Efficient Policy Evaluation Across Multiple Different Experimental Datasets

Yonghan Jung*¹ and Alexis Bellot*² ¹ Purdue University, ² Google DeepMind

Yonghan is on the academic job market! Visit www.yonghanjung.me

Identification Criterion

Invariance of Y over policies $(Y \perp \pi_2 \mid C_1, C_2, X_1, X_2, W_1)$ in \mathscr{G}_{π_2}

Sample size (n)

Sample size (*1*

Invariance of W_1 over policies $(W_1 \perp \pi_1 \mid C_1, X_1)$ in \mathscr{G}_{π_1}

 $\mathbb{E}_{P^0_{\pi_0}}[Y] = \sum \mathbb{E}_{P^2_{\pi_2}}[Y \mid c_1, c_2, w_1, x_1, x_2] \pi_0(x_1 \mid c_1) P^1_{\pi_1}(w_1 \mid c_1, x_1) \pi_0(x_2 \mid c_1, c_2, x_1, w_1) P^0_{\pi_0}(c_1, c_2)$

A target policy on a target domain is evaluable from multiple experiments from different source domains under these conditions.

DML-based Estimator

 $\mathsf{DML-estimator} := \mathbb{E}_{D^2_{\pi_2}}[\hat{\omega}^2 \{Y - \hat{\mu}^2\}] + \mathbb{E}_{D^1_{\pi_2}}[\check{\omega}^1 \{\check{\mu}^2 - \hat{\mu}^1\}] + \mathbb{E}_{D^0}[\check{\mu}^1] \left(\{\hat{\mu}^i, \hat{\omega}^i\}\}\right)$

 $\hat{\omega}^i$ converges to μ_0^i, ω_0^i at $n^{-1/4}$ rate, the estimator converges at $n^{-1/2}$ rate).

- (a) Synthetic and (b) real-world (ACTG-175), which assessed therapies for reducing CD4 cell counts in HIV patients.
- (1) Noise-free (no noises are added to the estimated nuisance) and (2) Noisy environment — noises converging at $n^{-1/4}$ rate is added to witness the doubly robustness behavior.
- For all experiments, the proposed DML-estimator exhibits doubly robustness.