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Motivation and Problems Identification Criterion 
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1. We develop the identification criterion for evaluating the target policy on the 
target domain from multiple experimental datasets from different sources. 

DML-based Estimator

2. We develop doubly robust estimator (DML-estimator) for estimating the 
policy intervention, and provide a finite sample learning guarantee.
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💡
A target policy on a target domain is evaluable from multiple 
experiments from different source domains under these conditions. 

DML-estimator￼  (￼  

are nuisance estimates and ￼  are samples) satisfies doubly robustness (If ￼ ,

￼  converges to ￼  at ￼  rate, the estimator converges at ￼  rate). 
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• (a) Synthetic and (b) real-world (ACTG-175), which assessed 
therapies for reducing CD4 cell counts in HIV patients.
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• (1) Noise-free (no noises are added to the estimated nuisance) 
and (2) Noisy environment — noises converging at ￼  rate 
is added to witness the doubly robustness behavior. 
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• For all experiments, the proposed DML-estimator exhibits 
doubly robustness. 
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