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Abstract

Covariate adjustment, also known as back-door adjustment, is a fundamental tool in
causal inference. Although a sound and complete graphical identification criterion,
known as adjustment criterion (Shpitser et al., 2010), exists for static contexts,
sequential contexts present challenges. Current practices, such as the sequential
back-door adjustment (Pearl and Robins, 1995) or multi-outcome sequential back-
door adjustment (Jung et al., 2020), are sound but incomplete; i.e., there are
graphical scenarios where the causal effect is expressible via covariate adjustment,
yet these criteria do not cover. In this paper, we exemplify this incompleteness and
then present the sequential adjustment criterion, a sound and complete criterion for
sequential covariate adjustment. We provide a constructive sequential adjustment
criterion that identifies a set that satisfies the sequential adjustment criterion if
and only if the causal effect can be expressed as a sequential covariate adjustment.
Finally, we present an algorithm for identifying a minimal sequential covariate
adjustment set, which optimizes efficiency by ensuring that no unnecessary vertices
are included.

1 Introduction

Covariate adjustment (also known as the back-door adjustment (Pearl, 1995)) —
∑

z P (y | x, z)P (z)
where Z is a set of covariates, X is a treatment, and Y is an outcome—is one of the most prevalent
method for estimating causal effects from observational data. Sufficient conditions have been
established to determine whether causal effects can be expressed through covariate adjustment. For
example, back-door criterion (BD) (Pearl, 1995) is a sound graphical condition to determine if the
causal effect is expressible as a covariate adjustment. Shpitser et al. (2010) extended the BD and
developed a sound and complete graphical criterion, called adjustment criterion (AC). van der Zander
et al. (2014) and Maathuis and Colombo (2015) extended the adjustment criterion to general graph
classes including directed acyclic graphs, maximal ancestral graphs, or partial ancestral graphs. The
criterion from Maathuis and Colombo (2015) is sound but incomplete, which Perkovic et al. (2018)
addressed by developing a sound and complete adjustment criterion.

Beyond such static adjustment criterion, sequential covariate adjustment (also known as the g-formula
(Robins, 1986)) has been studied. For example, sequential back-door (SBD) criterion (Pearl and
Robins, 1995) extended the back-door criterion to the sequential setting. Since the SBD criterion
only considered a single outcome, Jung et al. (2020) extended it to accommodate multiple outcome
variables called multi-outcome sequential back-door (mSBD) criterion. However, as detailed in
Sec. 3, this criterion is not complete; i.e., there exists an example where the mSBD criterion is not
satisfied, but the causal effect is identified as a sequential covariate adjustment. While it is known
that the sequential ignorability condition (Richardson and Robins, 2013) is sound and complete for
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Table 1: Comparison of graphical criteria for (sequential) covariate adjustments

Criterion Static Sequential Multi-outcome Completeness

BD (Pearl, 1995, 2000) ✁ ✂ N/A ✂

AC (Shpitser et al., 2010) ✁ ✂ N/A ✁

SBD (Pearl and Robins, 1995) ✁ ✁ ✂ ✂

mSBD (Jung et al., 2020) ✁ ✁ ✁ ✂

SAC (Ours) ✁ ✁ ✁ ✁

the g-formula estimand, it does not provide a graphical criterion that can be tested based on a graph
compatible with the distribution.

To address this challenge, we devise a sound and complete graphical criterion for the sequential
covariate adjustment. Table 1 visualizes our contribution against previous graphical criteria for
covariate adjustments.2 Specifically, our contributions are as follows:

1. We demonstrate the incompleteness of mSBD criterion by exemplifying a graph such that the
causal effect is given as sequential covariate adjustment where the mSBD criterion is not satisfied.
Moreover, we discuss the impracticality of other existing criteria.

2. We devise sequential adjustment criterion (SAC), a sound and complete graphical criterion for
sequential covariate adjustment.

3. We develop a constructive sequential adjustment criterion that yields a set that satisfies the SAC if
and only if the causal effect can be expressed as a sequential covariate adjustment. Furthermore,
we present an algorithm to identify a minimal sequential covariate adjustment set.

The proofs for all results are provided in Sec. A in the supplementary document.

2 Preliminaries

We introduce the necessary notation and background. Key notations are summarized in Table 2.

Structural Causal Models. We use Structural Causal Models (SCMs) (Pearl, 2000). An SCM M
is a quadruple M := →U,V,P (U),F ↑. U is a set of exogenous (latent) variables following a joint
distribution P (U). V is a set of endogenous (observable) variables whose values are determined by
functions F = {fVi}Vi↑V such that Vi ↓ fVi(pai,ui) where PAi ↔ V \ {Vi} and Ui ↔ U. Each
SCM M induces a distribution P (V) and a causal graph G = G(M) over V in which there exists
a directed edge from every variable in PAi to Vi and dashed-bidirected arrows encode correlated
latent variables. Performing an intervention fixing X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the original equations of X (i.e., fX(pax,ux))
by the constant x for all X ↗ X and induces an interventional distribution P (V | do(x)).

Graphs. We consider a graph G having vertices V and edges E composed of directed (Vi ↘ Vj)
and bidirected edges (Vi ≃ Vj). An ordered sequence of distinct nodes in G is called a path between
Vi and Vj in G if (1) the start node is Vi and the end node is Vj , and (2) there is an edge (directed or
bidirected) between any two subsequent variables in the sequence. A variable Vi is called a collider
on the path if the path contains two edges having arrow heads toward Vi; i.e., ⇐↘ Vi ↓⇐ where
⇐↘↗ {↘,≃}. A path is directed (or causal), if it contains only directed edges, all pointing in the
same direction. We say that two sets of vertices A,B ↔ V are d-connected w.r.t. Z ↔ V \ (A ⇒B)
in G if there exists a path between Vi ↗ A and Vj ↗ B where every non-colliders on the path is not
contained in Z and all colliders are in AnG(Z). We say that Z d-separates (A,B) in G if they are
not d-connected w.r.t. Z in G. We denote GAB by G with removing those edges toward A and from
B. For disjoint sets of vertices A1, · · · ,Am ↔ A, we use (A1, · · · ,Am) to represent an ordered
set, where the order needs to be highlighted. For the unordered set, we use braces as {A1, · · · ,Am}.

2The multi-outcome column indicates whether the outcome for each criterion is a sequence of vectors or a
single vector. Therefore, BD and AC, which deal with static context, are not applicable.
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Table 2: Key notations

Notation Definition

X,X,x,x A random vector, variable, and their realized values.∑
x f(x) A marginalization of f(x) over values in the domain of X.
X

(i) (X0, · · · ,Xi) for the ordered set X = (X0, · · · ,Xn).
X

↓i (Xi, · · · ,Xn) for the ordered set X.
DeG(C), AnG(C) Descendants and ancestors of C in G.

pcpG(X,Y) Proper causal path set; i.e., (DeGX
(X) \X) ⇑AnGX(Y).

dpcpG(X,Y) DeG(pcpG(X,Y)).

Adjustment Criterion. We revisit the problem of characterizing a criterion such that the causal
effect is given as an adjustment. Formally, the adjustment set relative to (X,Y) in G is defined as a
set Z such that, for any P compatible with G, the following is satisfied (Shpitser et al., 2010):

P (y | do(x)) =
∑

z

P (y | x, z)P (z). (1)

The adjustment criterion (Shpitser et al., 2010) provides a sound and complete criterion for the causal
effect P (y | do(x)) to be expressed as a covariate adjustment in Eq. (1). To present the adjustment
criterion, we define a proper causal path between X and Y as a directed path from any of X ↗ X

to any of Y ↗ Y on which the path does not contain a node in X \ {X}. A proper causal path set
pcpG(X,Y) is a collection of nodes excluding X on all proper causal paths from X ↗ X to Y ↗ Y,
defined in Table 2. dpcpG(X,Y) is a descendant of the proper causal path set defined in Table 2.
The adjustment criterion utilizes this subgraph called the proper back-door graph:
Definition 1 (Proper Back-Door Graph (van der Zander et al., 2014)). Let (X,Y) denote a disjoint
pair in V. The proper back-door graph GX,Y

pbd is a graph obtained from G by removing an edge
X ↘ D for each X ↗ X and D ↗ pcpG(X,Y).

Then, the adjustment criterion and its characterization are given as follows.
Definition 2 (Adjustment Criterion (Shpitser et al., 2010; van der Zander et al., 2014)). Let (X,Y)
denote a disjoint pair in V. A set of variables Z ↔ V \ (X ⇒Y) is said to satisfy the adjustment
criterion relative to (X,Y) in G if (1) (Y ⇓⇓ X | Z)GX,Y

pbd
and (2) Z ⇑ dpcpG(X,Y) = ⇔.

Proposition 1 (Shpitser et al. (2010); van der Zander et al. (2014)). Z satisfies the adjustment
criterion relative to (X,Y) in G if and only if Z is an adjustment set relative to (X,Y) in G.

For concreteness, in Fig. 3, Z := {Za,Zb} satisfies the adjustment criterion relative to X :=
{X1,X2} and Y := {Y1,Y2}. See (van der Zander et al., 2014, Sec. 4.2) for details. In the later
sections, we will extend this result to the sequential context.

3 Limitations of Existing Criterion for Sequential Covariate Adjustment

In this section, we demonstrate the limitations of existing criteria for sequential covariate adjustment,
which is defined as follows:
Definition 3 (Sequential Covariate Adjustment). Let (X,Y) denote a pair of ordered sets such that
X = (X1, . . . ,Xm) and Y = (Y0, . . . ,Ym). Let Z ↔ V \ (X ⇒Y) denote vertices ordered as
Z = (Z1, . . . ,Zm). Define Hi := X

(i) ⇒Y
(i) ⇒Z

(i). The set Z is said to be a sequential adjustment
set relative to (X,Y) in G if for any P compatible with G, the following is satisfied3:

P (y | do(x)) =
∑

z

m∏

j=0

P (zj+1,yj | hj↔1,xj , zj). (2)

The right-hand side of Eq. (2) is called the sequential covariate adjustment of Z w.r.t. (X,Y) in G.
3If an ordered set associates with an index out of range (e.g., X0, Xm+1), it is interpreted as the empty set.

An interval [a, b] (e.g., those associated with
∑

or
⋃

) with b < a is also an empty set.
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In this definition, sequential covariate adjustment relies on specific partitions X = (X1, · · · ,Xm)
and Y = (Y0, · · · ,Ym). To standardize these partitions, we employ a fixed structure based on a
topological order of (X,Y) in G so as to ensure that the partition aligns with the causal structure.
Definition 4 (Partitioning Operator). Let X and Y denote disjoint vertices where X = (X1, · · · ,Xm)
is topologically ordered along with G. Then, the operator PTX

G partitions Y relative to X and G;
i.e., PTX

G (Y) = (Y0, · · · ,Ym), where

Yi :=

{
Y \DeG(X) for i = 0,(
(Y \Y(i↔1)) ⇑DeG(Xi)

)
\DeG(X↓i+1) for i = 1, · · · ,m.

(3)

Hereafter, we will denote (X,Y) as a pair of vertices where X = (X1, · · · ,Xm) is topologically
ordered with respect to G and Y as the ordered set PTX

G (Y).

3.1 Limitation of mSBD Criterion

The multi-outcome sequential back-door (mSBD) criterion (Jung et al., 2020) has been developed to
determine whether an ordered set Z = (Z1, · · · ,Zm) constitutes a sequential adjustment set:
Definition 5 (Multi-outcome Sequential Back-Door Criterion (Jung et al., 2020)). Let (X,Y) denote
a pair of ordered sets in G. Let Z ↔ V \ (X ⇒ Y) be ordered as Z = (Z1, . . . ,Zm), and let
Hi := X

(i) ⇒Y
(i) ⇒Z

(i). Then, Z is said to satisfy the multi-outcome sequential back-door (mSBD)
criterion w.r.t. (X,Y) in G if, for i = 1, . . . ,m,

Zi is non-descendant of X↓i in G; and (4)
(
Y

↓i ⇓⇓ Xi | Hi↔1,Zi

)
G
XiX

→i+1
. (5)

Proposition 2 (mSBD adjustment (Jung et al., 2020)). If Z = (Z1, . . . ,Zm) satisfies the mSBD
criterion w.r.t. (X,Y) in G, the causal effect P (y | do(x)) is identifiable and expressible as
sequential covariate adjustment of Z w.r.t. (X,Y) in G:

P (y | do(x)) =
∑

z

m∏

j=0

P (zj+1,yj | hj↔1,xj , zj). (6)

Za
Zb

Zc
ZdX1

Y1
X2

Y2

Figure 1: Graph exemplify-
ing mSBD in Def. 5

For concreteness, consider the causal diagram G in Fig. 1 with X =
(X1,X2) and Y = (Y1,Y2). Applying the partitioning operator
PTX

G , we divide Y into two subsets: Y1 = {Y1} and Y2 = {Y2}.
Next, we define Z := (Z1,Z2), where Z1 := {Za,Zb} and Z2 :=
{Zc,Zd}. This ordered set Z satisfies the mSBD criterion relative to
(X,Y) in G. The first condition of the mSBD criterion holds since
Z1 does not include any descendants of X1 in G, and similarly, Z2

excludes any descendants of X2. To check the second condition of
the mSBD criterion, consider the graph GX1X2

derived from G by
removing the edges X1 ↘ Y1 and {Zb ↘ X2,Zc ↘ X2,Y1 ↘ X2}.
In this graph, (Y1,Y2) are conditionally independent of X1 given Z1

and X2, because any path from X1 to {Y1,Y2} is blocked (d-separated)
by Z1. Finally, in the graph GX2 , where the edge X2 ↘ Y2 is removed, any paths between X2 and
Y2 are d-separated when conditioned on Z1 ⇒ Z2. This analysis confirms that Z satisfies the mSBD
criterion, and therefore, the causal effect is given as follows:

P (y | do(x)) =
∑

z1,z2

P (y2 | x1,x2,y1, z1, z2)P (z2,y1 | x1, z1)P (z1)

=
∑

za,zb,zc,zd

P (y2 | x1,x2, y1, za, zb, zc, zd)P (zc, zd, y1 | x1, za, zb)P (za, zb). (7)

Despite its soundness (Prop. 2), the mSBD criterion is not complete. In other words, there are causal
graphs such that P (y | do(x)) is expressible through sequential covariate adjustment, even though
Z := (Z1, . . . ,Zm) does not satisfy the mSBD criterion relative to (X,Y) in G.
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Proposition 3 (Incompleteness of mSBD criterion). There exists a causal graph G where the causal
effect P (y | do(x)) can be represented as a sequential covariate adjustment with Z such that Z does
not satisfy the mSBD criterion relative to (X,Y) in G.

To illustrate the incompleteness of the mSBD criterion, consider the graph G in Fig. 2a with X =
(X1,X2) and Y = (Y1,Y2) (i.e., Y0 := ⇔) with Y1 = {Y1} and Y2 = {Y2}. Set Z := (Z1,Z2),
where Z1 := {Za,Zb} and Z2 := {Zc,Zd}. Then, while Z1 satisfies both Eqs. (4, 5) of the mSBD
criterion, Z2 does not satisfy the mSBD condition in Eq. (4) since Z2 includes the descendant of
X2. Nevertheless, the causal effect P (y | do(x)) is still expressible through sequential covariate
adjustment as in Eq. (7). To demonstrate, we begin with the observation that Z1 satisfies the mSBD
criterion in Eqs. (4, 5), leading to P (y1, y2 | do(x1,x2)) =

∑
za,zb

P (y2 | do(x2),h1)P (y1 |
x1, za, zb)P (za, zb), with H1 := X1 ⇒Y1 ⇒ Z1 = {X1,Y1,Za,Zb}. Next,

P (y2 | do(x2),h1) =
∑

zc

P (y2 | do(x2),h1)P (zc | h1)

=
∑

zc

P (y2 | do(x2),h1, zc)P (zc | h1),

where the last equality holds by Rule 1 of do-calculus (Pearl, 1995): (Y2 ⇓⇓ Zc | X2,H1)GX2
.

Further,

P (y2 | do(x2),h1, zc) =
∑

zd

P (y2 | do(x2),h1, zc, zd)P (zd | do(x2),h1, zc)

=
∑

zd

P (y2 | x2,h1, zc, zd)P (zd | h1, zc),

where the last equality holds by Rule 2 and 3 of do-calculus, i.e., (Y2 ⇓⇓ X2 | H1,Zc,Zd)GX2

and (Zd ⇓⇓ X2 | H1,Zc)GX2
, respectively. Combining these derivations, P (y1, y2 | do(x1,x2)) is

expressible as the same as in Eq. (7). This exemplifies the incompleteness of mSBD criterion.

3.2 Limitation of Other Existing Criteria

Besides mSBD, there are other methods attempting to establish conditions for determining if the
causal effect can be represented as sequential covariate adjustment. For instance, the no-unmeasured-
confounding assumption (Rosenbaum and Rubin, 1983) is a sufficient verification tool. However, as
illustrated in Fig. 2a, the causal effect is expressible through sequential covariate adjustment even
though an unmeasured confounder between the treatment X2 and the outcome Y1 presents.

On the other hand, the sequential ignorability criterion (Robins, 1986, 2000) provides a condition for
Z to be a sequential adjustment set:

Y
↓i(x) ⇓⇓ Xi | Zi,Hi↔1, (8)

where Y↓i(x) is a counterfactual variable induced from Y
↓i by fixing X = x in the SCM. Graphical

methods such as single world intervention graphs (SWIGs) (Richardson and Robins, 2013) and
twin-networks (Pearl, 2000; Shpitser and Pearl, 2008) help in analyzing such counterfactual variables.
However, each has its limitations in efficiently verifying sequential adjustment sets. SWIGs, for
example, face challenges in capturing Z1,Z2 as a sequential adjustment set in Fig 2a, because they
fail to accommodate both Y2(x2) and Z2 in a SWIG. This limitation arises since the counterfactual
variable Z2(x2), instead of the observable Z2, will appear on the SWIG. In contrast, twin-networks
are capable of exploring the relationship between Y2(x2) and Z2. Yet, their practicality decreases
with larger cardinality (m), as the size of twin-networks expands exponentially, leading to substantial
computational demands. These observations motivate the necessity of computationally efficient and
effective criterion to determine if a causal effect aligns with a sequential covariate adjustment.

4 Sequential Adjustment Criterion

In this section, we devise a sequential adjustment criterion (SAC), which provides a sound and com-
plete method for characterizing the causal effect P (y | do(x)) as a sequential covariate adjustment
of Z := (Z1, · · · ,Zm) with respect to (X,Y). To begin with, we define a special subgraph called
proper sequential back-door graph:
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Za Zb Zc Zd

X1 Y1 X2 Y2

(a) SAC

Za Zb Zc Zd

X1 Y1 X2 Y2

(b) GX,Y
psbd,1

Za Zb Zc Zd

X1 Y1 X2 Y2

(c) GX,Y
psbd,2

Figure 2: (a) Graph exemplifying SAC in Def. 7 and (b,c) its proper sequential back-door graphs

Definition 6 (Proper Sequential Back-Door Graph). For a disjoint pair (X,Y) and the index i, the
proper sequential back-door graph GX,Y

psbd,i is a proper back-door graph induced from G
X→i+1 relative

to (Xi,Y↓i); i.e.,

GX,Y
psbd,i := (G

X→i+1)
Xi,Y

→i

pbd . (9)

As constructing the proper back-door graph from G takes linear time O(|V|+ |E|) (van der Zander
et al., 2014), the sequential back-door graph can also be constructed in linear time O(|V| + |E|).
Equipped with GX,Y

psbd,i, the sequential adjustment criterion is presented as follows:

Definition 7 (Sequential Adjustment Criterion (SAC)). Let (X,Y) denote a disjoint pair. Let
Z := (Z1, · · · ,Zm) denote a topologically ordered set of vertices disjoint to (X,Y) where each Zi

is non-descendant of X↓i+1. Then, Z is said to satisfy sequential adjustment criterion (SAC) w.r.t.
(X,Y) in G if the following conditions are satisfied for i = 1, · · · ,m:

(Y↓i ⇓⇓ Xi | Zi,Hi↔1)GX,Y
psbd,i

; and (10)

Zi ⇑ dpcpG(Xi,Y
↓i) = ⇔. (11)

The sequential adjustment criterion characterizes the sequential covariate adjustment:
Theorem 1 (Soundness and Completeness). Let (X,Y) denote a disjoint pair, and let Z :=
(Z1, · · · ,Zm) denote an ordered set of vertices disjoint to (X,Y). Then, the following are equivalent:

1. Z satisfies SAC relative to (X,Y) in G.

2. Z is a sequential adjustment set relative to (X,Y) in G; i.e.,

P (y | do(x)) =
∑

z

m∏

j=0

P (zj+1,yj | hj↔1,xj , zj). (12)

For instance, consider Fig. 2a, where we witnessed that the causal effect P (y1, y2 | do(x1,x2)) is
given as a sequential covariate adjustment of Z = (Z1 = {Za,Zb},Z2 = {Zc,Zd}). To confirm
that this Z satisfies SAC relative to (X,Y) for X = (X1,X2) and Y = (Y1,Y2) with Y1 = {Y1}
and Y2 = {Y2}, we examine GX,Y

psbd,1 (Fig. 2b) and GX,Y
psbd,2 (Fig. 2c). In GX,Y

psbd,1, we observe that
Z1 = {Za,Zb} d-separates X1 and {Y1,Y2}. Moreover, Z1 does not contain any descendant of
proper causal paths from X1 to {Y1,Y2} within this subgraph. Similarly, in GX,Y

psbd,2, the path between
X2 and Y2 is d-separated conditioned on Z2 = {Zc,Zd} and H1 = {Za,Zb,X1,Y1}. Additionally,
Z2 is not on any descendant of proper causal paths between X2 and Y2. Consequently, Z fulfills SAC
relative to (X,Y) in the graph G.

The soundness and completeness of SAC provide extensive coverage, incorporating existing covariate
adjustment criterion such as BD, AC, SBD, and mSBD in Table 1. Clearly, SAC covers the mSBD
criterion due to its completeness. In other words, the mSBD criterion is sufficient for the sequential
adjustment criterion.
Corollary 1 (mSBD =↖ SAC). If Z satisfies the mSBD criterion relative to (X,Y) in G, then Z

satisfies the SAC relative to (X,Y) in G.

To demonstrate, consider G in Fig. 1, where Z := (Z1,Z2) with Z1 := {Za,Zb} and Z2 := {Zc,Zd}.
This Z satisfies the mSBD criterion relative to (X,Y) for X = (X1,X2) and Y = (Y1,Y2). To
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ensure that Z also satisfies the SAC relative to (X,Y) in G, we verify that (Z1,Z2) meet the
conditions in Eqs. (10, 11), respectively. Since Z1 and Z2 are both non-descendants of X1 and X2,
respectively, we only need to verify that they meet the conditions of Eq. (11) for (X1, (Y1,Y2)) and
(X2,Y2) respectively. First, consider GX,Y

psbd,1, which removes edges {X1 ↘ Y1,Zb ↘ X2,Zc ↘
X2} from G. In this graph, X1 is d-separated from (Y1,Y2) given Z1. Next, consider GX,Y

psbd,2, which
removes the edge {X2 ↘ Y2} from G. In this graph, X2 is d-separated from Y2 given (Z1,X1,Y1)
and Z2. Therefore, Z also satisfies the SAC relative to (X,Y) in G.

The broader coverage of SAC compared to the mSBD criterion is evident when compared to AC.
First, the mSBD criterion is not extensive enough to cover the AC criterion. To witness, consider
Fig. 3. Here, Z := {Za,Zb} satisfies AC relative to (X,Y) for X = (X,Y ) and Y = (Y1,Y2).
However, Z does not satisfy the mSBD criterion since it is a descendant set of X1 := {X1}. In
contrast, AC is a sufficient criterion for SAC.
Theorem 2 (AC =↖ SAC). If Z satisfies the AC relative to (X,Y) in G, then there exists a partition
of Z and a topological order of X such that Z satisfies the SAC relative to (X,Y) in G.

X1

Y1

X2

Y2

Za

Zb

Figure 3: (van der Zander
et al., 2014, Fig. 2)

For concreteness, consider G in Fig. 3 (van der Zander et al., 2014). In
G, Z := {Za,Zb} satisfies the adjustment criterion relative to (X,Y) for
X = (X1,X2) and Y = (Y1,Y2) in G, and the causal effect is given as
an adjustment as follows:

P (y1, y2 | do(x1,x2)) =
∑

z

P (y | x, z)P (z). (13)

Thm. 2 implies that Z meets the SAC relative to (X,Y) in graph G. To
demonstrate this, for X = (X1,X2), we apply the partitioning operator
in Def. 4 and obtain Y0 = {Y2}, Y1 := {Y1}, and Y2 = ⇔. We set
Z1 := {Za,Zb}. Since Y2 is empty, it is sufficient to demonstrate that
Z1 meets the conditions of Eqs. (10) and (11). First, Z1 meets the condition of Eq. (11) as it contains
no descendants on the causal paths from X1 to Y1. Consider the modified graph GX,Y

psbd,1, obtained
by removing the edges {X1 ↘ Y1,Zb ↘ X2}. In this reduced graph, X1 and Y1 are d-separated
given Z1 and Y0, confirming the conditions of SAC. Therefore, Z := (Z1,Z2) satisfies SAC relative
to (X,Y) in G, and the causal effect is described as

P (y1, y2 | do(x1,x2)) =
∑

za,zb

P (y1 | x1, za, zb, y2)P (za, zb | y2)P (y2). (14)

Eqs. (13, 14) are equivalent since P (y1 | x1,x2, za, zb, y2) = P (y1 | x1, za, zb, y2) and P (y2 |
x1,x2, za, zb) = P (y2 | za, zb) by the conditional independence implied by G.

4.1 Constructive Sequential Adjustment Criterion

Sequential adjustment criterion in Def. 7 relies on a predefined partition Z = (Z1, · · · ,Zm). A
natural question is how to construct such ordered partition of the covariates. We propose a method
to construct a sequential adjustment set, which characterizes sequential covariate adjustment in that
the ordered set meets the SAC if and only if the causal effect can be expressed through a sequential
covariate adjustment.
Theorem 3 (Construction of Sequential Adjustment Set). Let (X,Y) denote a disjoint pair in G.
Define Z

an := (Zan
1 , · · · ,Zan

m ) and corresponding (Fan
1 , · · · ,Fan

m ) and (Han
0 , · · · ,Han

m↔1) alterna-
tively as follows: For i = 1, · · · ,m,

H
an
i↔1 := X

(i↔1) ⇒Y
(i↔1) ⇒

i↔1⋃
j=1

Z
an
j , (15)

F
an
i := X ⇒Y ⇒H

an
i↔1 ⇒ dpcpG(Xi,Y

↓i) ⇒DeG(X
↓i+1), (16)

Z
an
i := AnGX,Y

psbd,i
({Xi} ⇒Y

↓i ⇒H
an
i↔1) \ Fan

i . (17)

Then, the following statements are equivalent:

1. There exists an ordered set Z := (Z1, · · · ,Zm) satisfying the sequential adjustment criterion
w.r.t. (X,Y) in G.
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Figure 4: Example for minSCA and corresponding proper sequential back-door graphs

2. The ordered set Zan satisfies SAC relative to (X,Y) in G.

The set Z
an can be constructed in O(m(|V| + |E|)) since the procedures for constructing

dpcpG(Xi,Y↓i) and GX,Y
psbd,i in Eq. (16), as well as finding ancestors and descendants in Eqs. (16,

17), each require O(|V|+ |E|) and are repeated m times.

To concretely exemplify that the first statement implies the second one in Thm. 3, consider Fig. 2a.
Set Y0 := ⇔, Y1 := {Y1}, and Y2 := {Y2} by the mechanism of the partitioning operator PTX

G .
GX,Y
psbd,1 and GX,Y

psbd,2 are depicted in Figs. (2b, 2c). Then, Zan
1 := {Za,Zb,Zc,Zd}, since these are

ancestors of {X1,Y1,Y2} in GX,Y
psbd,1. We can see that Zan

1 satisfies Eqs. (10, 11) in the SAC because
X1 and {Y1,Y2} are d-separated in GX,Y

psbd,1 given Z
an
1 , and they are not on the descendant of proper

causal paths between X1 and {Y1,Y2}. Next, Zan
2 := ⇔. It satisfies Eqs. (10, 11) since X2 and Y2 are

d-separated in GX,Y
psbd,2 given {X1,Y1} ⇒ Z

an
1 ⇒ Z

an
2 . Combining with our previous observation that

Z1 := {Za,Zb} and Z2 := {Zc,Zd} satisfy Eqs. (10, 11), this example demonstrates that indeed
Z

an := (Zan
1 ,Zan

2 ) satisfies the SAC relative to (X,Y) in G.

As an example that the second statement implies the first one, consider Fig. 4a, where Y0 := ⇔,
Y1 := ⇔ and Y2 := {Y } by the mechanism of the partitioning operator PTX

G . Next, GX,Y
psbd,1

and GX,Y
psbd,2 are depicted in Figs. (4b, 4c). Then, Zan

1 := ⇔, since none of {Za,Zb,Zc} are the
ancestors of {X1,Y }. Zan

1 satisfies Eqs. (10, 11) in the SAC, since the X1 and Y are d-separated
in GX,Y

psbd,1 given Z
an
1 . Next, Zan

2 := {Za,Zb,Zc} since they are ancestors of X2 in GX,Y
psbd,2. This

Z
an
2 satisfies Eqs. (10, 11), since X2 and Y are d-separated in GX,Y

psbd,2 given Z
an
2 ⇒ {X1}. Therefore,

Z
an := (Zan

1 ,Zan
2 ) = (⇔, {Za,Zb,Zc}) satisfies SAC relative to (X,Y) in G.

4.2 Minimal Sequential Adjustment Criterion

We have demonstrated the effectiveness of constructing sequential adjustment sets. However, when
dealing with large graphs, Zan may include a large number of vertices, leading to high computational
costs when evaluating sequential covariate adjustments. This situation highlights the need for a
more parsimonious adjustment set. To address this, we introduce the minimal sequential covariate
adjustment set, which is the smallest subset of Zan without sacrificing the validity of the adjustment.
Definition 8 (Minimal Sequential Covariate Adjustment Set). Let (X,Y) denote a disjoint pair in
G. An ordered set of vertices Zmin := (Zmin

1 , · · · ,Zmin
m ) where each Z

min
i are non-descendant of

X
↓i+1 is said to be a minimal sequential covariate adjustment set if, for each i = 1, · · · ,m,

1. Z
min
i satisfies Eqs. (10, 11).

2. For any Z
↗
i ⊋ Z

min
i , Z↗

i does not satisfy Eqs. (10, 11).

To present the minimal sequential covariate adjustment set, we define a useful tool:
Definition 9 (Closure (van der Zander and Liśkiewicz, 2020)). For a disjoint vertices A,B, and C in
G, the closure of A with respect to B and C in G, denoted as closureG(A;B,C), is the union of A
and the collection of V ↗ AnG(A ⇒B) that are connected to A via a path satisfying the following:
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Algorithm 1: minSCA(X,Y,G)
Input: A disjoint pair of ordered set (X,Y) and a causal graph G
Output: A minimal sequential covariate adjustment set Zmin

1 Set Han
0 := Y0.

2 for i = 1, · · · ,m do
3 Set Zan

i as in Eq. (17).
4 Z

→
i := closureGX,Y

psbd,i
(Y↑i;Xi,Z

an
i →H

an
i↓1) ↑ Z

an
i

5 Z
min
i := closureGX,Y

psbd,i
(Xi;Y

↑i,Z→
i →H

an
i↓1) ↑ Z

→
i

6 end
7 return Z

min := (Zmin
1 , · · · ,Zmin

m )

1. The path only contains nodes in AnG(A ⇒B); and

2. All non-collider vertices on the path are not in C; Equivalently, any vertex on the path that is in
C is a collider on the path.

Verbally speaking, closureG(A;B,C) is a set of vertices in AnG(A⇒B) that is d-connected to A in
G conditioned on C, where the paths are through AnG(A⇒B). Finding the closure can be efficiently
done in O(|V|+ |E|) time (van der Zander and Liśkiewicz, 2020), where |V| and |E| are the number
of vertices and edges of the graph G. For example, consider closureGX,Y

psbd,2
(X2;Y , {Za,Zb,Zc,X1})

with GX,Y
psbd,2 in Fig. 4c. First, the ancestor of {X2,Y } are {Za,Zb,Zc,X1}. Since Za and X1 are

adjacent to X2, they are contained in the closure. However, {Zb,Zc} are not in the closure, since all
the non-collider vertices on the path between X2 and {Zb,Zc} are contained in {Za,Zb,Zc,X1}.
Therefore, {Za,X1,X2} = closureGX,Y

psbd,2
(X2;Y , {Za,Zb,Zc,X1}).

Equipped with the closure, we propose a procedure to construct the minimal sequential covariate
adjustment in Algo. 1. The minimal sequential covariate adjustment set, Zmin, is derived directly
from the ordered set Zan, which characterizes the sequential covariate adjustment. Therefore, Zmin

naturally retains this characterizing property.
Theorem 4 (Construction of Minimal Sequential Covariate Adjustment Set). Let (X,Y) denote a
disjoint pair in G. Then, the following statements are equivalent:

1. There exists an ordered set Z := (Z1, · · · ,Zm) satisfying SAC w.r.t. (X,Y) in G.

2. The ordered set Zmin = minSCA(X,Y,G) from Algo. 1 is a minimal sequential covariate
adjustment set.

Constructing Z
min = minSCA(X,Y,G) can be achieved in O(m(|V|+ |E|)), as the construction of

each Z
an
i in Eq. (17) and the required closures each take O(|V|+ |E|) and are repeated m times.

We now demonstrate Thm. 4 with a causal diagram G in Fig. 4a. We have shown that
Z

an := (Zan
1 ,Zan

2 ) with Z
an
1 := ⇔ and Z

an
2 := {Za,Zb,Zc} satisfies SAC relative to (X,Y )

in G. Therefore, we only demonstrate Algo. 1 for Z
an
2 := {Za,Zb,Zc}. Run line 4: Z

→
2 :=

closureGX,Y
psbd,2

(Y ;X2, {Za,Zb,Zc,X1}) ⇑ {Za,Zb,Zc}. First, {Za,Zc} is included in the closure
since they are adjacent to Y . Next, Zb is included in the closure, since the path Y ≃ Zc ↓ Zb

does not include non-collider vertex. Therefore, Z→
2 = Z

an
2 = {Za,Zb,Zc}. Next, run line 5. We

already witnessed that {Za,X1,X2} = closureGX,Y
psbd,2

(X2;Y , {Za,Zb,Zc,X1}), which leads to

Z
min
2 := {Za,X1,X2} ⇑ {Za,Zb,Zc} = {Za}. Therefore, Zmin := (Zmin

1 ,Zmin
2 ) = (⇔, {Za}).

5 Conclusion

We develop a sound and complete graphical criterion for sequential covariate adjustment. We start
by highlighting the limitations of the existing mSBD criterion, acknowledging its soundness but
noting its lack of completeness. (Prop. 3). Against this background, we introduce the sequential
adjustment criterion (Def. 7), which characterizes sequential covariate adjustment (Thm. 1). The

9



proposed criterion includes and extends the mSBD and standard adjustment criterion, confirming
its comprehensive nature since they imply the sequential adjustment criterion (Prop. 1 and Thm. 2).
Further, we develop a procedure for constructing the sequential adjustment set that captures the
sequential covariate adjustment (Thm. 3). Finally, we devise an algorithm to identify the minimal
sequential covariate adjustment set (Algo. 1 and Thm. 4).
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A Proofs

In this appendix, we provide detailed proof of Theorems presented in the main paper.

Notations. We symbolize the d-connection between two vertices A and B as A↙↙B. Furthermore,
we symbolize the type of paths, that are not mutually exclusive, as follows:

1. A↙↙∝↘ B means that there is a directed path from A to B.
2. A ↓∝↘ B means that there is a non-directed path with no colliders and all non-colliders on

the path are not conditioned.
3. A ⇐↘•↓⇐ B means that there is a non-directed path containing at least one collider, and either

the collider or one of its descendants is conditioned.

A.1 Proof of Theorem 1

In order to prove both the soundness and completeness of SAC, we structure the proof in two parts.
First, we will demonstrate the soundness of SAC through Lemma S.1, followed by proving its
completeness in Lemma S.2.
Lemma S.1 (Soundness of SAC). Let (X,Y) denote a disjoint pair of ordered sets where Y is
partitioned with PTX

G . Let Z := (Z1, · · · ,Zm) denote an ordered set of vertices disjoint to (X,Y)
in G. If Z satisfies the SAC relative to (X,Y) in G, then Z is a sequential adjustment set relative to
(X,Y) in G.

Proof of Lemma S.1. We first assume that the following claim holds, and then demonstrate that the
claim is valid. For any fixed Zi ↗ (Z1, · · · ,Zm), suppose the following claim is true.

Claim. If Z satisfies SAC relative to (X,Y) in G, then there exists an ordered set Zi =
(Zi,1, · · · ,Zi,mi) (where mi = |Zi|) such that, for each Zi,j in the ordered set, and with
Z

(j↔1)
i := (Zi,1, · · · ,Zi,j↔1), at least one of the following two cases holds:

Case 1. (Y↓i ⇓⇓ Zi,j | X↓i,Z(j↔1)
i ,Hi↔1)G

X→i
.

Case 2. (FXi ⇓⇓ Zi,j | Z(j↔1)
i ,Hi↔1)G .

where FXi is a new parent of Xi, called the regime, augmented in the graph G.

For the fixed partition of Zi that makes the claim true, suppose Case 1 holds for all Zi,j ↗ Zi. Then,

P (y↓i | do(x↓i), z(j↔1)
i ,hi↔1)

=
∑

zi,j

P (y↓i | do(x↓i), z(j↔1)
i ,hi↔1)P (zi,j | z(j↔1)

i ,hi↔1)

=
∑

zi,j

P (y↓i | do(x↓i), z(j)i ,hi↔1)P (zi,j | z(j↔1)
i ,hi↔1) by Case 1.

Now, suppose Case 2 holds for all Zi,j . Then,

P (y↓i | do(x↓i), z(j↔1)
i ,hi↔1)

=
∑

zi,j

P (y↓i | do(x↓i), z(j)i ,hi↔1)P (zi,j | do(x↓i), z(j↔1)
i ,hi↔1)

=
∑

zi,j

P (y↓i | do(x↓i), z(j)i ,hi↔1)P (zi,j | do(xi), z
(j↔1)
i ,hi↔1) by the assumption on Zi

=
∑

zi,j

P (y↓i | do(x↓i), z(j)i ,hi↔1)P (zi,j | z(j↔1)
i ,hi↔1) by Case 2.

12



In summary, under the claim, for all Zi,j ↗ Zi,

P (y↓i | do(x↓i), z(j↔1)
i ,hi↔1) =

∑

zi,j

P (y↓i | do(x↓i), z(j)i ,hi↔1)P (zi,j | z(j↔1)
i ,hi↔1).

By applying this equation for all elements Zi,1, · · · ,Zi,mi in Zi, we have

P (y↓i | do(x↓i),hi↔1) =
∑

zi

P (y↓i | do(x↓i), zi,hi↔1)P (zi | hi↔1). (A.1)

We also note that the given condition in Eq. (10) implies the Rule 2 of the do-calculus (Pearl, 2000):

(Y↓i ⇓⇓ Xi | Zi,Hi↔1)GX,Y
psbd,i

=↖ (Y↓i ⇓⇓ Xi | Zi,Hi↔1)G
XiX

→i+1
(A.2)

since the d-separation is always preserved when cutting the edge from the graph. The right-hand side
of Eq. (A.1) can be written further as follows:

∑

zi

P (y↓i | do(x↓i),hi↔1, zi)P (zi | hi↔1)

=
∑

zi

P (y↓i | xi, do(x
↓i+1),hi↔1, zi)P (zi | hi↔1) by Eq. (A.2)

=
∑

zi

P (y↓i+1 | do(x↓i+1),hi)P (yi | do(x↓i+1),hi↔1,xi, zi)P (zi | hi↔1)

=
∑

zi

P (y↓i+1 | do(x↓i+1),hi)P (yi | hi↔1,xi, zi)P (zi | hi↔1) by PTX
G .

Therefore,

P (y | do(x))

= P (y↓1 | do(x↓1),h0)P (h0)

=
∑

z1

P (y↓2 | do(x↓2),h1)P (y1 | h1,x1, z1)P (z1 | h0)P (h0)

=
∑

z1,z2

P (y↓3 | do(x↓3),h2)P (y2 | h1,x2, z2)P (z2 | h1)P (y1 | z1,x1, z1)P (z1 | h0)P (h0)

...

=
∑

z

m∏

i=0

P (yi | hi↔1,xi, zi)
m∏

i=j

P (zj | hj↔1)

=
∑

z

m∏

i=0

P (yi | hi↔1,xi, zi)P (zi+1 | hi)

=
∑

z

m∏

i=0

P (zi+1,yi | hi↔1,xi, zi).

In conclusion, the sequential adjustment criterion is sound under the claim. It now remains to prove
that the claim is true.

Proof of the claim. We will prove the claim by contradiction. Suppose that Z satisfies the SAC
relative to (X,Y) in G but for all orders of elements in Zi (denoting an order as ω(Zi)), there always
exists some Zi,j ↗ Zi with Z

(j↔1)
i := Z

(ω,j↔1)
i (which is predecessors of Zi,j under the order ω(Zi))

such that Zi,j does not satisfy either Case 1 or Case 2, i.e.,

(Y↓i ′⇓⇓ Zi,j | X↓i,Z(j↔1)
i ,Hi↔1)G

X→i
and (FXi ′⇓⇓ Zi,j | Z(j↔1)

i ,Hi↔1)G . (A.3)
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This means that there exists a d-connecting path between Zi,j and Y ↗ Y
↓i in G

X→i given X
↓i ⇒

Z
(j↔1)
i ⇒Hi↔1, and a d-connecting path between FXi and Zi,j in G given Z

(j↔1)
i ⇒Hi↔1. That is,

the following path exists:

(FXi ↘ Xi ↙↙ Zi,j)G ∞ (Zi,j ↙↙ Y )G
X→i

. (A.4)

We further state the following. In this setting, there exists a d-connecting path between Zi,j and
Y in G

X→i+1 , which is evident since adding an edge (from G
X→i to G

X→i+1) does not block any
d-connecting paths. Moreover, the d-connecting path between FXi and Zi,j in G is preserved in
G
X→i+1 . To witness, suppose there exists a d-connected path between FXi and Zi,j in G, while

the path is blocked/cut in G
X→i+1 . This implies that the path contains an edge ↘ Xk for some

Xk ↗ X
↓i+1. By the topological order and the assumption that Zi is non-descendant of X↓i+1,

the directed path from Xk to Xi and the directed path from Xk to Zi,j are both impossible. Thus,
we only consider non-directed path from FXi to Zi,j . First, Xk on the path connecting Xi and Zi,j

cannot be a collider, as the path would be d-separated if Xk were not conditioned. Additionally, Xk

cannot be an ancestor of Z(j↔1)
i ⇒Hi↔1 due to the topological order of X, the mechanism of the

partitioning operator PTX
G , and the assumption that Zj is non-descendant of X↓j+1. Therefore, we

consider the path between Xi and Zi,j through Xk, where neither Xk nor its descendant forms a
collider. The possible types of paths in G are as follows:

Type 1. Xi ↙↙∝↘ Xk ↘•↓⇐ Zi,j

Type 2. Xi ↓∝↘ Xk ↘•↓⇐ Zi,j

Type 3. Xi ⇐↘•↓ Xk ↓∝↙↙ Zi,j

Type 4. Xi ⇐↘•↓ Xk ↓∝↘ Zi,j

Type 5. Xi ⇐↘•↓ Xk ⇐↘•↓⇐ Zi,j

Type 6. Xi ⇐↘•↓⇐ Xk ↘•↓⇐ Zi,j

All cases imply the existence of a directed path from Xk to any vertex in Z
(j↔1)
i ⇒Hi↔1, making Xk

an ancestor of Z(j↔1)
i ⇒Hi↔1. This contradicts our setting, just as in the case where Xk is a collider.

It confirms that the d-connecting path between FXi and Zi,j in G is preserved in G
X→i+1 . As a result,

Eq. (A.4) means the presence of the following path in G
X→i+1 :

(FXi ↘ Xi ↙↙ Zi,j ↙↙ Y )G
X→i+1

.

Then, there are nine types of d-connected path between Xi and Y in G
X→i+1 given Z

(j↔1)
i ⇒Hi↔1:

Type 1. FXi ↘ Xi ↙↙∝↘ Zi,j ↙↙∝↘ Y

Type 2. FXi ↘ Xi ↙↙∝↘ Zi,j ↓∝↘ Y

Type 3. FXi ↘ Xi ↙↙∝↘ Zi,j ⇐↘•↓⇐ Y

Type 4. FXi ↘ Xi ↓∝↘ Zi,j ↙↙∝↘ Y

Type 5. FXi ↘ Xi ↓∝↘ Zi,j ↓∝↘ Y

Type 6. FXi ↘ Xi ↓∝↘ Zi,j ⇐↘•↓⇐ Y

Type 7. FXi ↘ Xi ⇐↘•↓⇐ Zi,j ↙↙∝↘ Y

Type 8. FXi ↘ Xi ⇐↘•↓⇐ Zi,j ↓∝↘ Y

Type 9. FXi ↘ Xi ⇐↘•↓⇐ Zi,j ⇐↘•↓⇐ Y

We will show that each type of path belongs to one of the following three cases:

Case 1. There always exists another order ω↗ for Zi such that the path is blocked, even if the path
is d-connected under the oreder ω.

Case 2. The path contradicts the first condition of SAC in Eq. (10).

Case 3. The path contradicts the second condition of SAC in Eq. (11).
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The paths in Type 1 are directed from Xi to Y , which contradicts the second condition of SAC in
Eq. (11).

Consider Type 2. Since Zi,j is a collider, and Z
(j↔1)
i ⇒Hi↔1 is conditioned on, it forms a d-separated

path between Xi and Y , which is preserved in GX,Y
psbd,i. First, consider the case where this path is not

blocked by further conditioning on Zi \ Z(j↔1)
i . This implies that Eq. (10) is not satisfied, thereby,

contradicting the initial assumption that Z satisfies SAC. Therefore, the path must be blocked by
further conditioning on Zi \ Z(j↔1)

i . In other words, there exists another order ω↗ for Zi such that
this path is blocked whenever {Zi,j} ⇒ Z

(ω↑,j↔1)
i ⇒Hi↔1 is conditioned on. Therefore, without loss

of generality, we can ignore Type 2 by considering any other order ω↗ in which the colliding path is
blocked.

Consider Type 3. Since the case where Zi,j forms a collider is considered in Type 2, we only need to
consider the case where Zi,j ↘ lies on the path. In this case, Zi,j has a directed path to any vertex
in Hi↔1 ⇒ Z

(j↔1)
i . However, it is impossible for the vertex to be involved in Hi↔1, as this would

contradict the valid topological order of SAC. Therefore, we can conclude that there exists a directed
path from Xi to Z ↗ Z

(j↔1)
i through Zi,j . Then, the following two cases are possible: First, there

exists a directed path from Y to Z. This case contradicts the condition of SAC in Eq. (11), as Z
would be a descendant of Y . Second, there exists a divergent path between Y and Z, meaning that Z
forms a collider on the path between Xi and Y . Note that we can ignore Type 3 for the same reason
discussed in the case of Type 2.

The path for Type 4-6 be open when Xi is an ancestor of the conditioning set Z(j↔1)
i ⇒Hi↔1. Due to

the valid topological order of SAC, we only consider the case where the conditioning set is Z(j↔1)
i .

This implies the existence of some path of the form FXi ↘ Xi ↘ Z (↗ Z
(j↔1)
i ) that does not belong

to Type 4-6, allowing us to reduce this types to another type.

We now consider the path for Type 7-9. As we witnessed that Xi cannot be a collider opening the
path, it should contain Xi ↘, which implies that Xi is an ancestor of some collider and its descendant
is some vertices in Z

(j↔1)
i ⇒Hi↔1. Hence, the collider must be a vertex in Z

(j↔1)
i , as Hi↔1 being

the collider would contradicts the valid topological order of SAC. Therefore, we can ignore such type
of paths.

Therefore, any type of path leads to a contradiction, which validates the claim. In conclusion, there
exists an order such that every Zi,j ↗ Zi satisfies Case 1 or Case 2, meaning the claim is true.

Lemma S.2 (Completeness of SAC). Let (X,Y) denote a disjoint pair of ordered sets where Y is
partitioned with PTX

G . Let Z := (Z1, · · · ,Zm) denote an ordered set of vertices disjoint to (X,Y).
There exists a graph G such that Z is not a sequential adjustment set relative to (X,Y) in G whenever
Z does not satisfy SAC relative to (X,Y) in G.

Proof of Lemma S.2. If Z does not satisfy SAC in G, then there exists Zi ↗ Z not satisfying Eq. (10)
or Eq. (11) in SAC.

First, suppose Zi does not satisfy Eq. (10). Then, there must be a path between Xi and Y ↗ Y
↓i

such that all non-colliders on the path are not in Zi ⇒ Hi↔1 and all colliders on the path are in
AnGX,Y

psbd,i
(Zi ⇒Hi↔1). Since the path is defined in GX,Y

psbd,i and by the mechanism of the partitioning

operator PTX
G , the path cannot be a directed path.

Now, suppose the path is a divergent path that does not contain any colliders; i.e., Xi ↓∝↘ Y . In this
case, we can consider a simple graph G = {Xi ≃ Yi,Xi ↘ Yi} where GX,Y

psbd,i contains a subgraph
{Xi ≃ Yi}. Then, P (y | do(x)) cannot be given as a sequential adjustment since it is not even
identifiable. Suppose, instead, the path is a colliding path; i.e., X ⇐↘•↓⇐ Y where the collider is
an ancestor of the conditioned vertices Zi ⇒ Hi↔1. Then, we can consider a simple graph G that
contains a subgraph {Xi ↓ Zi ↘ Yi,Xi ↘ Yi,Xi ≃ Zi ≃ Yi}. Here again, P (y | do(x)) cannot
be given as a sequential adjustment since it is not even identifiable.
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Next, suppose Zi does not satisfy Eq. (11). Then, we may consider a graph a simple graph G that
contains a subgraph Xi ↘ Zi ↘ Yi. Then, there exists a SCM M such that P (y | do(x)) is not
given as an adjustment over Zi (Shpitser et al., 2010).

This concludes the proof that the sequential adjustment criterion is complete.

A.2 Proof of Corollary 1

We will prove that if there exists Zi ↗ Z that does not satisfy Eq. (10) or Eq. (11) in SAC, then Zi

does not satisfy Eq. (4) or Eq. (5) in mSBD criterion.

For the sake of contradiction, suppose Zi does not satisfy Eq. (10), but (Xi ⇓⇓ Y
↓i |

Hi↔1,Zi)G
XiX

→i+1
holds. This means that there exists a d-connecting path between Xi and Y ↗ Y

↓i

given Zi⇒Hi↔1 in GX,Y
psbd,i while the path is blocked in G

XiX→i+1 . The differences between G
XiX→i+1

and GX,Y
psbd,i imply that the d-connecting path should contain Xi ↘. Since the path cannot be a di-

rected path, it must be a colliding path where the collider is an ancestor of any vertices in Zi ⇒Hi↔1.
This means that there exists a directed path either Xi ↙↙∝↘ Z for some Z ↗ Zi or Xi ↙↙∝↘ H for
some H ↗ Hi↔1. If Xi ↙↙∝↘ Z, such Zi fails to satisfy the mSBD criterion because Zi contains a
descendant of Xi. If Xi↙↙∝↘ H , it implies that there exists a directed path from Xi to Xk ↗ X

(i↔1),
Yk ↗ Y

(i↔1) or Zk ↗ Z
(i↔1). In any case, it contradicts the topological order of X, the mechanism

of partition operator PTX
G , or the assumption that Zi↔1 is non-descendant of X↓i in G.

Now, suppose Zi does not satisfy Eq. (11). Then, such Zi does not satisfy Eq. (4) since failure to
satisfy Eq. (11) means that Zi is a descendant of Xi in G.

This concludes the proof that the mSBD criterion implies the SAC.

A.3 Proof of Theorem 2

We will prove that if the SAC fails for any partition of Z across all topological ordering of X, then Z

also fails to satisfy the adjustment criterion. The failure of SAC at Zi can be stated as

(Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)
(G

X→i+1 )
Xi,Y

→i

pbd

, for any Zi ↔ Z \DeG(X
↓i+1). (A.5)

Then, our goal is to show the following:

Statement to be proved: For any Zi ↔ Z \DeG(X↓i+1),

(Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)
(G

X→i+1 )
Xi,Y

→i

pbd

=↖ (Y↓i ′⇓⇓ Xi | Z ⇒Hi↔1)GX,Y
pbd

. (A.6)

Note that the right-hand side of Eq. (A.6) implies (Y ′⇓⇓ X | Z)GX,Y
pbd

, meaning that Z does not satisfy
the adjustment criterion relative to (X,Y) in G. To this end, we first witness the following:

Step 1. For any Zi ↔ Z \DeG(X↓i+1),

(Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)
(G

X→i+1 )
Xi,Y

→i

pbd

=↖ (Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)GXi,Y
→i

pbd

. (A.7)

Proof of Step 1. We will prove that any d-connected path between Xi and Y ↗ Y
↓i given Zi⇒Hi↔1

in (G
X→i+1)

Xi,Y
→i

pbd is preserved in GXi,Y
→i

pbd . First, the d-connected path between Xi and Y in

(G
X→i+1)

Xi,Y
→i

pbd must be a non-directed path in G, since the path cannot contain incoming edges to

any vertices in X
↓i+1; otherwise, it would be cut. As the operation applied to GXi,Y

→i

pbd does not cut

such path, the d-connection of the path remains intact in GXi,Y
→i

pbd , which completes the proof.
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Second, we will witness the following:

Step 2. For any Zi ↔ Z \DeG(X↓i+1),

(Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)GXi,Y
→i

pbd

=↖ (Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1 ⇒ Z
↓i+1)

GXi,Y
→i

pbd

. (A.8)

Proof of Step 2. The left-hand side of Eq. (A.8) implies that there exists a d-connecting path between
Xi and Y ↗ Y

↓i given Zi ⇒ Hi↔1 in GXi,Y
→i

pbd . The path cannot be a directed path, since it is a

d-connected path in GXi,Y
→i

pbd , and by the mechanism of PTX
G . Therefore, the path is either a divergent

path Xi ↓∝↘ Y , or a colliding path Xi ⇐↘•↓⇐ Y where the collider is an ancestor of some vertices
in Zi ⇒Hi↔1 (indeed, the collider is an ancestor of Zi only, since it cannot be an ancestor of Hi↔1

because it would create a directed path from Xi to any vertex in Hi↔1, which contradicts our setting).
For the sake of contradiction, suppose there exists a partition of Z and an topological order of X such
that (Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)GXi,Y

→i

pbd

holds, but

(Y↓i ⇓⇓ Xi | Zi ⇒Hi↔1 ⇒ Z
↓i+1)

GXi,Y
→i

pbd

. (A.9)

That is, every d-connecting path between Xi and Y given Zi ⇒ Hi↔1 in GXi,Y
→i

pbd is blocked by
additionally conditioning on Z

↓i+1.

Suppose the above path is a divergent path Xi ↓∝↘ Y . Then we can consider two cases; the path
contains subpath Z2 ↙↙∝↘ Xi or Z2 ↙↙∝↘ Y where Z2 ↗ Z

↓i+1. Since we have a full degree-of-
freedom of choosing Z := (Zi : i = 1, · · · ,m) where each Zi is non-descendant of X↓i+1 in G,
only reason that the vertex Z2 would be in Zk ↗ Z

↓i+1 and not in Zi is that it is a descendant of some
Xp ↗ X

↓i+1. Therefore, Z2 ↙↙∝↘ Xi means that there is a directed path Xp ↙↙∝↘ Xi. However, it
contradicts the valid topological order of X, since Xp ↗ X

↓i+1. On the one hand, suppose the above
path be a divergent path Xi ↓∝↘ Y that contains a subpath Z2 ↙↙∝↘ Y . This means that there
exists a directed path from Xp to Y ↗ Y

↓p. This case also contradicts SAC condition in Eq. (11)
because Z2 lies on the proper causal path. Therefore, the path cannot be a divergent path.

Suppose the path is a colliding path Xi ⇐↘•↓⇐ Y where the collider is an ancestor of some vertices in
Hi↔1. In order for the path to be blocked by conditioning on Z

↓i+1, there must be Z2 ↗ Z
↓i+1 on

the path that falls into one of the following cases:

Case 1. There exists a subpath Z2 ↙↙∝↘ Xi in GXi,Y
→i

pbd .

Case 2. The vertex Z2 is an ancestor of Hi↔1 in GXi,Y
→i

pbd .

Case 3. The vertex Z2 is an ancestor of Y in GXi,Y
→i

pbd .

The existence of Z2 even with the full freedom of choosing any partition of Z means that there exists
a directed path from Xp to Z2 as discussed. Therefore, Case 1 implies existence of any directed path
from Xp to Xi, which contradicts the valid topological order of X.

Case 2 is impossible because it implies the existence of a directed path from Z2 to any vertex in Hi↔1

(again, a directed path from Xp to the vertex in Hi↔1), which would results in an invalid topological
order.

Finally, Case 3 is also impossible as it implies a directed path from Xp to Y , indicating that Z2 lies
on the proper causal path.

Therefore, every case leads to a contradiction, demonstrating Eq. (A.8) holds.

Combining Step 1 and Step 2, what we have shown is the following:
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Step 1 + Step 2: For any Zi ↔ Z \DeG(X↓i+1),

(Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1)
(G

X→i+1 )
Xi,Y

→i

pbd

=↖ (Y↓i ′⇓⇓ Xi | Zi ⇒Hi↔1 ⇒ Z
↓i+1)

GXi,Y
→i

pbd

(A.10)

We will now show that Eq. (A.6) holds. Let the left-hand side of Eq. (A.6) holds; i.e., there exists
a d-connected path between Xi and Y ↗ Y

↓i given Zi ⇒ Hi↔1 in (G
X→i+1)

Xi,Y
→i

pbd . We have

established that such d-connected path is preserved in GXi,Y
→i

pbd conditioning on Zi ⇒Hi↔1 ⇒ Z
↓i+1,

as shown by Eq. (A.10). If this path does not contain any vertices in X \ {Xi}, then the path is not
affected by the operation applied to GX,Y

pbd , which completes the proof. Otherwise, even though the
path contains vertices in X \ {Xi}, if the subpath between Xa ↗ X \ {Xi} and any vertex in Y

↓i

is not a proper causal path to Y
↓i, then the path is not affected by the operation applied to GX,Y

pbd ,
which completes the proof.

Suppose the path contains a subpath that is a proper causal path from Xa ↗ X \ {Xi} to Y . Then
such Xa should be included in X

↓i+1 by the mechanism of PTX
G . Then, as the path between Xa

and Xi cannot be directed in either side, the path between Xa and Xi is either a divergent path
Xa ↓∝↘ Xi or a colliding path Xa ⇐↘•↓⇐ Xi. Furthermore, since there is no incoming edge to
Xa, the path should be Xa ↘•↓⇐ Xi. Additionally, the path is d-connected when conditioning
on Zi ⇒ Hi↔1. This implies that there exists a directed path from Xa ↗ X

↓i+1 to any vertex in
Zi ⇒Hi↔1, which contradicts our partioning mechanism PTX

G . Therefore, there must be no proper
causal path from Xa to Y .

By proving that Eq. A.6 holds, we have completed the proof that the AC implies the SAC.

A.4 Proof of Theorem 3

Lemma A.1 ((van der Zander et al., 2014, Lemma 3.4)). Let X,Y, I,R be sets of vertices with
I ↔ R, R ⇑ (X ⇒ Y) = ⇔. If there exists a d-separator Z0 with I ↔ Z0 ↔ R in G then
Z = AnG(X ⇒Y ⇒ I) ⇑R is a d-separator.

Lemma A.2 (Construction). Let (X,Y) denote a disjoint pair of ordered sets. For any i ↗
{1, 2, · · · ,m}, suppose each Zj ↗ (Z1, · · · ,Zi↔1) is non-descendant of X↓j+1 and disjoint to
(X,Y). Let Zan

i be an ordered set in Eq. (17) defined with respect to Z
(i↔1), which is denoted as

Z
an
i (Z(i↔1)). Then, the following statements are equivalent.

1. Z
an
i (Z(i↔1)) is non-descendant of X↓i+1 satisfying Eqs. (10, 11).

2. There exists a set Zi ↔ V\(X ⇒Y ⇒Hi↔1 ⇒DeG(X↓i+1)) satisfying Eqs. (10, 11).

3. There exists a set Zi ↔ V\(X ⇒Y ⇒Hi↔1 ⇒DeG(X↓i+1)) satisfying the following:

P (y↓i | do(x↓i),hi↔1) =
∑

zi

P (y↓i+1 | do(x↓i+1),hi)P (zi | hi↔1)P (yi | xi, zi,hi↔1).

Proof of Lemma A.2. By Theorem 1, (2) ∈ (3) holds. Additionally, (1) =↖ (3) by Lemma S.1,
which is equivalent to (1) =↖ (2). Therefore, we only need to prove (2) =↖ (1).

We apply Lemma A.1 by replacing G in Lemma A.1 as GX,Y
psbd,i, X in Lemma as {Xi}, Y in Lemma

as Y↓i, I in Lemma as Hi↔1, Z0 in Lemma as an union of Hi↔1 and a certain Zi satisfying Eqs. (10,
11),and R as an union of Hi↔1 and V \ (X⇒Y ⇒Hi↔1 ⇒ dpcpG(Xi,Y↓i)⇒DeG(X↓i+1)). Then,
Lemma A.1 states that, under the statement (2), there exists a d-separator between Xi and Y

↓i, which
is Zan

i ⇒Hi↔1 :=
(
AnGX,Y

psbd,i
({Xi} ⇒Y

↓i ⇒Hi↔1) \ Fi

)
⇒Hi↔1. This completes the proof.

We emphasize that Lemma A.2 is stated for a fixed Z
(i↔1); i.e., Zan

i in Lemma A.2 is dependent on
some specific choice of Z(i↔1). This dependency is highlighted by the notation Z

an
i (Z(i↔1)).
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Then, the remaining part of the proof is to show that, for any given Z
(i↔1), if Zi satisfies Eqs. (10,

11), then Z
an
i (Zan

1 , · · · ,Zan
i↔1) satisfies Eqs. (10, 11). To show through contradiction, suppose

Z
an
i (Zan

1 , · · · ,Zan
i↔1) does not satisfy Eqs. (10, 11), even if Zi satisfies them given Z

(i↔1). By
Lemma A.2, this implies that, given {Zan

1 , · · · ,Zan
i↔1}, no Z

↗
i ↔ V \ Fan

i satisfies Eqs. (10, 11).

However, consider the following choice of Z↗
i:

Z
↗
i := (Zi ⇒ Z

(i↔1))\{Zan
1 , · · · ,Zan

i↔1}.

Then, Z↗
i ⇑ dpcpG(Xi,Y↓i) = ⇔, since Zi ⇑ dpcpG(Xi,Y↓i) = ⇔ and every set in Z

(i↔1) is
non-descendant of Xi. Also,

(Xi ⇓⇓ Y
↓i | Z↗

i ⇒H
an
i )GX,Y

psbd,i
= (Xi ⇓⇓ Y

↓i | Zi ⇒Hi)GX,Y
psbd,i

where the right-hand side independence (Xi ⇓⇓ Y
↓i | Zi⇒Hi)GX,Y

psbd,i
holds by the given assumption.

This contradicts that no Z
↗
i ↔ V \ Fan

i satisfies Eqs. (10, 11). The contradiction happens since we
assumed that Zan

i (Zan
1 , · · · ,Zan

i↔1) does not satisfy Eqs. (10, 11).

Therefore, we conclude that, for any i ↗ {1, 2, · · · ,m}, Zan
i (Zan

1 , · · · ,Zan
i↔1) satisfies Eqs. (10, 11)

whenever Zi(Z(i↔1)) satisfies Eqs. (10, 11). This completes the proof.

A.5 Proof of Theorem 4

For each i ↗ {1, 2, · · · ,m}, Zmin
i is the minimal d-separator relative to (Xi,Y↓i) in GX,Y

psbd,i by
(van der Zander and Liśkiewicz, 2020, Proposition 5.2); i.e., excluding any vertices from Z

min
i

violates the d-separability, and Z
min
i is a valid d-separator whenever Zan

i is a valid d-separator relative
to (Xi,Y↓i) in GX,Y

psbd,i
4.

4The code is available at https://github.com/snu-causality-lab/minSAC
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