Complete Graphical Criterion for Sequential Covariate Adjustment in Causal Inference

Yonghan Jung^{1*} Min Woo Park² Sanghack Lee^{2*} Yonghan is on the academic job market! Visit www.yonghanjung.me.

Contribution

• We present Sequential Adjustment Criterion (SAC), a sound and complete criterion for sequential covariate adjustment.

Comparison with other graphical criteria for covariate adjustments.

Criterion	Static	Sequential	Multi-outcome
Back-Door (BD)	\checkmark	X	N/A
Adjustment Criterion (AC)	\checkmark	X	N/A
Sequential Back-Door (SBD)	\checkmark	\checkmark	X
multi-outcome SBD (mSBD)	\checkmark	\checkmark	\checkmark
SAC (Ours)	\checkmark	\checkmark	\checkmark

Motivation & Background

• Covariate Adjustment (CA) The causal effect from treatment **X** to outcome **Y** can be expressed in terms of observational data, using covariates **Z**.

- There is a **complete** graphical criteria **Adjustment Criterion (AC)** for CA. $P(y \mid do(x_1, x_2)) = \sum P(y \mid x_1, x_2, z_1, z_2) P(z_1, z_2)$
- Sequential Covariate Adjustment (SCA) is one of the most prevalent methods for estimating multi-outcome causal effects from observational data.
- Previously existing graphical criteria for SCA are **not complete** (i.e., ∃ graphs s.t. the causal effect is expressible through SCA while AC and mSBD are not satisfied).

Example: Not satisfied by existing criterion (mSBD),

but identified as SCA: $P(\mathbf{y_1}, \mathbf{y_2} \mid do(\mathbf{x_1}, \mathbf{x_2}))$ $= \sum P(y_2 | x_1, x_2, y_1, z_a, z_b, z_c, z_d) P(z_c, z_d, y_1 | x_1, z_a, z_b) P(z_a, z_b)$ Z_a, Z_b, Z_c, Z_d

(¹Purdue University ²Seoul National University)

Complete Criterion for SCA

Completeness

ordered sets such that $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_m)$ and $\mathbf{Y} = (\mathbf{Y}_0, \dots, \mathbf{Y}_m)$. Let $\mathbf{Z} \subseteq \mathbf{V} \setminus (\mathbf{X} \cup \mathbf{Y})$ denote vertices ordered as $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_m)$. Define $\mathbf{H}_i := \mathbf{X}^{(i)} \cup \mathbf{Y}^{(i)} \cup \mathbf{Z}^{(i)}$.

$$P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} \prod_{j=0}^{m} P(\mathbf{z}_{j+1})$$

Sequential Adjustment Criterion (SAC).

Given $\mathbf{Z} \coloneqq (\mathbf{Z}_1, \cdots, \mathbf{Z}_m)$ where each \mathbf{Z}_i is non-descendant of $\mathbf{X}^{\geq i+1}$, \mathbf{Z} is said to satisfy *sequential adjustment criterion (SAC)* if the following conditions are satisfied for $i = 1, \cdots, m$:

- 1. X_i and $\mathbf{Y}^{\geq i}$ are d-separated given $\mathbf{Z}_i \cup \mathbf{H}_{i-1}$ in subgraph, proper sequential backdoor graph $(\mathcal{G}_{\overline{\mathbf{X}}^{\geq i+1}})_{\text{pbd}}^{X_i,\mathbf{Y}^{\geq i}}$.
- 2. \mathbf{Z}_i is not a descendant of proper causal path set from X_i to $\mathbf{Y}^{\geq i}$.

Example (continued)

(1) Subgraph for X_1 : $(\mathcal{G}_{\overline{X_2}})_{\text{pbd}}^{X_1,(Y_1,Y_2)}$: * Given $\mathbf{Z}_1 = \{Z_a, Z_b\}$, X_1 and $\{Y_1, Y_2\}$ are **d-separated** in the subgraph. $* Z_1$ is not a descendent of proper causal path set from X_1 to (Y_1, Y_2) .

- (2) Subgraph for X_2 : $\mathcal{G}_{pbd}^{X_2, Y_2}$
- * Given history $\mathbf{H}_{1} = \{Z_{a}, Z_{b}, X_{1}, Y_{1}\}$ and $\mathbf{Z}_{2} = \{Z_{c}, Z_{d}\}, X_{2}$ and Y_{2} are **d-separated** in the subgraph.
- $* \mathbb{Z}_2$ is not a descendent of proper causal path set from X_2 to Y_2 .

- Definition (Sequential Covariate Adjustment (SCA)). Let (X, Y) denote a pair of
 - $_{1}, \mathbf{y}_{j} \mid \mathbf{h}_{j-1}, \mathbf{x}_{j}, \mathbf{z}_{j}).$

 $\therefore \mathbf{Z} = (\{Z_a, Z_b\}, \{Z_c, Z_d\}) \text{ satisfies SAC}.$ $\boldsymbol{P}(\boldsymbol{y_1}, \boldsymbol{y_2} \mid \mathrm{do}(\boldsymbol{x_1}, \boldsymbol{x_2}))$ Z_a, Z_b, Z_c, Z_d

Soundness and Completeness of SAC

Z satisfies SAC $\iff P(\mathbf{y} \mid do(\mathbf{x}))$ is expressible as SCA by adjusting over **Z**

- \checkmark mSBD \Longrightarrow SAC.
 - The SAC can encompass the mSBD.
 - ✓ Adjustment Criterion (AC) \implies SAC.
 - The AC is a special case of the SAC where m = 1.
 - $P(\mathbf{y} \mid do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y} \mid \mathbf{x}, \mathbf{z}) P(\mathbf{z}).$

Constructive SAC (Algorithm)

Construction of Sequential Adjustment Set

- Input: A disjoint pair of ordered set (\mathbf{X}, \mathbf{Y}) and a causal graph \mathcal{G} .
- **Output**: An ordered set $\mathbf{Z}^{an} := (\mathbf{Z}_{1}^{an}, \cdots, \mathbf{Z}_{m}^{an}).$ $\exists (\mathbf{Z}_1, \cdots, \mathbf{Z}_m)$ satisfying SAC $\Leftrightarrow \mathbf{Z}^{an}$ satisfies SAC.

Construction of Minimal Sequential Adjustment Set

minSCA(X, Y, G) outputs Z^{\min} , the smallest subset of Z^{\min} without sacrificing the validity of the adjustment.

$$P(y_1, y_2 \mid do(x_1, x_2)) = \sum_{z_a, z_b} P(y_1, y_2)$$

- sequential covariate adjustment.
- sequential covariate adjustment.
- ensuring that no unnecessary vertices are included.

The Thirty-Eighth Annual Conference on Neural Information Processing Systems

 $= \sum P(y_2 | x_1, x_2, y_1, z_a, z_b, z_c, z_d) P(z_c, z_d, y_1 | x_1, z_a, z_b) P(z_a, z_b)$

• With its soundness and completeness, SAC covers existing covariate adjustment criteria.

Example (continued) $\mathbf{Z}^{\min} = (\{Z_a, Z_b\}, \emptyset)$ satisfies SAC. Therefore,

 $y_2 | x_1, x_2, y_1, z_a, z_b) P(y_1 | x_1, z_a, z_b) P(z_a, z_b)$

Conclusion

1. Sequential Adjustment Criterion (SAC) is a sound and complete criterion for

2. Constructive Sequential Adjustment Criterion identifies a set that satisfies the sequential adjustment criterion *if and only if* the causal effect can be expressed as a

3. An algorithm **minSCA** for identifying a minimal sequential covariate adjustment set