). (60)

Thm. 4 shows that in the marginal case, both the dual parameters and the bound estimator
achieve a squared error rate of Op(n−1/2) (implying a parameter convergence rate of Op(n−1/4))
without requiring debiasing. This is because the marginal propensity score êa = na/n converges
at rate OP (n−1/2), which is fast enough that first-order bias terms vanish asymptotically. This
contrasts with the conditional case (Thm. 3), where debiasing is essential to handle slower
convergence rates of nonparametric nuisance estimators.

6. Experiments

This section empirically validates our framework across both synthetic and real-world data.
Our goal is to bound the conditional causal mean θ(1,x) ≜ E[Y | do(A = 1),X = x] using our
proposed bounds in Def. 6. All implementation can be found in the Github repository.

Across all experiments, we estimate the propensity score via XGBoost (Chen and Guestrin,
2016) and fit the dual functions λ(a,x) = exp(h(a,x)) and u(·) using a neural network trained
with two-fold cross-fitting. We consider the f -divergences in Cor. T1.1 (KL, Jensen–Shannon,
Hellinger, TV, and χ2), and the order-statistics aggregator (Def. 7). In the figures below, the
label tight_kth denotes the aggregated interval with k = 5.

Synthetic data experiments. We generate synthetic data from the SCM in Fig. 1a with X ∈
R5, binary treatment A ∈ {0, 1}, and a continuous outcome Y with heavy-tail noise following
a Student’s t-distribution with 3 degrees of freedom, which has substantially thicker tails than
the standard normal distribution. Fig. 2a demonstrates the validity of our method: the true
effect curve for θ(1,x) lies within the estimated tight_kth bounds across all propensity score
regimes, even under heavy-tailed noise. This plot also shows how interval width shrinks as
ea(x) → 1, as expected from our theory. Notably, the χ2 divergence consistently produces the
tightest bounds among all f-divergences considered.

We next examine the debiasing benefit formalized in Thm. 3. Fig. 2b compares penalized
width, defined as p-width ≜ width × (1 + a × max(0, (1 − α) − coverage)) with a = 10 and
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α = 0.95, where coverage denotes the fraction of evaluation points {x1, · · · ,xn} satisfying
θ(1,xi) ∈ [θ̂lo(1,xi), θ̂up(1,xi)], between debiased and non-debiased estimators. As expected,
the debiased estimator achieves tighter penalized width as n increases, reflecting improved
finite-sample efficiency. Fig. 2c further illustrates robustness to nuisance estimation error: we
add convergence noise ϵ ∼ N (n−1/4,n−1/4) to the estimated propensity score and compare
convergence rates using an oracle estimator equipped with the true propensity score. The
debiased estimator maintains its convergence rate despite slower propensity score estimation,
confirming the theoretical guarantee of first-order insensitivity.

Figure 3: IHDP data analysis

Semi-synthetic IHDP benchmark. We also validate
our method on the well-known IHDP (Infant Health
and Development Program) benchmark (Hill, 2011;
Louizos et al., 2017; AMLab Amsterdam, 2020). This
dataset originates from a randomized trial studying the
effect of home visits by specialists on future cognitive
test scores, with confounders X ∈ R25 capturing char-
acteristics of the children and their mothers. Following
Louizos et al. (2017), we de-randomize the treatment
assignment to introduce confounding. In our experi-
ment, we observe only five covariates and treat the remaining 20 as hidden confounders. Fig. 3
confirms that our bounds tightly contain the true causal effect E[Y | do(A = 1),X = x] across
the full range of estimated propensity scores ê1(x) for x ∈ X .

7. Conclusion

This paper develops an information-theoretic framework for partial identification of causal ef-
fects under unmeasured confounding. The key contribution is deriving data-driven bounds on
f -divergences between observational and interventional distributions using only the propen-
sity score, without requiring auxiliary variables or user-specified sensitivity parameters. These
divergence bounds translate into causal effect bounds that simultaneously address four key lim-
itations of existing methods: (1) accommodating unbounded continuous outcomes, (2) avoiding
full structural causal model specification, (3) providing heterogeneous effect bounds conditional
on covariates, and (4) achieving computational tractability through debiased semiparametric
estimation. Our debiased semiparametric estimators achieve

√
n-consistency even when nui-

sance components converge at slower nonparametric rates, leveraging Neyman-orthogonality to
eliminate first-order bias. Experiments on synthetic and semi-synthetic benchmarks confirm
valid coverage across propensity score regimes and demonstrate robustness to heavy-tailed out-
come distributions. Future work includes extending the framework to continuous treatments
and deriving sharper bounds by incorporating additional structural information or auxiliary
data.

19



References
Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution

from another. Journal of the Royal Statistical Society: Series B (Methodological), 28(1):131–
142.

AMLab Amsterdam (2020). Amlab-amsterdam/cevae: Causal effect inference with deep latent-
variable models. GitHub repository. Archived July 17, 2020.

Balazadeh Meresht, V., Syrgkanis, V., and Krishnan, R. G. (2022). Partial identification of
treatment effects with implicit generative models. Advances in Neural Information Processing
Systems, 35:22816–22829.

Balke, A. and Pearl, J. (1994). Counterfactual probabilities: Computational methods, bounds
and applications. In Uncertainty in artificial intelligence, pages 46–54. Elsevier.

Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect com-
pliance. Journal of the American statistical Association, 92(439):1171–1176.

Bretagnolle, J. and Huber, C. (1979). Estimation des densités: risque minimax. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 47(2):119–137.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins,
J. (2018). Double/debiased machine learning for treatment and structural parameters: Dou-
ble/debiased machine learning. The Econometrics Journal, 21(1).

Csiszár, I. (1967). Information-type measures of difference of probability distributions and
indirect observations. Studia Scientiarum Mathematicarum Hungarica, 2:299–318.

Dorn, J. and Guo, K. (2023). Sharp sensitivity analysis for inverse propensity weighting via
quantile balancing. Journal of the American Statistical Association, 118(544):2645–2657.

Ghassami, A., Shpitser, I., and Tchetgen, E. T. (2023). Partial identification of causal effects
using proxy variables. arXiv preprint arXiv:2304.04374.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel
two-sample test. The journal of machine learning research, 13(1):723–773.

Hill, J. L. (2011). Bayesian nonparametric modeling for causal inference. Journal of Computa-
tional and Graphical Statistics, 20(1):217–240.

Hu, Y., Wu, Y., Zhang, L., and Wu, X. (2021). A generative adversarial framework for bounding
confounded causal effects. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 12104–12112.

Jin, Y., Ren, Z., and Zhou, Z. (2022). Sensitivity analysis under the f -sensitivity models: a
distributional robustness perspective. arXiv preprint arXiv:2203.04373.

Kitagawa, T. (2021). The identification region of the potential outcome distributions under in-
strument independence. Journal of Econometrics, 225(2):231–253. Themed Issue: Treatment
Effect 1.

Lee, D. S. (2009). Training, wages, and sample selection: Estimating sharp bounds on treatment
effects. The Review of Economic Studies, pages 1071–1102.

20



Levis, A. W., Bonvini, M., Zeng, Z., Keele, L., and Kennedy, E. H. (2025). Covariate-assisted
bounds on causal effects with instrumental variables. Journal of the Royal Statistical Society
Series B: Statistical Methodology.

Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel, R., and Welling, M. (2017). Causal
effect inference with deep latent-variable models. Advances in neural information processing
systems, 30.

Manski, C. F. (1990). Nonparametric bounds on treatment effects. The American Economic
Review, 80(2):319–323.

Müller, A. (1997). Integral probability metrics and their generating classes of functions. Ad-
vances in applied probability, 29(2):429–443.

Oprescu, M., Dorn, J., Ghoummaid, M., Jesson, A., Kallus, N., and Shalit, U. (2023). B-
learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In
International Conference on Machine Learning, pages 26599–26618. PMLR.

Padh, K., Zeitler, J., Watson, D., Kusner, M., Silva, R., and Kilbertus, N. (2023). Stochastic
causal programming for bounding treatment effects. In Conference on Causal Learning and
Reasoning, pages 142–176. PMLR.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press,
New York. 2nd edition, 2009.

Rosenbaum, P. R. (1987). Sensitivity analysis for certain permutation inferences in matched
observational studies. Biometrika, 74(1):13–26.

Sachs, M. C., Jonzon, G., Sjölander, A., and Gabriel, E. E. (2023). A general method for
deriving tight symbolic bounds on causal effects. Journal of Computational and Graphical
Statistics, 32(2):567–576.

Semenova, V. (2025). Generalized lee bounds. Journal of Econometrics, 251:106055.

Shridharan, M. and Iyengar, G. (2023). Scalable computation of causal bounds. Journal of
Machine Learning Research, 24(237):1–35.

Swanson, S. A., Hernán, M. A., Miller, M., Robins, J. M., and Richardson, T. S. (2018).
Partial identification of the average treatment effect using instrumental variables: review
of methods for binary instruments, treatments, and outcomes. Journal of the American
Statistical Association, 113(522):933–947.

Tan, J., Blanchet, J., and Syrgkanis, V. (2024). Consistency of neural causal partial identifica-
tion. Advances in Neural Information Processing Systems, 37:68956–68999.

Tan, Z. (2006). A distributional approach for causal inference using propensity scores. Journal
of the American Statistical Association, 101(476):1619–1637.

Tian, J. and Pearl, J. (2000). Probabilities of causation: Bounds and identification. Annals of
Mathematics and Artificial Intelligence, 28(1):287–313.

Xia, K. M., Pan, Y., and Bareinboim, E. (2022). Neural causal models for counterfactual
identification and estimation. In The Eleventh International Conference on Learning Repre-
sentations.

Yadlowsky, S., Namkoong, H., Basu, S., Duchi, J., and Tian, L. (2022). Bounds on the condi-
tional and average treatment effect with unobserved confounding factors. Annals of statistics,
50(5):2587.

21



Zhang, J. and Bareinboim, E. (2021). Bounding causal effects on continuous outcome. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 12207–12215.

22



Supplement of Data-Driven Information-Theoretic Causal Bounds
under Unmeasured Confounding

A. Simulation Details

This section provides the technical specifications for the synthetic and semi-synthetic experi-
ments presented in Section 6.

A.1. Synthetic Data Generating Process

We consider a nonlinear structural causal model (SCM) where the observational data (X,A,Y )
is generated as follows. The features X ∈ Rd are sampled from a uniform distribution: Xj ∼
Uniform(−2, 2) for j = 1, . . . , d. A latent confounder U is sampled from a standard normal
distribution, U ∼ N (0, 1).

The treatment assignment A follows a Bernoulli distribution with a propensity score dependent
on both X and U . Specifically, we define the logits L as:

L(X,U) = X⊤w + 0.8U + 0.5 sin(X0)− 0.25X2
0 , (61)

where w ∈ Rd is a fixed weight vector sampled from N (0, 0.62). The treatment is assigned as
A ∼ Bernoulli(e(X,U)), with

e(X,U) = 0.05 + 0.9 · sigmoid(L(X,U)), (62)

which ensures overlap by constraining the propensity score to [0.05, 0.95].

The outcome Y is generated as:

Y = µ(X) + τ(X, e(X,U))A+ 0.7U + ϵ, (63)

where ϵ follows a Student’s t-distribution with 3 degrees of freedom (ϵ ∼ t3(0, 1)) to introduce
heavy-tailed noise. The functions µ(X) and τ(X, p) are defined to capture complex nonlineari-
ties and heterogeneity:

µ(X) = 0.5 + 0.8 tanh(X0) + 0.25X2
1 − 0.15 sin(X2), (64)

τ(X, p) = 0.7 + 0.2 sin(X0) + 0.1X0 + 0.8(p− 0.5), (65)

where p is the treatment assignment probability. This SCM introduces both selection bias via
U and heterogeneous treatment effects that depend on the propensity score.

A.2. Neural Network Architecture and Training

For estimating the dual functions and the nuisance components (outcome models and propensity
scores), we use Multi-Layer Perceptrons (MLPs) and XGBoost.
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Architecture for Dual Functions The dual functions h are parameterized by an MLP with
two hidden layers of 64 units each, using ReLU activations. We apply a clipping operation to
the output of the dual network such that h(X) ∈ [−20, 20] to ensure numerical stability during
optimization. No dropout is used.

Optimization and Hyperparameters The dual networks are trained using the Adam optimizer
with a learning rate of 5 × 10−4 and weight decay of 1 × 10−4. We employ 2-fold cross-fitting
to avoid overfitting and ensure the validity of the debiased estimator. For each fold, we train
the dual network for 256 epochs. Early stopping with a patience of 10 epochs (monitored on a
20% validation split of the training fold) is used to prevent overtraining.

Nuisance Models Propensity scores and outcome means are estimated using XGBoost with
the following hyperparameters:

• Number of estimators: 300 for propensity, 400 for outcome.

• Maximum depth: 10.

• Learning rate: 0.005.

• Subsample / Colsample: 0.8.

A.3. IHDP Benchmark Details

The IHDP benchmark is a semi-synthetic dataset based on a real-world randomized trial from
the Infant Health and Development Program. We use the version where selection bias is intro-
duced by removing a non-random subset of the treated group.

In our experiments, we treat 5 of the 25 covariates as observed and the remaining 20 as hidden
confounders to simulate a scenario with unmeasured confounding. The evaluation is performed
on a fixed set of units to compare the estimated bounds against the ground truth interventional
effects provided by the benchmark. Training is conducted for 200 epochs for the IHDP-specific
experiments.

B. Proofs

Proof of Thm. 1

We first declare some useful results:

Lemma 3 (f-divergence with Conditional Measure). Let P on (Ω,F) be an arbi-
trary probability measure. Let E ∈ F be a fixed event such that P (E) = p ∈ (0, 1). Let
PE(·) ≜ P (· | E). Then,

Df (PE∥P ) = pf(1
p) + (1− p)f(0) (66)
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Proof. Define the conditional-on-an-event measure PE by

PE(B) := P (B | E) = P (B ∩ E)
P (E) , ∀B ∈ F , (67)

where P (E) = p ∈ (0, 1). Then PE ≪ P since P (B) = 0⇒ P (B ∩E) = 0⇒ PE(B) = 0.
Hence, by the Radon–Nikodým theorem, there exists a measurable function g = dPE

dP
(unique P -a.e.) such that

PE(B) =
∫

B
g(ω)P (dω), ∀B ∈ F . (68)

A valid version is g(ω) = 1
p 1E(ω) since, for any B ∈ F ,

∫
B

1
p

1E(ω)P (dω) = 1
p
P (B ∩ E) = P (B ∩ E)

P (E) = PE(B). (69)

Therefore,

Df (PE∥P ) =
∫

Ω
f

(
dPE

dP
(ω)
)
P (dω) (70)

=
∫

E
f

(1
p

)
P (dω) +

∫
Ec
f(0)P (dω) (71)

= pf

(1
p

)
+ (1− p)f(0). (72)

Lemma 4 (Data Processing Inequality (Csiszár, 1967)). Let PX and QX denote
probability measures on (X ,FX). Let PY |X be a Markov kernel from (X ,FX) to (Y,FY ).
Let PY ,QY be the transformation of PX ,QX , respectively, when pushed through PY |X ;
i.e., PY (B) =

∫
X PY |X(B | x)dPX(x), and QY is defined similarly. Then, for any f -

divergence, we have

Df (PY ∥QY ) ≤ Df (PX∥QX). (73)

For any fixed X = x, define the event E := {A = a} under the measure PU ,A|X=x, so that
P (E | x) = P (A = a | X = x) = ea(x). Let

PE(· | x) := PU ,A|X=x( · | E) = PU ,A|X=x,A=a. (74)

By Lemma 3,

Df

(
PU ,A|X=x,A=a

∥∥PU ,A|X=x

)
= ea(x)f

( 1
ea(x)

)
+ (1− ea(x))f(0) ≡ Bf (ea(x)). (75)

Define the (Markov) transition kernel Ka,x from (U ×A,FU ,A) to (Y,FY ) by, for any B ∈ FY ,

Ka,x(B | u, a′) := P (Y ∈ B | U = u,A = a,X = x), (76)

(note Ka,x is constant in a′).
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Pushing PU ,A|X=x through Ka,x yields∫
Ka,x(B | u, a′)PU ,A|X=x(du da′) =

∫
P (Y ∈ B | u, a,x)PU ,A|X=x(du da′) = P (Y ∈ B | do(A = a),X = x).

(77)

Similarly, pushing PU ,A|X=x,A=a through Ka,x yields∫
Ka,x(B | u, a′)PU ,A|X=x,A=a(du da′) =

∫
P (Y ∈ B | u, a,x)PU |X=x,A=a(du) = P (Y ∈ B | A = a,X = x).

(78)

By the data processing inequality (Lemma 4),

Df

(
PY |A=a,X=x

∥∥PY |do(A=a),X=x

)
≤ Df

(
PU ,A|X=x,A=a

∥∥PU ,A|X=x

)
= Bf (ea(x)). (79)

■.

Proof of Cor. T1.1

KL. With f(t) = t log t with f(0) = 0, we have

B(ea(x), f) = −ea(x) 1
ea(x) log ea(x) = − log ea(x). (80)

Therefore,

DKL(P (Y | a,x)∥Q(Y | a,x)) ≤ − log ea(x). (81)

Hellinger. With f(t) = 1
2(
√
t− 1)2 with f(0) = 1/2, we have

B(ea(x), f) = ea(x)f
( 1

ea(x)
)

+ (1− ea(x))f(0) (82)

= 1
2ea(x)

(√
1

ea(x) − 1
)2

+ 1
2(1− ea(x)) (83)

= 1−
√
ea(x). (84)

To tighten, we use the following lemma:

Lemma 5 (Hellinger divergence vs. KL divergence). For any P ,Q such that
P ≪ Q,

DH(P∥Q) ≤ 1
2DKL(P∥Q). (85)

Proof. We start with

DH(P∥Q) ≜ 1
2

∫
(√p(x)−√q(x))2dx = 1−

∫ √
p(x)q(x)dx. (86)

Define BC(P ,Q) ≜
∫ √

p(x)q(x)dx. Then, DH(P∥Q) = 1− BC(P ,Q). Define DB(P∥Q) ≜
− log BC(P ,Q), which is known as Bhattacharyya distance.
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Define r(X) ≜ q(x)
p(x) . Then,

BC(P ,Q) =
∫ √

p(x)q(x)dx =
∫ √

q(x)
p(x)p(x)dx = EP

[√
r(X)

]
. (87)

By Jensen’s inequality, we have

log BC(P ,Q) = logEP

[√
r(X)

]
≥ EP

[
log

√
r(X)

]
= 1

2EP [log r(X)]. (88)

Also,

EP [log r(X)] =
∫
p(x) log q(x)

p(x)dx = −DKL(P ,Q). (89)

Combining,

−1
2DKL(P∥Q) ≤ log BC(P ,Q) ⇔ 1− exp

(
− 1

2DKL(P∥Q)
)
≥ 1− BC(P ,Q). (90)

Finally,

DH(P∥Q) = 1− BC(P ,Q) ≤ 1− exp
(
− 1

2DKL(P∥Q)
)
≤ 1

2DKL(P∥Q), (91)

where the last inequality holds since 1− e−u ≤ u for any u ≥ 0.

As a result, we can derive

DH(P (Y | a,x)∥Q(Y | a,x)) ≤ −1
2 log ea(x). (92)

Finally, for ea(x) ∈ (0, 1), the following holds:

1−
√
ea(x) ≤ −1

2 log ea(x). (93)

χ2-divergence. Set f(t) ≜ 1
2(t− 1)2. Then, Bf (ea) = 1−ea(x)

2ea(x) .

Total variation. First, BfTV(e) = 1− e.

Second, by Pinsker’s inequality and the above inequality,

DTV(P∥Q) ≤
√

1
2DKL(P∥Q) ≤

√
−1

2 log ea(x). (94)

By Bretagnolle–Huber bound (Bretagnolle and Huber, 1979) and the above inequality,

DTV(P∥Q) ≤
√

1− exp(−DKL(P∥Q)) ≤
√

1− ea(x). (95)

Finally, min
(
1− ea(x),

√
1− ea(x),

√
−1

2 log ea(x)
)

= 1− ea(x) for all ea(x) ∈ (0, 1).
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Jensen-Shannon. With fJS(t) ≜ 1
2
(
t log t− (t+ 1) log( t+1

2 )
)

and fJS(0) = 1
2 log 2, we have:

BfJS(ea(x)) = ea(x)fJS
( 1
ea(x)

)
+ (1− ea(x))fJS(0) (96)

= ea(x)
2

[ 1
ea(x) log

( 1
ea(x)

)
−
( 1
ea(x) + 1

)
log

(1 + ea(x)
2ea(x)

)]
+ 1− ea(x)

2 log 2 (97)

= 1
2

[
− log ea(x)− (1 + ea(x)) log

(1 + ea(x)
2ea(x)

)
+ (1− ea(x)) log 2

]
(98)

= 1
2
[
− log ea(x)− (1 + ea(x))

[
log(1 + ea(x))− log ea(x)− log 2

]
+ log 2− ea(x) log 2

]
(99)

= 1
2
[
− log ea(x)− (1 + ea(x)) log(1 + ea(x)) + log ea(x)

+ ea(x) log ea(x) + 2 log 2 + ea(x) log 2− ea(x) log 2
]

(100)

= 1
2 [ea(x) log ea(x)− (1 + ea(x)) log(1 + ea(x)) + 2 log 2] (101)

= 1
2 log

(
4ea(x)ea(x)

(1 + ea(x))1+ea(x)

)
. (102)

■

Proof of Cor. T1.3

By definition, for any class of functions F , the Integral Probability Metric (IPM) satisfies:

DIPM,F (P∥Q) = sup
f∈F
|EP [f(Y )]− EQ[f(Y )]| . (103)

If f(Y ) ∈ [a, b] for all y ∈ Y, then for any probability measures P ,Q:

|EP [f(Y )]− EQ[f(Y )]| ≤ (b− a)DTV(P ,Q). (104)

For FC ≜ {f : ∥f∥∞ < C}, we have f(y) ∈ (−C,C), so the range is 2C. Consequently,

DIPM,FC
(Pa,x∥Qa,x) ≤ 2C ·DTV(Pa,x∥Qa,x). (105)

From Corollary T1.1, we have DTV(Pa,x∥Qa,x) ≤ 1−ea(x). Furthermore, by Pinsker’s inequality
and the KL bound from Corollary T1.1:

DTV(Pa,x∥Qa,x) ≤
√

1
2DKL(Pa,x∥Qa,x) ≤

√
−1

2 log ea(x). (106)

Combining these yields the result for IPM.

For MMD, let Hk be an RKHS with kernel k such that k(y, y) ≤ K for all y. For any h ∈ Hk

with ∥h∥Hk
≤ 1, we have |h(y)| = |⟨h, ky⟩| ≤ ∥h∥Hk

√
k(y, y) ≤

√
K. Thus, h(y) ∈ [−

√
K,
√
K],

and the range is 2
√
K. Following similar logic:

DMMD,k(Pa,x∥Qa,x) ≤ 2
√
K ·DTV(Pa,x∥Qa,x). (107)
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Using the TV bounds derived above, we obtain the MMD bound. ■

Proof of Prop. 1

We will prove the following statement: For any arbitrary function f over some space X , the
following holds: infx∈X f(x) = − supx∈X

(
− f(x)

)
.

inf
x∈X

f(x) = − sup
x∈X

(
− f(x)

)
. (108)

For any x ∈ X ,

−f(x) ≤ − inf
x′
f(x′), ∀x ∈ X =⇒ inf

x∈X
f(x) ≤ − sup

x∈X
(−f(x)). (109)

Also, by the definition of infimum, for any ε > 0, there exists xϵ such that

f(xε) ≤ inf
x∈X

f(x) + ε. (110)

Then,

−f(xε) ≥ − inf
x
f(x)− ε =⇒ sup

x∈X
(−f(x)) ≥ − inf

x∈X
f(x)− ε. (111)

By taking ϵ ↓ 0, we have supx∈X (−f(x)) ≥ − infx∈X f(x). The proof is done by combining
these two inequalities. ■

Proof of Thm. 2

Fix (a,x) and write Pa,x and Qa,x for the observational and interventional laws on (Y,F). By
Assumption 1 (mutual absolute continuity), the Radon–Nikodym derivative

s(y) := dQa,x
dPa,x

(y) (112)

exists and satisfies s(Y ) > 0 Pa,x-a.s. For any measurable ϕ with EQa,x [|ϕ(Y )|] <∞,

EQa,x [ϕ(Y )] =
∫
ϕ(y)Qa,x(dy) =

∫
ϕ(y) s(y)Pa,x(dy) = EPa,x [s(Y )ϕ(Y )]. (113)

Moreover, EPa,x [s(Y )] =
∫
dQa,x = 1. Define g(s) := sf(1/s) for s > 0. Then

EPa,x [g(s(Y ))] =
∫
s(y)f(1/s(y))Pa,x(dy) =

∫
f

(
dPa,x
dQa,x

(y)
)
Qa,x(dy) = Df (Pa,x∥Qa,x).

(114)

Hence the constraint Df (Pa,x∥Qa,x) ≤ ηf (a,x) is equivalent to EPa,x [g(s(Y ))] ≤ ηf (a,x), and
the upper bound admits the primal form

θup(a,x) = sup
s>0

{
EPa,x [s(Y )ϕ(Y )] : EPa,x [s(Y )] = 1, EPa,x [g(s(Y ))] ≤ ηf (a,x)

}
. (115)

This is a convex optimization problem (equivalently, minimize −EPa,x [sϕ]) with an affine equal-
ity and a convex inequality constraint. Slater’s condition holds because s(·) ≡ 1 is feasible and
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satisfies EPa,x [g(1)] = f(1) = 0 < ηf (a,x) (for ηf (a,x) > 0). Therefore, strong duality applies
and the optimal value equals the dual optimal value.

Introduce Lagrange multipliers u ∈ R for EPa,x [s] = 1 and λ ≥ 0 for EPa,x [g(s)] ≤ ηf (a,x). The
Lagrangian is

L(s,λ,u) = EPa,x [s(Y )ϕ(Y )] + u
(
1− EPa,x [s(Y )]

)
+ λ

(
ηf (a,x)− EPa,x [g(s(Y ))]

)
, (116)

i.e.

L(s,λ,u) = u+ ληf (a,x) + EPa,x

[
s(Y )(ϕ(Y )− u)− λg(s(Y ))

]
. (117)

Thus

θup(a,x) = inf
λ≥0, u∈R

sup
s>0
L(s,λ,u). (118)

For λ > 0, define t(Y ) := (ϕ(Y ) − u)/λ. Using separability of the integrand in s(·) and the
standard interchange theorem for integral functionals (equivalently, the conjugate-of-integral
identity), we have

sup
s>0

EPa,x

[
s(Y )t(Y )− g(s(Y ))

]
= EPa,x

[
sup
s>0
{s t(Y )− g(s)}

]
= EPa,x

[
g∗(t(Y ))

]
, (119)

where g∗(t) := sups>0{st− g(s)} is the convex conjugate of g. Consequently,

sup
s>0
L(s,λ,u) = u+ ληf (a,x) + λEPa,x

[
g∗
(
ϕ(Y )− u

λ

)]
. (120)

Minimizing over (λ,u) yields the stated dual representation:

θup(a,x) = inf
λ>0, u∈R

{
ληf (a,x) + u+ λEPa,x

[
g∗
(
ϕ(Y )− u

λ

)]}
. (121)

■

Proof of Prop. 2

Substitute r = 1/s. Then, st − g(s) = st − sf(1/s) = t−f(r)
r . Taking sups>0 is the same as

taking supr>0. Therefore, g∗(t) = supr>0
t−f(r)

r .

For the optimality condition, define

Ht(r) := t− f(r)
r

, r > 0. (122)

Assume the supremum is attained at some r∗ > 0, and set

v := g∗(t) = Ht(r∗) = t− f(r∗)
r∗ . (123)

Then for every r > 0,

t− f(r)
r

≤ v ⇐⇒ f(r) ≥ t− vr. (124)
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At r = r∗ we have equality: f(r∗) = t− vr∗. Hence for all r > 0,

f(r) ≥ f(r∗)− v(r − r∗) = f(r∗) + a(r − r∗), (125)

where a := −v. By the supporting-hyperplane characterization of the convex subdifferential,
this implies a ∈ ∂f(r∗). Finally, f(r∗) = t− vr∗ gives

t = f(r∗)− r∗a, g∗(t) = v = −a. (126)

If f is differentiable at r∗, then ∂f(r∗) = {f ′(r∗)} and the conclusion follows.

■

Proof of Coro. P1

KL. fKL(r) = r log r. Then,

gKL(s) = sfKL(1/s) = s · 1
s

log(1/s) = − log s. (127)

Now, compute g∗
KL(t) = sups>0{st + log s}. Let ψ(s) = st + log s. Then, ψ′(s) = t + 1/s. If

t < 0, the stationary point is s∗ = −1/t > 0, giving g∗
KL(t) = ψ(s∗) = (−1/t)t + log(−1/t) =

−1− log(−t). If t ≥ 0, then st+ log s→∞ as s→∞, so g∗
KL(t) = +∞.

Hellinger. fH(r) = 1
2(
√
r − 1)2 = 1

2(r − 2
√
r + 1). Then,

gH(s) = sfH(1/s) = 1
2 s
(1
s
− 2√

s
+ 1

)
= 1

2(1− 2
√
s+ s). (128)

Note g∗
H(t) = sups>0

{
st− 1

2(1− 2
√
s+ s)

}
. Let u ≜

√
s > 0 so s = u2. The objective becomes

F (u) = tu2− 1
2(1− 2u+u2) =

(
t− 1

2

)
u2 +u− 1

2 . If t < 1/2, F is concave quadratic in u. Since
F ′(u) = 2(t− 1/2)u+ 1, u∗ = 1

1−2t . Plugging in,

g∗
H(t) = F (u∗) =

(
t− 1

2

) 1
(1− 2t)2 + 1

1− 2t −
1
2 = t

1− 2t . (129)

If t ≥ 1/2, then F (u)→∞ as u→∞, so g∗
H(t) = +∞.

χ2. gχ2(s) = sfχ2(1/s) = 1
2 s
(

1
s − 1

)2
= (1−s)2

2s . Also, g∗
χ2(t) = sups>0

{
st − (1−s)2

2s

}
, where

(1−s)2

2s = 1
2

(
1
s − 2 + s

)
. Then, the objective is

st− 1
2
(1
s
− 2 + s

)
= 1 + s

(
t− 1

2

)
− 1

2s . (130)

Differentiate w.r.t. s:

d

ds

(
1 + s(t− 1

2)− 1
2s
)

= (t− 1
2) + 1

2s2 . (131)
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Plugging in (using 1/s∗ =
√

1− 2t):

g∗
χ2(t) = 1 + s∗(t− 1

2)− 1
2s∗ = 1−

√
1− 2t

2 −
√

1− 2t
2 = 1−

√
1− 2t. (132)

At t = 1/2, this becomes 1. If t > 1/2, the term s(t− 1
2) drives the supremum to +∞ as s→∞.

TV. gTV(s) = sfTV(1/s) = 1
2 s
∣∣∣1s − 1

∣∣∣ = 1
2 |1− s|. Also, g∗

TV(t) = sups>0

{
st− 1

2 |1− s|
}

. Split
this into two regions, where s ≥ 1 and 0 < s ≤ 1.

When s ≥ 1, |1− s| = s− 1. So,

st− 1
2(s− 1) = s

(
t− 1

2

)
+ 1

2 . (133)

If t > 1/2: this goes to +∞ as s → ∞. If t ≤ 1/2, the maximum over s ≥ 1 occurs at the
smallest s; i.e., s = 1, giving value t.

When 0 < s ≤ 1, |1− s| = 1− s, so

st− 1
2(1− s) = s

(
t+ 1

2

)
− 1

2 . (134)

If t < −1/2, then its maximum is −1/2. If t ≥ −1/2, then it’s maximized at s = 1, giving value
t. As a result,

g∗
TV(t) =


−1

2 , if t ≤ −1
2 ,

t, if − 1
2 < t ≤ 1

2 ,
+∞, if t > 1

2 .
(135)

■

Jensen-Shannon. gJS(s) = 1
2

(
s log s− (1 + s) log(1 + s) + (1 + s) log 2

)
. To compute g∗

JS(t) =
sups>0{st− gJS(s)}, let F (s) = st− gJS(s).

We have

g′
JS(s) = 1

2
(

log s− log(1 + s) + log 2
)

= 1
2 log

( 2s
1 + s

)
. (136)

Set F ′(s) = 0, which means t = g′
JS(s); i.e.,

2t = log
( 2s

1 + s

)
⇐⇒ e2t = 2s

1 + s
. (137)

Solving this for s gives

e2t(1 + s) = 2s ⇒ s∗ = e2t

2− e2t
. (138)

This requires 2 − e2t > 0, i.e., t < 1
2 log 2. If t ≥ 1

2 log 2, the objective grows like s(t − 1
2 log 2)

for large s, hence the supremum is +∞.

Now evaluate the objective at s∗. Let z ≜ e2t so that s∗ = z/(2 − z) and 1 + s∗ = 2/(2 − z).
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Then,

log s∗ = log z − log(2− z), log(1 + s∗) = log 2− log(2− z). (139)

Plug into gJS(s):

gJS(s∗) = 1
2
(
s∗ log s∗ − (1 + s∗) log(1 + s∗) + (1 + s∗) log 2

)
= 1

2
(
s∗ log z + log(2− z)

)
. (140)

Since log z = 2t, this is gJS(s∗) = ts∗ + 1
2 log(2− e2t). Therefore,

g∗
JS(t) = s∗t− gJS(s∗) = −1

2 log(2− e2t), for t < 1
2 log 2, (141)

and g∗
JS(t) = +∞ otherwise. ■

Proof of Prop. 4

((1) =⇒ (2)). For each fixed (a,x), define

∆(a,x) ≜ ℓ(h⋆,u⋆; a,x)− ess inf
h,u∈F

ℓ(h,u; a,x). (142)

Assume, for contradiction, that (2) fails; i.e., PA,X(B) > 0 for B ≜ {(a,x) : ∆(a,x) > 0}. By
the definition of the essential infimum and the decomposability of F , there exists a measurable
pair (h̃, ũ) ∈ F such that ℓ(h̃, ũ; a,x) < ℓ(h⋆,u⋆; a,x) on a set of positive measure B′ ⊆ B.

Define h′(a,x) ≜ h̃(a,x)1((a,x) ∈ B′) + h⋆(a,x)1((a,x) ̸∈ B′) and define u′(a,x) similarly. By
the decomposability assumption, (h′,u′) ∈ F . Then,

R(h⋆,u⋆) = E[ℓ(h⋆,u⋆,A,X)1((A,X) ̸∈ B′)] + E[ℓ(h⋆,u⋆,A,X)1((A,X) ∈ B′)] (143)
> E[ℓ(h⋆,u⋆,A,X)1((A,X) ̸∈ B′)] + E[ℓ(h̃, ũ,A,X)1((A,X) ∈ B′)] (144)
= R(h′,u′). (145)

This contradicts the optimality of (h⋆,u⋆) in (1). Therefore, PA,X(B) = 0; i.e., (h⋆,u⋆) is a
minimizer of ℓ(h,u; a,x) for PA,X -almost every (a,x).

((2) =⇒ (1)). Since ℓ(h⋆,u⋆; a,x) ≤ ℓ(h,u; a,x) for all (h,u) ∈ F and for PA,X -almost every
(a,x), integrating yields R(h⋆,u⋆) ≤ R(h,u) for all (h,u) ∈ F . ■

Proof of Lemma 1

Define

ea ≜ Pr(A = a | X) (146)
λa ≜ exp(hβ(a,X)) (147)

Ba(e) ≜ Bf (ea(X)) (148)
ua ≜ u(a,X) (149)

g∗
a ≜ g∗

(
φ(Y )− u(A,X)

λA(X)

)
. (150)
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Then,

ℓ(V ; (β, γ), e) ≜ λA(BA + g∗
A) + uA(X). (151)

Define

L1(e) ≜ λA(BA + g∗
A) + uA(X). (152)

The correction term is

L2(e) ≜
∑

a

eaλaB
′
a{1(A = a)− ea}. (153)

Then, Rdb(e) ≜ E[L1(e) + L2(e)]. Then,

∂

∂t
E[L1(et)]

∣∣∣∣
t=0

= ∂

∂t
E[L1(eA + tsA)]

∣∣∣∣
t=0

(154)

= E
[
λAB

′(eA)sA

]
. (155)

Also,

L2(e) ≜
∑

a

eaλaB
′
a︸ ︷︷ ︸

Ua(ea)

{1(A = a)− ea}︸ ︷︷ ︸
Va(ea)

. (156)

Then,

∂

∂t
E[L2(et)]

∣∣∣∣
t=0

= E
[∑

a∈A

(
∂Ua

∂t
Va + ∂Va

∂t
Ua

)]
, (157)

where

E
[∑

a∈A
U ′

a(e)Va(ea)
]

= EX

[∑
a∈A

U ′
a(e)EA|X [1(A = a)− ea]

]
= 0, (158)

and

E
[∑

a∈A
Ua(e)V ′

a(ea)
]

= −E
[∑

a∈A
Ua(e)sa

]
= −EX

[∑
a∈A

eaλaB
′
asa

]
. (159)

Then,

∂Rdb

∂t
= E[λAB

′(eA)sA]− EX

[∑
a∈A

eaλaB
′
asa

]
(160)

= EX

[∑
a∈A

eaλaB
′
asa

]
− EX

[∑
a∈A

eaλaB
′
asa

]
(161)

= 0. (162)

■

34



Proof of Theorem 3

Lemma 6 (Higher-order smoothness ⇒ Local quadratic expansion inequality).
Higher-order smoothness in Assumption 2 implies the local quadratic expansion inequal-
ity:

κ1
2 ∥ϑ− ϑ0∥2 ≤ Rdb(ϑ; e0)−Rdb(ϑ0; e0) ≤ κ2

2 ∥ϑ− ϑ0∥2, for ϑ ∈ Θ0. (163)

Proof of Lemma 6. Let r(t) ≜ R(ϑt; e0), where ϑt ≜ ϑ0 + t(ϑ − ϑ0) for t ∈ [0, 1]. By
Taylor’s theorem with integral remainder,

r(1) = r(0) + r′(0) +
∫ 1

0
(1− t)r′′(t)dt. (164)

Since ϑ0 is a local minimizer, r′(0) = (ϑ− ϑ0)⊺∇ϑR(ϑ0; e0) = 0. The second derivative is

r′′(t) = (ϑ− ϑ0)⊺H(ϑt; e0)(ϑ− ϑ0). (165)

Under the Higher-order smoothness assumption (κ1I ⪯ H(ϑ; e0) ⪯ κ2I for ϑ ∈ Θ0), and
assuming convexity of Θ0 so that the path lies in Θ0, we have

κ1
2 ∥ϑ− ϑ0∥22 ≤

∫ 1

0
(1− t)(ϑ− ϑ0)⊺H(ϑt; e0)(ϑ− ϑ0)dt ≤ κ2

2 ∥ϑ− ϑ0∥22. (166)

Proof of Eq. (54)

For brevity, we write R(ϑ; e′) ≜ Rdb(ϑ; e′) for any ϑ and e′. Let R̂k denote the empirical risk of
R using the k’th fold dataset.

We decompose the population excess risk using a telescoping sum:

R(ϑ̂k; e0)−R(ϑ0; e0) = R(ϑ̂k; e0)−R(ϑ̂k; êk)︸ ︷︷ ︸
(A)

+ R(ϑ̂k; êk)− R̂k(ϑ̂k; êk)︸ ︷︷ ︸
(B)

(167)

+ R̂k(ϑ̂k; êk)− R̂k(ϑ0; êk)︸ ︷︷ ︸
≤0

+ R̂k(ϑ0; êk)−R(ϑ0; êk)︸ ︷︷ ︸
(C)

(168)

+R(ϑ0; êk)−R(ϑ0; e0)︸ ︷︷ ︸
(D)

. (169)

The term ≤ 0 is due to the optimality of ϑ̂k for the empirical risk objective. We will show that

1. (B) + (C) = Op(n−1/2) by the uniform LLN in Assumption 2.

2. (A) + (D) = Op(r2
n) by the orthogonality and smoothness in Assumption 2.

As a result,

R(ϑ̂k; e0)−R(ϑ0; e0) = Op(n−1/2) +Op(r2
n). (170)
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Bounds for (B) + (C). Terms (B) + (C) are bounded by Uniform LLN as follows:

(B) + (C) ≤ 2 sup
ϑ

∣∣R(ϑ; êk)− R̂k(ϑ; êk)
∣∣ = Op(n−1/2). (171)

Bounds for (A) + (D). Assume that the risk functional e 7→ R(ϑ; e) is twice Fréchet differen-
tiable with bounded second derivatives on the positivity region. Fix a ϑ. Consider a parametric
submodel t 7→ et ≜ e0 + t(êk − e0). Let δe0 ≜ êk − e0.

By Taylor’s theorem, there exists e† between e0 and êk such that:

R(ϑ; êk) = R(ϑ; e0) +∇eR(ϑ; e0)[δe0] + 1
2∇eeR(ϑ; e†)[δe0, δe0]. (172)

Rearranging for term (D) where ϑ = ϑ0:

(D) = R(ϑ0; êk)−R(ϑ0; e0) = ∇eR(ϑ0; e0)[δe0] + 1
2∇eeR(ϑ0; e†)[δe0, δe0]. (173)

By Lemma 1 (Orthogonality), ∇eR(ϑ0; e0)[δe0] = 0. Using the boundedness of ∇eeR (Assump-
tion 2), we have (D) = OP (∥êk − e0∥22) = OP (r2

n).

For term (A) where ϑ = ϑ̂k:

(A) = R(ϑ̂k; e0)−R(ϑ̂k; êk) = −∇eR(ϑ̂k; e0)[δe0] +OP (r2
n). (174)

Crucially, Lemma 1 states that orthogonality holds for all ϑ (not just ϑ0). Therefore,
∇eR(ϑ̂k; e0)[δe0] = 0 directly. This implies that the first-order error term vanishes exactly,
and we are left only with the second-order remainder:

(A) = OP (r2
n). (175)

Combining yields:

(A) + (D) = OP (r2
n). (176)

Bound Derivation. Combining all terms:

R(ϑ̂k; e0)−R(ϑ0; e0) = Op(n−1/2) +OP (r2
n). (177)

Assuming consistency (so ϑ̂k ∈ Θ0 w.h.p), we apply Lemma 6:

κ1
2 ∥ϑ̂k − ϑ0∥2 ≤ R(ϑ̂k; e0)−R(ϑ0; e0). (178)

Solving the quadratic inequality for ∥ϑ̂k − ϑ0∥ establishes:

∥ϑ̂k − ϑ0∥2 = Op(n−1/2 + r2
n). (179)

Proof of Eq. (55)

For brevity, we just write

θk ≜ θ̂(k)
φ , λk ≜ λ̂k, ηk ≜ η̂k

f , mk ≜ m̂k, uk ≜ ûk. (180)
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All the true parameters are indexed as 0. For each (a,x),

θk(a,x)− θφ(a,x) = (λk − λ0)(η0 +m0)︸ ︷︷ ︸
(I)

+ (λk − λ0)(ηk − η0)︸ ︷︷ ︸
(II)

(181)

+ λ0(ηk − η0)︸ ︷︷ ︸
(III)

+ λk(mk −m0)︸ ︷︷ ︸
(IV )

+ (uk − u0)︸ ︷︷ ︸
(V )

. (182)

We bound the squared L2 norm of each term. By Lipschitz parametrization (Assumption 3):

∥(V )∥22 = OP (∥ϑ̂k − ϑ0∥22). (183)

For (I), using the boundedness of nuiances (Assumption 3, |η0 +m0| ≤ C):

∥(I)∥22 ≤ C2∥λk − λ0∥22 ≤ C ′∥ϑ̂k − ϑ0∥22 = OP (∥ϑ̂k − ϑ0∥22). (184)

For (III), using |λ0| ≤ eM and Lipschitz continuity of η (via Bf ) with respect to e:

∥(III)∥22 ≤ e2M∥ηk − η0∥22 = OP (r2
n). (185)

For (II), we use the supremum bound on λ: ∥λk − λ0∥∞ ≤ 2eM . Then:

∥(II)∥22 ≤ ∥λk − λ0∥2∞∥ηk − η0∥22 ≤ 4e2Mr2
n = OP (r2

n). (186)

Finally, consider (IV ). Define mφ̂(a,x) ≜ E[Zk
i | A = a,X = x]. Decompose mk − m0 =

(mk−mϑ̂
)+(m

ϑ̂
−m0). By Assumption 3, ∥mk−mϑ̂

∥2 = OP (sn). By Lipschitz, ∥m
ϑ̂
−m0∥2 ≤

Lm∥ϑ̂− ϑ0∥. Therefore,

∥(IV )∥22 ≤ e2M (∥mk −mϑ̂
∥2 + ∥m

ϑ̂
−m0∥2)2 = OP (s2

n) +OP (∥ϑ̂k − ϑ0∥2). (187)

Combining all terms shows that

∥θk − θφ∥22 = OP (n−1/2 + r2
n + s2

n). (188)

Proof of Lemma 2

Let the sorted elements of θ̂up be denoted by u(1) ≤ u(2) ≤ · · · ≤ u(nf ). By Definition 7,
θ̂k

up = u(k). The inequality u(k) ≥ θ holds if and only if at least nf − k + 1 elements satisfy
ui ≥ θ (since this is equivalent to having at most k − 1 elements strictly less than θ).

Similarly, let the sorted elements of θ̂lo be l(1) ≤ · · · ≤ l(nf ). By definition, θ̂k
lo is the k-th largest

element, which corresponds to l(nf −k+1). The inequality l(nf −k+1) ≤ θ holds if and only if at
least nf −k+ 1 elements satisfy li ≤ θ (since this is equivalent to having at most k− 1 elements
strictly greater than θ). ■
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Proof of Thm. 4

Write R̂ ≡ R̂n. Decompose the population excess risk:

0 ≤ R(ϑ̂; e0)−R(ϑ0; e0) = R(ϑ̂; e0)−R(ϑ̂; ê)︸ ︷︷ ︸
(A)

+R(ϑ̂; ê)− R̂(ϑ̂; ê)︸ ︷︷ ︸
(B)

+ R̂(ϑ̂; ê)− R̂(ϑ0; ê)︸ ︷︷ ︸
≤0

+ R̂(ϑ0; ê)−R(ϑ0; ê)︸ ︷︷ ︸
(C)

+R(ϑ0; ê)−R(ϑ0; e0)︸ ︷︷ ︸
(D)

.

By the uniform LLN in Assumption 4,

(B) + (C) ≤ 2 sup
ϑ∈Θ

∣∣R̂(ϑ; ê)−R(ϑ; ê)
∣∣ = Op(n−1/2).

By Lipschitz continuity of R(ϑ; ·) in e uniformly over ϑ ∈ Θ,

|(A)|+ |(D)| ≤ 2LR∥ê− e0∥1 = Op(n−1/2),

since êa = na/n implies ∥ê− e0∥1 = Op(n−1/2) under positivity.

Hence
0 ≤ R(ϑ̂; e0)−R(ϑ0; e0) = Op(n−1/2).

Let Θ0 be the neighborhood from the quadratic growth condition (Lemma 6). Since R(ϑ; e0)−
R(ϑ0; e0) is bounded away from 0 on Θ \ Θ0, the above display implies Pr(ϑ̂ ∈ Θ0) → 1.
Therefore, on this event,

κ1
2 ∥ϑ̂− ϑ0∥22 ≤ R(ϑ̂; e0)−R(ϑ0; e0) = Op(n−1/2),

so ∥ϑ̂− ϑ0∥22 = Op(n−1/2).

Next, write (as in Def. 9, marginal case)

θ̂φ(a) = λ̂a
(
η̂a + m̂a

)
+ ûa, θφ(a) = λ0,a

(
η0,a +m0,a

)
+ u0,a,

where λa = exp(ha), ηa = Bf (ea), Zϑ ≡ g∗((φ(Y ) − uA)/λA

)
, mϑ,a = E[Zϑ | A = a], and

m̂a = n−1
a

∑
i:Ai=a Zϑ̂,i. Decompose, for each a,

θ̂φ(a)− θφ(a) = (λ̂a − λ0,a)(η0,a +m0,a) + (λ̂a − λ0,a)(η̂a − η0,a) + λ0,a(η̂a − η0,a)
+ λ̂a(m̂a −m0,a) + (ûa − u0,a) =: (I) + (II) + (III) + (IV ) + (V ).

By boundedness of h and smoothness of exp(·) on bounded sets, ∥λ̂ − λ0∥2 ≲ ∥ĥ − h0∥2 ≤
∥ϑ̂− ϑ0∥2, and ∥û− u0∥2 ≤ ∥ϑ̂− ϑ0∥2. Thus ∥(I)∥22 + ∥(V )∥22 = Op(∥ϑ̂− ϑ0∥22) = Op(n−1/2).

Also, ∥η̂ − η0∥2 ≲ ∥ê − e0∥1 = Op(n−1/2) (bounded B′
f ), so ∥(III)∥22 = Op(n−1). Moreover,

∥(II)∥2 ≤ ∥λ̂−λ0∥2∥η̂−η0∥∞ = Op(n−1/4)·Op(n−1/2) = Op(n−3/4), hence ∥(II)∥22 = Op(n−3/2).

For (IV ), decompose

m̂a −m0,a = 1
na

∑
i:Ai=a

(
Z

ϑ̂,i − Zϑ0,i
)

︸ ︷︷ ︸
(a)

+

 1
na

∑
i:Ai=a

Zϑ0,i − E[Zϑ0 | A = a]

︸ ︷︷ ︸
(b)

+
(
mϑ0,a −mϑ̂,a

)
︸ ︷︷ ︸

(c)

.
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By bounded derivative of g∗ and bounded parameters, Zϑ is Lipschitz in ϑ, so (a) = Op(∥ϑ̂ −
ϑ0∥2) = Op(n−1/4) and (c) = Op(∥ϑ̂ − ϑ0∥2) = Op(n−1/4). By positivity na ≍ n and CLT,
(b) = Op(n−1/2). Hence ∥m̂−m0∥2 = Op(n−1/4). Since λ̂ is bounded, ∥(IV )∥22 = Op(n−1/2).

Collecting terms, the dominant squared contributions are Op(n−1/2) from (I), (IV ), and (V ),
so ∥θ̂φ − θφ∥22 = Op(n−1/2). ■
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