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Abstract

Causal effect identification and estimation are fundamental tasks found throughout
the data sciences. Although causal effect identification has been solved in theory,
many existing estimators only address a subset of scenarios, known as the sequential
back-door adjustment (SBD) (Pearl and Robins, 1995a) or g-formula (Robins,
1986). Recent efforts for developing general-purpose estimators with broader
coverage, incorporating the front-door adjustment (FD) (Pearl, 2000) and others,
are not scalable due to the high computational cost of summing over a high-
dimensional set of variables. In this paper, we introduce a novel approach that
achieves broad coverage of causal estimands beyond the SBD, incorporating various
sum-product functionals like the FD, while achieving scalability – estimated in
polynomial time relative to the number of variables and samples in the problem.
Specifically, we present the class of unified covariate adjustment (UCA) for which
we develop a scalable and doubly robust estimator. In particular, we illustrate
the expressiveness of UCA for a wide spectrum of causal estimands (e.g., SBD,
FD, and others) in causal inference. We then develop an estimator that exhibits
computational efficiency and double robustness. Experiments corroborate the
scalability and robustness of the proposed framework.

1 Introduction

Causal inference is a crucial aspect of scientific research, with broad applications ranging from social
sciences to economics, and from biology to medicine. Two significant tasks in causal inference
are causal effect identification and estimation. Causal effect identification concerns determining
the conditions under which the causal effect can be inferred from a combination of available data
distributions and a causal graph depicting the data-generating process. Causal effect estimation, on
the other hand, develops an estimator for the identified causal effect expression using finite samples.

Causal effect identification theories have been well-established across various scenarios. These
include cases where the input distribution is purely observational (Tian and Pearl, 2003; Shpitser and
Pearl, 2006; Huang and Valtorta, 2006) (known as observational identification or obsID) or a combi-
nation of observational and interventional (Bareinboim and Pearl, 2012a; Lee et al., 2019) (referred to
as generalized identification or gID); scenarios where the target query and input distributions originate
from different populations (Bareinboim and Pearl, 2012b; Bareinboim et al., 2014; Bareinboim and
Pearl, 2016; Correa et al., 2018; Lee et al., 2020) (known as recoverability or transportability); or
cases where the target query is counterfactual (Rung 3) (Correa et al., 2021) (referred to as Ctf-ID)
beyond interventional (Rung 2) of the Ladder of Causation (Pearl and Mackenzie, 2018; Bareinboim
et al., 2020). In these situations, algorithmic solutions have been devised that take input distributions
along with specified target queries and formulate identification functionals as arithmetic operations
(sums/integration, products, ratios) on conditional distributions induced from input distributions.
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Despite all the progress, existing estimators cover only a subset of all identification scenarios.
Specifically, well-established estimators for the back-door (BD) adjustment (Pearl, 1995), represented
as

∑
z E[Y | x, z]P (z), and sequential back-door adjustment (SBD) (Robins, 1986; Pearl and Robins,

1995b) and off-policy evaluations (OPE) (Murphy, 2003), which is an SBD with policy interventions,
are known for their robustness to the bias (Bang and Robins, 2005; Robins et al., 2009; van der Laan
and Gruber, 2012; Murphy, 2003; Rotnitzky et al., 2017; Luedtke et al., 2017; Uehara et al., 2022;
Díaz et al., 2023). These estimators are also scalable; i.e., evaluable in polynomial time relative to the
number of covariates (|Z|) and capable in the presence of mixed discrete and continuous covariates.
However, SBDs only address a fraction of the broader spectrum of identification scenarios.

Beyond SBD, recent efforts have expanded to developing estimators for the front-door (FD) ad-
justment

∑
z,x→ E[Y | x→

, z]P (z | x)P (x→) (Pearl, 1995). At first glance, this adjustment appears
similar to SBD, as both involve the sum-product of conditional probabilities. However, FD involves
treatments variables in dual roles – one being summed (x→ in

∑
x→ E[Y | x→

, z]P (x→)) and the other
being fixed (x in P (z | x)). While FD estimators achieving doubly robustness have been developed
(Fulcher et al., 2019; Guo et al., 2023), they lack scalability due to the necessity of summing over the
values of Z (i.e.,

∑
z), thereby limiting its practicality when Z is high-dimensional or continuous.

Similar challenges arise in more general identification scenarios beyond SBD and FD. Recent efforts
have focused on developing estimators for broad causal estimands, such as Tian’s adjustment (Tian
and Pearl, 2002a), which incorporates FD and other cases where causal effects are represented as
sum-product functionals (Bhattacharya et al., 2022). These efforts also include work on covering any
identification functional (Jung et al., 2021a; Xia et al., 2021, 2022; Bhattacharya et al., 2022; Jung
et al., 2023a). While these estimators are designed to achieve a wide coverage of functionals, they
lack scalability due to the necessity of summing over high-dimensional variables.

Coverage Scalability

Function Prior UCA Prior UCAclass

BD/SBD/OPE ✁ ✁ ✁ ✁

FD ✁ ✁ ✂ ✁

Tian’s ✁ ✁ ✂ ✁

obsID/gID ✁ ✃ ✂ ✁

Ctf-ID ✃ ✃ ? ✁

Transportability ✃ ✃ ? ✁

Table 1: Scope. ✁ denotes the addressed area (by UCA
or prior works). ✂ denotes the unaddressed area. ✃
denotes the partially addressed area. ? indicates areas
where no known results are present.

Thus far, we have assessed the pair (functional
class, estimator) based on two criteria: (1) cov-
erage of the functional class, and (2) scalability
of the corresponding estimators. Scalable esti-
mators achieving doubly robustness have been
established predominantly for BD/SBD classes.
While recent studies have developed estimators
with a strong emphasis on coverage (e.g., any
identification functional), less attention has been
given to achieving scalability.

In this paper, we establish a novel pair of a
functional class and its corresponding estima-
tion frameworks designed to ensure scalability
while covering a broad spectrum of identifica-
tion functionals. Our work aims to maximize
coverage, enabling the effective development of
scalable estimators with the doubly robust prop-
erty. This functional class, termed unified covariate adjustment (UCA), integrates a sum-product
of conditional distributions appearing in many causal inference scenarios such as BD/FD, Tian’s
adjustment, S-admissibility in transportability/recoverability (Bareinboim and Pearl, 2016), effect-of-
treatment-on-the-treated (ETT) (Heckman, 1992), and nested counterfactuals (Correa et al., 2021).
The coverage of the proposed class is further demonstrated through the application to a novel estimand
for the counterfactual directed effect (Ctf-DE) derived from fairness analysis (Plečko and Bareinboim,
2024). For the proposed UCA class, we develop a scalable and doubly robust estimator evaluable
computationally efficiently relative to the number of samples. Table 1 visualizes the scope of our
framework. The contributions of this paper are as follows:

1. We introduce unified covariate adjustment (UCA), a comprehensive framework that encompasses
a broad class of sum-product causal estimands. This framework’s expressiveness is demonstrated
across various scenarios beyond SBD, including Tian’s adjustment that incorporates FD and others
as well novel counterfactual scenarios in fairness analysis.

2. We develop a corresponding estimator that is computationally efficient and doubly robust and
provide its finite sample guarantee. We demonstrate scalability and robustness to bias both
theoretically and empirically through simulations.
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Figure 1: (a) Front-door in Example 1, (b) Verma in Example 2, (c) Napkin, (d) Standard fairness
model in Example 3, and (e) Example graph from (Jung et al., 2021a, Fig. 1b)

Notations. We use (X, X , x, x) to denote a random vector, variable, and their realized values,
respectively. For a function f(zi) for i = 1, 2, · · · ,, we use

∑
i f(zi) = f(z1) + f(z2) · · · .

Also, for a function f(z), we use
∑

z f(z) to denote the summation/integration over a mixture
of discrete/continuous random variables Z. For example, we write the back-door adjustment as∑

z EP [Y | x, z]P (z) when Z is a mixture of discrete/continuous variables. Given an ordered
set X = {X1, · · · , Xn}, we denote X(i) := {X1, · · · , Xi} and X↑i := {Xi+1, · · · , Xm} for
m = |X|. For a discrete X, we use x(X) as a function such that x(X) = 1 if X = x; x(X) = 0
otherwise. P (V) denotes a distribution over V and P (v) as a probability at V = v. We use
EP [f(V)] and VP [f(V)] to denote the mean and variance of f(V) relative to P (V). We use
→f→P :=

√
EP [{f(V)}2] as L2-norm of f with P . If a function f̂ is a consistent estimator of f

having a rate rn, we will use f̂ ↑ f = oP (rn). We will say f̂ is L2-consistent if →f̂ ↑ f→P = oP (1).
We will use f̂ ↑ f = OP (1) if f̂ ↑ f is bounded in probability. Also, f̂ ↑ f is said to be bounded in
probability at rate rn if f̂ ↑ f = OP (rn). [n] := {1, · · · , n} is a collection of index. D := {V(i) :
i ↓ [n]} denotes a sample set, where V(i) denote the ith sample in D. The empirical average of f(V)
with samples D is ED[f(V)] := (1/|D|)

∑
i:V(i)↓D f(V(i)).

Structural causal models. We use structural causal models (SCMs) (Pearl, 2000; Bareinboim
et al., 2020) as our framework. An SCM M is a quadruple M = ↔U,V, P (U),F↗, where U
is a set of exogenous (latent) variables following a joint distribution P (U), and V is a set of
endogenous (observable) variables whose values are determined by functions F = {fVi}Vi↓V such
that Vi ↘ fVi(pai,ui) where PAi ≃ V and Ui ≃ U. Each SCM M induces a distribution P (V)
and a causal graph G = G(M) over V in which directed edges exists from every variable in PAi to
Vi and dashed-bidirected arrows encode common latent variables. Performing an intervention fixing
X = x is represented through the do-operator, do(X = x), which encodes the operation of replacing
the original equations of X (i.e., fX(pax,ux)) by the constant x for all X ↓ X and induces an
interventional distribution P (V | do(x)). For any Y ≃ V, the potential response Yx(u) is defined
as the solution of Y in the submodel Mx given U = u, which induces a counterfactual variable Yx.

Related work. Our work is an extension of existing sequential back-door adjustment (SBD) estima-
tors (Mises, 1947; Bickel et al., 1993; Bang and Robins, 2005; Robins et al., 2009; van der Laan and
Gruber, 2012; Rotnitzky et al., 2017; Luedtke et al., 2017; Díaz et al., 2023) to a broader class of
sum-product functionals, such as the front-door adjustment (FD) and Tian’s adjustment (Tian and
Pearl, 2002a) which generalizes FD and more, and nested counterfactuals, which will be detailed in
later sections. Our work is aligned with recent works of Chernozhukov et al. (2022); Li and Luedtke
(2023); Quintas-Martinez et al. (2024), which examined SBD derived from various joint distributions.
Specifically, Li and Luedtke (2023) considered the SBD setting where conditional distributions are
induced from different sources. In contrast, we study a broader class of sum-product functionals
from multiple populations. Also, Quintas-Martinez et al. (2024) considered the Markovian model∏n

i=1 P
i(Vi | PAi) where each P

i can be distinct. In contrast, we study a broader class of estimands
that are not confined to conditioning on PAi. On the other hands, (Chernozhukov et al., 2022)
considered the case where covariate distributions are allowed to be changed, and demonstrated that
FD can be captured through this technique. Our work expands on these findings by covering a broader
class, such as the Tian’s adjustment and a nested counterfactual in fairness literature, and by providing
a more formal theory that includes finite sample guarantees and asymptotic analysis.

2 Unified Covariate Adjustment

A class of causal estimands termed unified covariate adjustment (UCA) is defined as follows:
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Definition 1 (Unified Covariate Adjustment (UCA)). Let ![P;ω] denote the following probability
measure over an ordered set V := (C1,R1, · · · ,Cm,Rm, Y := Cm+1): ![P;ω] := P

m+1(Y |
Sm)

∏m
i=1 P

i(Ci | Si↔1)ωi
Ri

(Ri | Si \Ri), where

• P := {P i(V) : i ↓ [m+1]} is a set of distributions in the form of P i(V) = Q
i(V | Sb

i↔1 = sbi↔1),
where Qi is a distribution, Sb

i↔1 is a (potentially empty) set. Each pairs P i(V) and P
j(V) can be

the same (P i(V) = P
j(V)) or distinct (P i(V) ⇐= P

j(V)).

• For i ↓ [m+ 1], Si↔1 := (C(i↔1) ⇒R(i↔1)) \ Sb
i↔1.

• Each Ri is controlled by a pre-specified / known probability measure ω
i
Ri

:= ω
i
Ri

(ri | si \ ri)
where

∑
ri
ω
i
Ri

(ri | si \ ri) = 1 and 0 ⇑ ω
i
Ri

⇑ 1 almost surely (e.g., ωi
Ri

:= ri(Ri)).

Then, the expectation of Y over ![P;ω] is called a Unified Covariate Adjustment (UCA):

ε0 := E![P;ω][Y ] =
∑

c↗r

EPm+1 [Y | sm]
m∏

i=1

P
i(ci | si↔1)ω

i
Ri

(ri | si \ ri). (1)

We will exemplify that UCA encompasses many well-known causal estimands, including the se-
quential back-door adjustment (SBD) (Robins, 1986; Pearl and Robins, 1995b), front-door adjust-
ment (Pearl, 1995), Tian’s adjustment (Tian and Pearl, 2002a), S-admissibility in transportabil-
ity/recoverability (Bareinboim and Pearl, 2016), effect-of-treatment-on-the-treated (ETT) (Heckman,
1992), nested counterfactuals (Correa et al., 2021), treatment-treatment interaction (Jung et al., 2023b),
and off-policy evaluation (Murphy, 2003). This section particularly focuses on recently developed
and lesser-known estimands, for which scalable estimators have been rarely explored. Appendix B
provides additional examples, demonstrating how UCA can represent well-known estimands such as
off-policy evaluation and S-admissibility.

At first glance, UCA closely resembles the sequential back-door adjustment (SBD) (Robins, 1986;
Pearl and Robins, 1995b). Indeed, UCA is reduced to SBD in the special case where P

i = P (V)
for all i = 1, · · · ,m + 1 and ω

i
Ri

:= ri(Ri); i.e., ε0 =
∑

c EP [Y | c(m) ⇒ r(m))]
∏m

i=1 P (ci |
c(i↔1) ⇒ r(i↔1)). However, UCA provides flexibility to represent target estimands beyond SBD
by allowing P

i to be any distribution that aligns with the target estimand, permitting arbitrary
conditional distributions beyond the observational distribution P . To demonstrate, consider the
front-door adjustment (FD) scenario (Pearl, 1995) depicted in Fig. 1a:

E[Y | do(x)] =
∑

c,z,x→

E[Y | c, x→
, z]P (z | c, x)P (c, x→). (2)

Even though FD cannot be expressed using SBD because the treatment variable X is being fixed (in
P (z | c, x)) and summed (with

∑
x→ ) simultaneously, it can be represented through UCA as follows:

Example 1 (FD as UCA). FD can be written as the expectation of Y over P (Y | Z,X,C)P (Z |
x,C)P (X,C). We set C1 := {X,C}, C2 := {Z}, R = ⇓, P 1(C1) = P (X,C), P 2(C2 | S1) =
P (Z | x,C) with Sb

1 = {X}, S1 = {C}, and P
3(Y | S3) = P (Y | Z,X,C) with S2 = {Z,X,C}.

Next, consider Verma’s equation (Verma and Pearl, 1990; Tian and Pearl, 2002b) with Fig. 1b:

E[Y | do(x)] =
∑

b,a,x→

E[Y | b, a, x]P (b | a, x→)P (a | x)P (x→), (3)

where X is fixed to x in E[Y | x, a, b] and P (a | x) while summed in P (b | a, x→) and P (x→). Similar
to FD, due to the dual role of X , the existing SBD framework is not suitable to express Verma’s
equation, which can be represented through UCA as follows:
Example 2 (Verma as UCA). Verma’s equation is expressible as the expectation of Y over P (Y |
B,A, x)P (B | A,X)P (A | x)P (X). We set C1 = {X}, C2 = {A}, C3 = {B}, and R = ⇓. We
map P

1(C1) := P (X), P 2(C2 | S1) = P (A | x) with S1 = ⇓, Sb
1 = {X}, P 3(C3 | S2) = P (B |

A,X) with S2 = {A,X}, and P
4(Y | S3) = P (Y | B,A, x) with S3 = {B,A}, Sb

3 = {X}.

In both examples, the variable Sb
i = X is bifurcated, being fixed in some conditional distributions

(e.g., P (z | x, c) in the front-door criterion (FD)) and summed over
∑

x
→ in others (e.g., P (y | z, x→

, c)

4



Algorithm 1: Tian-to-UCA(G,V := (V1, · · · , VK , Y ))
Input: A graph G and a set of topologically ordered variables V := (V1, · · · , VK , Y ).

1 Set C1 := (V1, · · · , Vk→1, Vk := X,Vk+1, · · · , Vk+i1) as an ordered sequence, where (V1, · · · , Vk→1)
are predecessors of X , and (Vk+1, · · · , Vk+i1) are successors of X within SX .

2 Set P 1(C1) := P (C1), i := 2 and R := →.
3 while V \ ({Y } ↑C(i→1)) ↓= → do
4 if Ci→1 ↔ SX , set Ci as the next sequence of vertices in V \ ({Y } ↑C(i→1)) that are not in SX ;

Si→1 := C(i→1) \ {X}; and P
i(Ci | Si→1) := P (Ci | Si→1, x) with Sb

i→1 := {X}.
5 else, set Ci as the next sequence of vertices in V \ ({Y } ↑C(i→1)) that are in SX ; Si→1 := C(i→1);

and P
i(Ci | Si→1) := P (Ci | Si→1) with Sb

i→1 := →.
6 i ↗ i+ 1.
7 end
8 Set m ↗ i. If Y ↘ SX , set Sm := C(m), Sb

m = →, and P
m+1(Y | Sm) = P (Y | Sm). Otherwise, set

Sm := C(m) \ {X}, Sb
m = {X}, and P

m+1(Y | Sm) = P (Y | Sm, x).
9 return E![P][Y ] where ![P] := P

m+1(Y | Sm)
∏m

i=1 P
i(Ci | Si→1).

in FD). Both FD and Verma’s equations are special cases of Tian’s adjustment (Tian and Pearl, 2002a),
which states that E[Y | do(x)] is identifiable under certain conditions. Specifically, when X and its
children chG(X) in the graph G are not connected by bidirected edges, it can be expressed as:

E[Y | do(x)] =
∑

v\xy

∑

x→

EP → [Y | v(K)]
K∏

i=1

P
→(vi | v(i↔1)), (4)

where V := (V1, V2, · · · , VK , Y ) is a topologically ordered set with Vk := X for some k being
the treatment variable X , P →(vi | v(i↔1)) := P (vi | v(k↔1)

, x, vk+1, · · · , vi↔1) (i.e., X is fixed
to x) if Vi ⇐↓ SX where SX is the set of vertices connected with X through bidirected edges, and
P

→(vi | v(i↔1)) := P (vi | v(k↔1)
, x

→
, vk+1, · · · , vi↔1) (i.e., X is summed with

∑
x→ ) if Vi ↓ SX . In

Tian’s adjustment, X is bifurcated into summed through
∑

x→ and fixed to X = x. We exhibit the
expressiveness of UCA for Tian’s adjustment:
Proposition 1. Tian’s adjustment in Eq. (4) is UCA-expressible through Algo. 1.

Next, we exhibit the coverage of the UCA for a counterfactual quantity in the fairness literature.
Specifically, we focus on the counterfactual directed effect (Ctf-DE) in the Standard fairness model
(SFM) (Plečko and Bareinboim, 2024), as illustrated in Fig. 1d. This model includes several key
components: the protected (discrete) attribute (X), such as race; the baseline covariates (Z), like age;
the mediator variables (W ) affected by X , for example, educational level; and the outcome variable
(Y ), such as salary. Consider a scenario where we investigate the the query, “What would be the
expected salary for someone who is Black, but hypothetically of Asian race and had been educated as a
White person typically would be?”. The query is represented as Ctf-DE: E[YX=x0,WX=x1

| X = x2],
where x0, x1, and x2 correspond to the races Asian, White, and Black, respectively. This query can
be identified through the algorithm in (Correa et al., 2021) under the SFM in Fig. 1d:

E[YX=x0,WX=x1
| X = x2] =

∑

w,z

E[Y | X = x0, w, z]P (w | X = x1, z)P (z | X = x2). (5)

This identification functional is UCA-expressible:
Example 3 (Ctf-DE as UCA). The Ctf-DE is expressible through the expectation of Y over P (Y |
X = x0,W,Z)P (W | X,Z)P (Z | X = x2) x1(X). Set R1 := {X}, ω1

R1
:= x1(X), P 1(C1) =

P (Z | X = x2) with C1 = {Z} and Sb
0 = {X}, P 2(C2 | S1) = P (W | X,Z) with C2 = {W}

and S1 = {X,Z}, P 3(Y | S2) = P (Y | X = x0,W,Z) with S2 = {W,Z} and Sb
2 = {X}.

Despite the broad expressiveness of UCA, as illustrated in this section and ppendix B, not all causal
estimand functionals are UCA-expressible. To witness, consider the ‘napkin’ estimand described
in (Pearl and Mackenzie, 2018; Jung et al., 2021a) with G in Fig. 1c, defined as P (y | do(x)) =∑

w P (y,x|r,w)P (w)∑
w P (x|r,w)P (w) . Here, the functional for E[Y | do(x)] is represented not as the expectation of

a product of conditional distributions, but rather as a quotient of sums of conditional distributions.
The napkin estimand is not UCA-expressible. Intuitively, if a target functional is expressed as
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an expectation of a probability measure that is represented as a product of multiple conditional
distributions, it can be captured through UCA. A formal criterion is the following:
Theorem 1 (Expressiveness). Suppose a functional ε0 is expressed as the mean of the following
measure, Pm+1(Y | S→

m)
∏m

i=1 P
i(Ci | S→

i↔1)ω
i
Ri

(Ri | S→
i \Ri), where S→

i = (C(i) ⇒R(i)) \ Sb
i

for each i = 1, . . . ,m and P
j(V) for j = 1, . . . ,m + 1 are distributions of the form P

j(V) =
Q

j(V | Sb
j↔1 = sbj↔1). Then, the functional ε0 can be expressed through UCA in Eq. (1).

3 Scalable Estimator for Unified Covariate Adjustment

So far, we discussed the coverage of UCA. In this section, we construct a scalable estimator for UCA
that achieves doubly robustness property and provides its finite sample guarantee. We define the
estimator with two sets of nuisance parameters µ and ε. µ is a collection of regression parameters,
and ε is a collection of ratio parameters.

We introduce sets to define regression nuisances. Define Bi↔1 := Si⇔C(i↔1)⇔Sb
i↔1 for i = 2, · · · ,m

as a bifurcated set, which is a subset of Si in P
i+1(Ci+1 | Si) that is fixed to sbi↔1 at P i(Ci | Si↔1),

while marginalized out over P j(Cj | Sj↔1) for some j < i (e.g., X in FD). Set Bm = ⇓. We use
B→

i↔1 to denote an independent copy of Bi↔1 (variables following the same distribution as Bi↔1 but
independent of Bi↔1 and V). With Bi↔1 and B→

i↔1, we define S→
i := ((Si ⇒Bi) \Bi↔1) ⇒B→

i↔1

and Ši := S→
i \ Ri for i = 2, · · · ,m. Define the regression nuisance parameters as follows:

µ
m
0 (Sm) := EPm+1 [Y | Sm] and µ̌

m
0 (Šm) :=

∑
rm

ω
m
Rm

(rm | Sm \ Rm)µm
0 (rm, Šm). For

i = m↑ 1, · · · , 1,
µ
i
0(Si,B

→
i) := EP i+1 [µ̌i+1

0 (Ši+1) | Si,B
→
i], (6)

µ̌
i
0(Ši) :=

∑

ri

ω
i
Ri

(ri | Si \Ri)µ
i
0(ri,S

→
i). (7)

Equipped with the regression nuisances, UCA can be computed as follows:
Proposition 2. UCA in Eq. (1) can be parameterized as ε0 = EP 1 [µ̌1

0(Š1)].

Whenever no variables are being summed and fixed simultaneously (i.e., Bi↔1 = ⇓ for all i =
2, · · · ,m) in the UCA functional, as in Eq. (5) in Ctf-DE, the standard SBD adjustment or examples
in Appendix B, we can estimate µ through nested regression methods with off-the-shelf regression
models and compute UCA in Eq. (1) as ε0 = EP 1 [µ̌1

0(Š1)]. This approach aligns with existing
SBD estimators (Bang and Robins, 2005; Robins et al., 2009; van der Laan and Gruber, 2012;
Rotnitzky et al., 2017; Luedtke et al., 2017; Díaz et al., 2023). For instance, in Ctf-DE in Example 3,
µ
2
0(W,Z) := EP [Y | W,Z, x0], µ̌2

0(W,Z) = µ
2
0(W,Z), µ1

0(X,Z) := EP [µ̌2
0(W,Z) | X,Z],

µ̌
1
0(Z) = µ

1
0(x1, Z), and ε0 = EP [µ̌1

0(Z) | x2]. These nuisances can be estimated efficiently with
regression models run in polynomial time relative to the number of variables and samples (e.g., neural
networks (LeCun et al., 2015) or XGBoost (Chen and Guestrin, 2016)).

Beyond the SBD framework, the regression nuisances are capable of representing functionals
in the presence of variables being summed and fixed simultaneously (e.g., FD in Eq. (2) or
Verma in Eq. (3)). As an example, consider FD in Eq. (2) with its UCA representation in Ex-
ample 1. First, define µ

2
0(Z,X,C) := EP [Y | Z,X,C] with S2 = {Z,X,C}. Next, we have

B1 = Sb
1 ⇔ C1 = {X} and, Š2 = {Z,X →

, C}, where X
→ is an independent copy of X . Con-

sequently, µ̌2
0(Z,X

→
, C) := µ

2
0(Z,X

→
, C), where (Z,X →

, C) is plugged into a function µ
2
0. Next,

define µ
1
0(C,X

→) := EP [µ̌2
0(Z,X

→
, C) | x,C,X →]. Finally, we have µ̌

1
0(C,X) = µ

1
0(C,X). The

expectation, EP [µ̌1
0(C,X)] =

∑
c,x→ P (c, x→)µ̌1

0(c, x
→), correctly specifies FD in Eq. (2) as follows:

∑

c,x→

P (c, x→)µ̌1
0(c, x

→) =
∑

c,x→

P (c, x→)µ1
0(c, x

→) =
∑

c,x→

P (c, x→)EP [µ̌
2
0(Z, x

→
, c) | x, c, x→]

=↘
∑

c,x→,z

P (c, x→)P (z | x, c)µ2
0(z, x

→
, c) =

∑

c,x→,z

P (c, x→)P (z | x, c)EP [Y | z, x→
, c],

where the equation =↘ holds since X
→ is an independent copy of X , so it’s independent of Z.

Empirically, generating B→
i involves permuting copied samples of Bi, an used in recent works in

(Chernozhukov et al., 2022; Xu and Gretton, 2022). We name this approach empirical bifurcation:
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Algorithm 2: DML-UCA({Di}, L)

1 (Sample splitting) For each i ↘ [m+ 1], randomly split Di iid≃ P
i into L-folds. Let Di

ω denote the ω-th
partition, and define Di

→ω := Di \ Di
ω. We use W(Di

ω) to refer to the samples of ⇐W in Di
ω.

2 for ω ↘ [L] do
3 for i = m, . . . , 1 do

1. Learn µ̂
i
→ω(Si,B

↑
i) by regressing µ̌

i+1
→ω (Ši+1(Di+1

→ω )) onto Si(Di+1
→ω ),B↑

i(Di+1
→ω ) (where µ̌

m+1 := Y ).

2. Evaluate µ̌
i
→ω(Ši(Di

→ω)) using empirical bifurcation under the policy ε
i
Ri

.

3. Compute µ̌
i
ω := µ̌

i
→ω(Ši(Di

ω)) by evaluating µ̌
i
→ω using samples Di

ω.

4. For a nuisance parameter ϑi
0 satisfying Eq. (9), learn ϑ̂

i
→ω using samples {Dj

→ω : j ↘ [i+ 1]}.

5. Evaluate ϑ̂
i
ω := ϑ̂

i
→ω({Dj

ω : j ↘ [i+ 1]}).
4 end
5 end
6 Return the DML-UCA estimator ϖ̂:

ϖ̂ :=
1
L

L∑

ω=1

m∑

i=1

EDi+1
ω

[ϑ̂i
ω(µ̌

i+1
ω ⇒ µ̂

i
ω)] + ED1

ω
[µ̌1

ω ]. (8)

Definition 2 (Empirical bifurcation). An empirical bifurcation for B following a distribution P is
the procedure of copying samples of B ↖ P and randomly permuting to obtain new samples B→.

In general, the regression nuisances can be estimated from data by employing empirical bifurcation
and off-the-shelf regression models.

Next, we define the ratio nuisance parameters ε. Define ϑm
0 (Sm) as the solution functional satisfying

EPm+1 [µm
0 (Sm)ϑm

0 ] = ε0. Recursively, for i = m ↑ 1, · · · , 1, define ϑ
i
0(Si,B→

i) as a functional
satisfying the following equation, for any µ

i+1 ↓ L2(P i+2).

EP i+2 [ϑi+1
0 (Si+1,B

→
i+1)µ

i+1(Si+1,B
→
i+1)] = EP i+1 [ϑi

0(Si,B
→
i)EP i+1 [µ̌i+1(Ši+1) | Si,B

→
i]],

(9)
where the closed form solution is given as follows:

ϑ
i
0 =

∏i
j=1 P

j(Cj | Sj)ω
j
Rj

(Rj | Sj \Rj)

P i+1(Si,B→
i)

(10)

For the example of FD, ϑ2
0 = P (Z|x,C)

P (Z|X,C) and ϑ
1
0 = P (x)

P (x|C) .

Equipped with the ratio nuisances, UCA can be computed as follows:
Proposition 3. UCA in Eq. (1) can be parameterized as ε0 = EPm+1 [ϑm

0 Y ].

Estimating the ratio nuisances may be challenging due to the distribution ratio of continuous/high-
dimensional variables. To address the challenge, we use Bayes’ rule to transform the distribution
ratio into a more tractable form. For example, in FD, if the treatment X is a singleton binary, instead
of estimating ϑ

2
0 = P (Z|x,C)

P (Z|X,C) , an equivalent estimand ϑ
2
0 = P (x|Z,C)P (X|C)

P (X|Z,C)P (x|C) can be estimated. This
approach allows to use off-the-shelf probabilistic classification methods for estimating distribution
ratios, allowing scalable computation. A detailed procedure for ratio estimation is in Appendix C.2.

Combining regression and ratio-nuisances, we present a double/debiased machine learning (DML)
(Chernozhukov et al., 2018)-based estimator ε̂ for the UCA, titled ‘DML-UCA’, in Algo. 2. We
provide detailed nuisance specification for various examples in Appendix A and B.

DML-UCA provides a scalable estimator for functionals expressible through UCA. When the target
query is BD/SBD, DML-UCA aligns with existing doubly robust SBD estimators (Bang and Robins,
2005; Robins et al., 2009; van der Laan and Gruber, 2012; Rotnitzky et al., 2017; Luedtke et al.,
2017; Díaz et al., 2023). Beyond SBD, DML-UCA can be estimated in polynomial time relative to
the number of variables and samples, ensuring its scalability:
Theorem 2 (Scalability). Algo. 2 runs in O(Knmax + T (m,nmax,K)), where K is the number
of distinct in P, nmax := max{|Dk| : k ↓ [K]}, and T (m,nmax,K) is the time complexity for
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Estimand Estimator Complexity

BD/SBD

Plug-in O(n2m)

IPW (Rosenbaum and Rubin, 1983)
O(n+ T (m,n))OM (Robins, 1986)

AIPW (Rotnitzky et al., 1998)

FD Fulcher et al. (2019); Guo et al. (2023)
O(n2m + T (m,n))Tian’s Bhattacharya et al. (2022)

UCA DML-UCA (BD, FD and Tian’s) O(n+ T (m,n))

DML-UCA (general) O(Knmax + T (m,nmax,K))

obsID DML-ID (Jung et al., 2021a) O(n22m + T (m,n))

gID DML-gID (Jung et al., 2023a) O(Knmax2
2m + T (m,nmax,K))

Table 2: Comparison of time complexities of existing estimators for estimands: nmax := max{|Di|}
is the number of samples, m is the number of variables, and T (m,nmax,K) (or T (m,n) :=
T (m,nmax = n,K = 1)) is the time complexity for learning nuisance parameters for the tar-
get functional. The plug-in estimator for BD is one where EP [Y | x, z] and P (z) are estimated from
data, and

∑
z EP [Y | x, z]P (z) is evaluated. Details are in Sec. C.4.

learning nuisances µ̂i
ω and ϑ̂

i
ω. Specifically, O(T (m,nmax,K)) = O(K ↙ L↙ (Tµ + Tε)), where

Tµ := max{Tµ̂i
ω
: i ↓ [m], ϖ ↓ [L]}, Tε := max{Tε̂i

ω
: i ↓ [m], ϖ ↓ [L]}, and Tµ̂i

ω
and Tε̂i

ω
denote

the time complexity for learning and evaluating ϑ̂
i
ω and µ̂

i
ω, respectively.

An an example, for XGBoost (Chen and Guestrin, 2016), Tε = Tµ = O(numtree ↙ depthtree ↙
nmax log nmax), where numtree and depthtree are the number and depth of trees in XGBoost.

Table 2 summarizes the comparison of time complexities for existing estimators. As shown in the
table, scalable estimators with polynomial time complexity have only been developed for BD/SBD
estimands. Existing estimators beyond SBD often lack scalability. For instance, existing estimators
for FD (Fulcher et al., 2019; Guo et al., 2023) or Tian’s adjustment (Bhattacharya et al., 2022) face
exponential time complexity in the dimension of mediators. In contrast, DML-UCA’s polynomial
time complexity positions it as a uniquely scalable solution within the UCA functional class, which
includes FD and Tian’s adjustment as special cases. For general obsID/gID estimands beyond the
UCA class, scalable estimators have yet to be developed.

3.1 Error analysis

In this section, we show that DML-UCA exhibits doubly robustness, in addition to scalability. Since
UCA is composed of multiple (possibly distinct) distributions, we provide a tool to distinguish them.
Definition 3 (Index set). The index sets I1, · · · , IK partition {1, · · · ,m+ 1} such that indices i
and j are in the same set Ik if and only if P i(V) = P

j(V).

We will use Pk for k = 1, · · · ,K to denote the distribution P
i for i ↓ Ik. Then, the functional

![P;ω] in Eq. (1) can be written as follows:

![P;ω] = ![{Pk : k = 1, · · · ,K};ω]. (11)

Since multiple distributions are involved in UCA, deriving an influence function for each distribution
Pk becomes necessary. A standard influence function is typically defined for a single distribution P ,
and thus, does not suffice for studying multi-distribution setting. To address the issue, we employ a
partial influence function (PIF) (Pires and Branco, 2002), an influence function defined relative to
each Pk. A formal definition is in Appendix C. For UCA, PIFs are given as follows:
Theorem 3 (PIF for UCA). Assume that µi

0 < ∝ and 0 < ϑ
i
0 < ∝ almost surely for i = 1, · · · ,m.

Define ϱ
1
0 := {µ1

0} and ϱ
i
0 := {ϑi↔1

0 , µ
i
0, µ

i↔1
0 } for i = 1, · · · ,m+ 1, and

ς
i(Ši; ϱ

i
0,ε0) :=

{
ϑ
i↔1
0 {µ̌i

0 ↑ µ
i↔1
0 } if i > 1

µ̌
1
0 ↑ ε0 if i = 1.

(12)
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Let Vk := ⇒i↓Ik Š
i and ϑk

0 := ⇒i↓Ikϱ
i
0. Then, the k-th PIF for UCA is φk

0 := φ
k(Vk;ϑk

0 ,ε0) :=∑
i↓Ik

ς
i(Si; ϱi0,ε0).

Equipped with PIFs, we provide a finite-sample guarantee for DML-UCA, extending Chernozhukov
et al. (2023) which analyzed DML estimators for BDs.
Theorem 4 (Finite sample guarantee). Suppose µi

0, µ̂
i
ω < ∝ and 0 < ϑ

i
0, ϑ̂

i
ω < ∝ almost surely for

i = 1, · · · ,m. Suppose the third moment of φk
0 for k = 1, · · · ,K exist. Let φk

0 := φ
k(Vk;ϑk

0 ,ε0)

and φ̂
k
ω := φ

k(Vk; ϑ̂k
ω ,ε0). Let Rk

1 := (1/L)
∑L

ω=1(EDk
ω
[φ̂k

ω ]↑ EPk [φ̂
k
ω ]). Then,

1. The error ε̂ ↑ ε0 is decomposed as follows:

ε̂ ↑ ε0 =
K∑

k=1

R
k
1 +

1

L

L∑

ω=1

m∑

i=1

EP i+1 [(ϑ̂i
ω ↑ ϑ

i
0)(µ

i
0 ↑ µ̂

i
ω)]. (13)

2. Let ↼2k,0 := VPk [φ
k
0 ]. With probability (W.P) greater than 1↑ ↽,

K∑

k=1

R
k
1 ⇑ K

√
2

↽





√√√√
K∑

k=1

↼2k,0

|Dk| +

√√√√
L∑

ω=1

K∑

k=1

→φ̂k
ω ↑ φk

0→2Pk
|Dk

ω |



 . (14)

3. Let ⇀3
k,0 := EPk [|φk

0 |3]. Let NORMAL(x) denote the standard normal CDF. W.P greater than 1↑ ↽,

P
k

√
|Dk|
↼k,0

R
k
1 < x


↑ NORMAL(x)

 ⇑
1′
2ϑ

√√√√1

↽

L∑

ω=1

→φ̂k
ω ↑ φk

0→2Pk
|Dk

ω |
+

0.4748⇀3
k,0

↼3k,0

√
|Dk|

. (15)

This is a novel finite sample guarantee of DML-based estimators for functionals beyond SBD. Finite
sample analyses for functionals beyond SBD have been studied only for the non-doubly robust
estimators (Bhattacharyya et al., 2022). For doubly robust estimators, only asymptotic analyses
were provided for FD (Fulcher et al., 2019; Guo et al., 2023), Tian’s adjustment (Bhattacharya et al.,
2022), and obsID (Jung et al., 2021b). Thm. 4 elucidates that the error can be decomposed into two
terms Rk

1 and R
ω
2. The term R

k
1 closely approximates a standard normal distribution variable, and

R
ω
2, comprises the error of (ϑ̂i

ω, ϑ̂
i↔1
ω ) and µ̂

i, exhibiting doubly-robustness behavior. Specifically, if
the nuisance parameters µ̂i

ω, ϑ̂
i
ω, and ϑ̂

i↔1
ω converge at a rate of n↔1/4 (where n represents the size of

the smallest sample set), then DML-UCA converges at a faster rate of n↔1/2. This point becomes
evident in the corresponding asymptotic analysis:
Corollary 4 (Asymptotic error). Assume µ

i
0, µ̂

i
0 < ∝ and 0 < ϑ

i
0, ϑ̂

i
0 < ∝ almost surely. Suppose

the map ϑ̂k
ω ∞∈ φ̂

k
ω is uniformly differentiable with respect to ϑ̂k

ω , and the derivative of φ̂k
ω w.r.t. ϑ̂k

ω is
bounded by some constants. Suppose µ̂

i
ω and ϑ̂

i
ω are L2-consistent. Then,

ε̂ ↑ ε0 =
K∑

k=1

R
k
1 +

1

L

L∑

ω=1

m∑

i=1

OP i+1


→µ̂i

ω ↑ µ
i
0→(→ϑ̂i

ω ↑ ϑ
i
0→)


,

and
√
|Dk|Rk

1 converges in distribution to normal(0, ↼2k,0).

4 Experiments

In this section, we demonstrate the scalability and doubly robustness of the DML-UCA estimator,
where nuisances are learned through XGBoost (Chen and Guestrin, 2016). We specify an SCM M
for FD (Fig. 1a), Verma (Fig. 1b), and the example graph in (Jung et al., 2021a) (Fig. 1e), and generate
datasets Dk ↖ Pk from the SCM. The target estimand is denoted as ε0. Details are in Appendix F.
Further simulations are provided in Appendix E.

Scalability. To demonstrate scalability of DML-UCA, we compare the running time with existing
estimators of (Fulcher et al., 2019) (FD) and (Jung et al., 2021a) (Verma’s equation and the estimand
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(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison of DML-UCA (‘DML’) with existing estimators using (Top) running-time-
plots (x-axis: the dimension of summed variables, y-axis: running time); and (Bottom) AAE-plots
(x-axis: the sample size, y-axis: errors). DML-UCA is compared with (a,d) Fulcher et al. (2019) for
FD; (b.e) (Jung et al., 2021a) for Verma’s equation; and (c,f) Jung et al. (2021a) for Jung’s equation.

with Fig. 1e — E[Y | do(x1, x2)] =
∑

x→
1,r,z

EP [Y | r, x→
1, x2, z]P (r | x1, z)P (z, x→

1) — which we
call ‘Jung’s equation’). For each example, we increment the dimension of the summed variables,
run 100 simulations, take the average of running times, and compare this average. We label this
plot as ‘run-time-plot’, presented in the top side of Fig. 2. In the comparison with (Fulcher et al.,
2019) for FD in Fig. 2a, we fix |C| = 2 and increment |Z| = {2, 4, 6, 8, 12, 20, 30, 50, 100}. When
comparing with (Jung et al., 2021a), for Verma’s equations in Figs. (2b), we fix |A| = 2 and
increment |B| = {2, 4, 6, 8, 12, 20, 30, 50, 100}. For Jung’s equation in Fig. 2c, we fix |Z| = 2
and |R| = {2, 4, 6, 8, 12, 20, 30, 100}. The timeout for the run-time is set to 300 seconds. For all
scenarios, the run-time of existing estimators increases rapidly over dimensions due to the summation
operation while DML-UCA scales well for high-dimensional covariates.

Doubly robustness. To demonstrate doubly robustness, we compare the error of DML-UCA with
existing estimators for FD of Fulcher et al. (2019) and for Verma’s and Jung’s equations of Jung
et al. (2021a) We use ε̂

est for est ↓ {DML, Fulcher, Jung} to denote each estimator. We use the
average absolute error (AAE), which is an average of the error of the estimated versus true causal
effect of X = x: 1

| domain(X)|
∑

x↓domain(X) |ε̂est(x) ↑ ε0(x)|. To witness the fast convergence
of DML-UCA, we enforce the convergence rate of nuisance estimates to be no faster than the
decaying rate n

↔1/4 by adding the noise term ↽ ↖ normal(n↔1/4
, n

↔1/4) to nuisances, inspired by
the experimental design in (Kennedy, 2023). We ran 100 simulations for each number of samples
n = {2500, 5000, 10000, 20000}. We label the plot as ‘AAE-plot’, presented in the bottom side of
Fig. 2. For each example, DML-UCA outperforms other estimators, exhibiting fast convergence.

5 Conclusions

We introduce a framework that encompasses a broad class of sum-product causal estimands, called
UCA class, for which scalable estimators were previously unavailable. We demonstrate the expres-
siveness of the UCA class, which includes not only BD/SBD but also broader classes such as Tian’s
adjustment incorporating FD and Verma, and Ctf-DE, for which the existing SBD-based framework
is not applicable. We develop an estimator for UCA called DML-UCA that can estimate the target
estimand in polynomial time relative to the number of samples and variables, ensuring scalability.
We provide finite-sample guarantees and corresponding asymptotic error analysis for DML-UCA,
demonstrating its fast convergence. These scalability and fast convergence properties are empirically
verified through simulations. Our results pave the way toward developing an estimation framework
maximizing both coverage and scalability in Table 1.
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A Nuisance Specification

A.1 Front-door adjustment in Example 1

We first note that the front-door adjustment is an expectation of the following product:

P (C,X)P (Z | x,C)P (Y | C,X,Z),

which implies that

• C1 = {C,X}; C2 = {Z}; C3 = {Y } (i.e., m = 2).

• S1 = {C} and S2 = {C,X,Z}

• Sb
1 = {X}

• B1 = S2 ⇔C1 ⇔ Sb
1 = {X}.

• Š2 = {C,X →
, Z} and Š1 = {C,X}.

• P
2 = P (· | x).

The regression nuisances are the followings:

µ
2
0(S2) := µ

2
0(Z,X,C) := EP [Y | Z,X,C]

µ̌
2
0(Š2) := µ

2
0(Z,X

→
, C)

µ
1
0(S1,B

→
1) := µ

1
0(X

→
, C) := EP [µ

2
0(Z,X

→
, C) | x,C,X →]

µ̌
1
0(Š1) = µ

1
0(X,C).

The ratio nuisances are the followings:

ϑ
2
0(Z,X,C) =

P (Z | x,C)

P (Z | X,C)
, (A.1)

ϑ
1
0(C) =

P (x)

P (x | C)
. (A.2)

The representation for DML-UCA is

EP [ϑ
2
0(Z,X,C){Y ↑ µ

2
0(Z,X,C)}]

+ EP [ϑ
1
0(C){µ2

0(Z,X
→
, C)↑ µ

1
0(X

→
, C)} | x]

+ EP [µ
1
0(X,C)].

A.2 Verma’s equation in Example 2

We first note that the Verma’s equation in Eq. (3) is an expectation of the following product:

P (X)P (A | x)P (B | A,X)P (Y | B,A, x),

which implies that

• C1 = {X}; C2 = {A}; C3 = {B}; and C4 = {Y } (i.e., m = 3).

• S1 = ⇓; S2 = {A,X} and S3 = {B,A}.

• Sb
1 = {X} and Sb

3 = {X}.

• B1 = S2 ⇔C1 ⇔ Sb
1 = {X}.

• Š3 = {B,A}; Š2 = {A,X
→} and Š1 = {X}.

• P
2 = P

4 = P (· | x).
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The regression nuisances are the followings:

µ
3
0(S3) := µ

3
0(B,A) := EP [Y | B,A, x]

µ̌
3
0(Š3) := µ

3
0(B,A) = EP [Y | B,A, x]

µ
2
0(S2) := µ

2
0(A,X) := EP [µ

3
0(B,A) | A,X]

µ̌
2
0(Š2) = µ

2
0(A,X

→)

µ
1
0(S1,B

→
1) := EP [µ

2
0(A,X

→) | x,X →]

µ̌
1
0(Š1) := µ

1
0(X).

The ratio nuisances are the followings:

ϑ
3
0(B,A) =

∑
x→ P (B | A, x

→)P (x→)

P (B | A, x)
, (A.3)

ϑ
2
0(A,X) =

P (A | x)
P (A | X)

(A.4)

(A.5)

The representation for DML-UCA is

EP [ϑ
3
0(B,A,X

→){Y ↑ µ
3
0(B,A, x)} | x]

+ EP [ϑ
2
0(A,X){µ3

0(B,A, x)↑ µ
2
0(A,X)}]

+ EP [µ̌
2
0(A,X

→)].

A.3 Counterfactual directed effect in Example 3

From the fact that Ctf-DE in Eq. (5) is represented as the expectation of Y over P (Y | X =
x0,W,Z)P (W | X,Z)P (Z | X = x2) x1(X). Set

• C1 = {Z}; C2 = {W}; and C3 = {Y }.

• S1 = {X,Z}, S2 = {W,Z}

• R1 = {X}.

• Sb
0 = {X2}; Sb

1 = {X}; Sb
2 = {X}.

• Bi = ⇓ for all i.

• Ši = Si \Ri for all i

The regression nuisances are the followings:

µ
2
0(S2) := µ

2
0(W,Z) := EP [Y | W,x0, Z]

µ̌
2
0(Š2) := µ

2
0(W,Z) = EP [Y | W,x0, Z]

µ
1
0(S1) := µ

1
0(X,Z) := EP [µ

2
0(W,Z) | X,Z]

µ̌
1
0(Š1) = µ

1
0(x1, Z).

The ratio nuisances are the followings:

ϑ
2
0(W,Z) =

P (W | x1, Z)P (Z | x2)

P (W,Z | x0)
, (A.6)

ϑ
1
0(X,Z) = x1(X)P (Z | x2)

P (X | Z)P (Z)
. (A.7)
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The representation for DML-UCA is

EP [ϑ
2
0(W,Z){Y ↑ µ

2
0(W,X,Z)} | X = x0]

+ EP [ϑ
1
0(X,Z){µ2

0(W,x0, Z)↑ µ
1
0(X,Z)}]

+ EP [µ
1
0(x1, Z) | x2].

A.4 Example Estimand for Fig. 1e

Given Fig. 1e, the causal effect is given as

E[Y | do(x1, x2)] =
∑

r,z,x→
1

EP [Y | r, x2, z, x
→
1]P (r | x1, z)P (x→

1, z),

which is the expectation of Y over the probability measure

P (Y | R,X2, Z,X1)P (R | x1, Z)P (X1, Z) x2(X2).

Set

• C1 = {X1, Z}; C2 = {R}; C3 = {Y }

• R1 = ⇓ and R2 = {X2} with ω
2
R2

= x2(X2).

• S1 = {Z}, S2 = {R,X2, Z,X1}.

• Sb
1 = {X1}.

• B1 = S2 ⇔C1 ⇔ Sb
1 = {X1}.

• Š2 = {R,X
→
1, Z}. Š1 = S1.

• P
2 = P (· | x1).

The regression nuisances are the followings:

µ
2
0(S2) := µ

2
0(R,X2, Z,X1) := EP [Y | R,X2, Z,X1]

µ̌
2
0(Š2) := µ̌

2
0(R,Z,X

→
1) = EP [Y | R, x2, Z,X

→
1]

µ
1
0(S1,B

→
1) := µ

1
0(Z,X

→
1) := EP [µ̌

2
0(R,Z,X

→
1) | x1, Z,X

→
1]

µ̌
1
0(Š1) = µ

1
0(Z,X1).

The ratio nuisances are the followings:

ϑ
2
0(X2, R,X1, Z) = x2(X2)

P (X2 | R,X1, Z)

P (R | x1, Z)

P (R | X1, Z)
, (A.8)

ϑ
1
0(Z) =

P (Z)

P (Z | x) =
P (x)P (Z)

P (x | Z)P (Z)
=

P (x)

P (x | Z)
. (A.9)

The representation for DML-UCA is

EP [ϑ
2
0(X2, R,X1, Z){Y ↑ µ

2
0(R,X2, Z,X1)}]

+ EP [ϑ
1
0(Z,X

→){µ̌2
0(R,Z,X

→
1)↑ µ

1
0(Z,X

→)} | X1 = x1]

+ EP [µ
1
0(Z,X)].
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B More UCA Examples

B.1 Effect of the treatment on the treated (ETT)

Let V = {Z, X, Y } be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. The target estimand is

E[Y (x) | x→] =
∑

z

EP [Y | x, z]P (z | x→). (B.1)

The ETT estimand can be written as an expectation of Y over the probability measure

! = P (Y | X,Z)P (Z | x→) x(X).

This factorization implies that C1 := {Z}, R := V \C1 ⇒ {Y } = {X}, where R1 = {X}, and
ω
1
R1

:= x(X). Also, S1 = {X} ⇒ Z. Finally,

P
1(C1) = P (Z | x→)

P
2(Y | S1) = P (Y | X,Z).

The regression nuisances are the followings:

µ
1
0(S1) := µ

1
0(X,Z) := EP [Y | X,Z]

µ̌
1
0(S1 \R1) := µ̌

1
0(Z) := µ

1
0(x,Z).

The ratio nuisances are the followings:

ϑ
1
0(X,Z) =

P (Z | x→) x(X)

P (X,Z)
=

P (x→ | Z)P (Z)

P (x→)
x(X)

P (X | Z)P (Z)
=

P (x→ | Z)
P (X | Z)

x(X)

P (x→)
.

The representation for DML-UCA is

EP [ϑ
1
0(X,Z){Y ↑ µ

1
0(X,Z)}] + EP [µ̌

1
0(Z) | x→].

B.2 Transportability (S-admissibility)

Let V = {Z, X, Y } be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. Let S denote the domain indicator such that S = 0 means the target domain, and S = 1
denotes the source. The S-admissibility estimand appeared in transportability scenario is

E[Y | do(x)] =
∑

z

EP [Y | x, z, S = 1]P (z | S = 0). (B.2)

The estimand can be written as an expectation of Y over the probability measure

! = P (Y | X,Z, S = 1)P (Z | S = 0) x(X).

From this factorization, we have C1 := Z and R1 := X . Also, set P 1(C1) := P (Z | S = 0) with
Sb
0 = S. Set P 2(Y | S1) := P (Y | X,Z | S = 1) with Sb

1 = S and S1 := {X} ⇒ Z.

The regression nuisances are the followings:

µ
1
0(S1) := µ

1
0(X,Z) := EP [Y | X,Z, S = 1]

µ̌
1
0(Š1) := µ̌

1
0(Z) = µ

1
0(x,Z).

The ratio nuisances are the followings:

ϑ
1
0(X,Z) = x(X)

P (X | Z, S = 1)

P (Z | S = 0)

P (Z | S = 1)
.
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The representation for DML-UCA is

EP [ϑ
1
0(X,Z){Y ↑ µ

1
0(X,Z)} | S = 1] + EP [µ̌

1
0(Z) | S = 0].

B.3 Off-policy evaluation

Let V = {Z, X, Y } be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. Let ω↘(X | Z) denote the behavioral policy that an agent observed; i.e.,

(Z, X, Y ) ↖ P (Y | X,Z)ω↘(X | Z)P (Z). (B.3)

Let ω(X | Z) denote a policy to be evaluated. Then, the effect of the policy ω
↘ is given as

E[Y | ω] :=
∑

x,z

EP [Y | x, z]ω↘(x | z)P (z). (B.4)

The policy treatment effect in Eq. (B.4) can be represented as UCA as follow.

C1 := Z

R1 := {X}
ω
1
R1

:= ω
↘(X | Z)

S1 := {X} ⇒ Z.

Set P 1(C1) ↘ P (Z), ω1
R1

(R1 | Z1) ↘ ω(X | Z), and P
2(Y | C1,R1) ↘ P (Y | X,Z). Then,

!(P;ω) :=
∑

c,R

EP 2 [Y | c1,R1]ω
1
R1

P
1(c1)

=
∑

x,z

EP [Y | x, z]ω↘(x | z)P (z)

= E[Y | ω] (Eq. (B.4)).

The regression nuisances are the followings:

µ
1
0(C

(1) ⇒R(1)) := µ
1
0(X,Z) := EP [Y | X,Z]

µ̌
1
0(C

(1)) := µ̌
1
0(Z) :=

∑

x

µ
1
0(x,Z)ω

↘(x | Z).

The ratio nuisances are the followings:

ϑ
1
0(X,Z) =

ω
↘(X | Z)
P (X | Z) .

The representation for DML-UCA is

EP [ϑ
1
0(X,Z){Y ↑ µ

1
0(X,Z)}] + EP [µ̌

1
0(Z)].

B.4 Treatment-treatment interactions

Let V = {Z, X, Y } be a set of variables where Z is a covariate, X is a treatment and Y is an
outcome. The estimand for treatment-treatment interaction discussed in Jung et al. (2023b) is

E[Y | do(x1, x2)] =
∑

z

E[Y | do(x2), z, x1]P (z | do(x1)), (B.5)

which is an expectation of Y over a product of probability measure

P (Y | Z, do(x2), X1)P (Z | do(x1)) x1(X1),

21



which satisfies an additivity. Therefore, E[Y | do(x1, x2)] is UCA-expressible. Such reduction can
be done since the probability measure satisfies additivity w.r.t. all conditional distributions and the
policy x1(X1). Specifically, set

C1 := Z

R1 := {X1}
S1 := {X1} ⇒ Z.

Also, set

P
1(C1) := P (Z | do(x1))

P
2(Y | C1 ⇒R1) := P (Y | X1,Z, do(x2))

ω
1
R1

:= x1(X1).

The regression nuisances are the followings:

µ
1
0(C

(1) ⇒R(1)) := µ
1
0(X1,Z) := EP [Y | X1,Z, do(x2)]

µ̌
1
0(C

(1)) := EP [Y | x1,Z, do(x2)].

The ratio nuisances are the followings:

ϑ
1
0(X,Z) = x1(X1)P (Z | do(x1))

P (X1 | Z, do(x2))P (Z | do(x2))
,

which can be estimated through the density estimation approach using the probabilistic classification
method described in (Díaz et al., 2023, Sec. 5.4).

The representation for DML-UCA is

EP [ϑ
1
0(X,Z){Y ↑ µ

1
0(X,Z)} | do(x2)] + EP [µ̌

1
0(Z) | do(x1)].

C More Results

C.1 Formal definition of Partial influence function (PIF)

Definition C.1 (Partial influence function (PIF) (Pires and Branco, 2002)). Let g(P1, · · · , PK)
denote a K-multi-distribution functional. For the k-th component, let Pkt := Pk + t(Qk ↑ Pk)
for t ↓ [0, 1], where Qk is an arbitrary distribution absolutely continuous w.r.t. Pk. The k-th
partial influence function is a function φ

k(V;ϑi(Pk), g0) such that EPk [φ
k(V; ϱk(Pk), g0)] = 0,

VPk [φ
k(V; ϱk(Pk), g0)] < ∝, and ϑ

ϑtg(P
1
, · · · , Pkt , · · · , PK)


t=0

= EQk [φ
k(V;ϑk(Pk), g0)].

C.2 Density Ratio Estimation

Two available approaches for estimating the density ratio are the followings. The first approach is to
apply the Bayes rule for rewriting the density ratio into more tractable form. For example, consider
the problem of estimating ϑ

2
0 for FD, which is given as

ϑ
2
0 :=

P (Z | x,C)

P (Z | X,C)
.

Suppose Z,C are high-dimensional random vectors, and X is a binary singleton variable. Then,
P (X | C) or P (X | Z,C) are tractable to estimate compared to P (Z | X,C), since estimating
P (X | ·) can be done using off-the-shelf probabilistic classification method. Here, ϑ2

0 can be written
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as a tractable form as follows:

ϑ
2
0 :=

P (Z | x,C)

P (Z | X,C)

=
P (Z,X,C)

P (X | C)P (C)

P (x | C)P (C)

P (Z, x,C)

=
P (C)

P (C)

P (Z,C)

P (Z,C)

P (x | C)

P (X | C)

P (X | Z,C)

P (x | Z,C)

=
P (x | C)

P (X | C)

P (X | Z,C)

P (x | Z,C)
.

The second approach is to recast the density ratio into the classification problem (Díaz et al., 2023,
Sec. 5.4). For example, consider the ratio nuisance appeared in Treatment-treatment interactions:

ϑ
1
0(X,Z) = x1(X1)P (Z | do(x1))

P (X1 | Z, do(x2))P (Z | do(x2))
.

Here, P (Z|do(x1))
P (Z|do(x2))

can be estimated as a following procedure. Let D1 ↖ P (Z | do(x1) and D2 ↖
P (Z | do(x2) denote samples. Let D0 := D1 ⇒D2. Let ⇁ denote an indicator such that ⇁ = 0 means
samples are from D1 and ⇁ = 1 means they are from D2. Without loss of generality, |D1| = |D2|.
Then,

P (Z | do(x1))

P (Z | do(x2))
=

P (Z | ⇁ = 0)

P (Z | ⇁ = 1)
=

P (⇁ = 1)

P (⇁ = 0)

P (⇁ = 0 | Z)P (Z)

P (⇁ = 1 | Z)P (Z)
=

P (⇁ = 0 | Z)
P (⇁ = 1 | Z) .

Then, instead of estimating the density ratio explicitly as P (Z|do(x1))
P (Z|do(x2))

, we can estimate the equivalent

estimand P (ϖ=0|Z)
P (ϖ=1|Z) using any off-the-shelf probabilistic classification method.

C.3 Analysis of non-UCA functionals

We consider two cases where a target estimand cannot be expressed through UCA:

1. Case 1. The target estimand is not in a form of the product (e.g., the target estimand is the quotient
of sum-products of two conditional distributions ).

2. Case 2. For a target estimand that is represented as the expectation of Y over the measure

!→[P;ω] := P
m+1(Y | S→

m)
m∏

i=1

P
i(Ci | S→

i↔1)ω
i
Ri

(Ri | S→
i \Ri),

where P
i(V) = Q

i(V | Sb
i↔1 = s) for some distribution Q

i, ∋i ↓ {2, · · · ,m + 1} such that
S→
i↔1 ⇐= (C(i↔1) ⇒R(i↔1)) \ Sb

i↔1.

In this section, we will provide example functionals that cannot be expressed through UCA.

C.3.1 On Case 1

Consider Fig. 1c where the causal effect P (y | do(x)) is identifiable and given as

P (y | do(x)) =
∑

w P (y, x | r, w)P (w)∑
w P (x | r, w)P (w)

. (C.1)

Here, the functional for E[Y | do(x)] is represented not as the expectation of a product of conditional
distributions, but rather as a quotient of sums of conditional distributions. The napkin estimand is not
UCA-expressible.
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Figure C.3: (a-c) Example for Case 2 (Generalized identification under partial observability (Lee and
Bareinboim, 2020, Fig. 1))

C.3.2 On Case 2

Consider Figs. (C.3a-C.3c). A goal is to identify P (y | do(x)) from Fig. C.3c from two input distri-
butions: (1) an interventional distribution P (c, z | do(x)) with Fig. C.3a, and (2) an observational
distribution P (r, z, y) with Fig. C.3b. This problem is entitled as the generalized identification under
partial observability (Lee and Bareinboim, 2020).

Here, the causal effect is identifiable and given as (Lee and Bareinboim, 2020)

E[Y | do(x)] =
∑

c,r,z

EP [Y | r, z]P (z | do(x), c)P (r)P (c | do(x)). (C.2)

This functional is an expectation of the probability measure Y over P (Y | R,Z)P (Z |
do(x), C)P (R)P (C | do(x)). Based on this probability measure, apply the following setting:

• C1 = {C}, C2 := {R} and C3 := {Z}.

• R = ⇓.

• P
1(C1) := P (C | do(x)) with Sb

0 = ⇓.

• P
2(C2 | S→

1) = P (R) with Sb
1 = ⇓ and S→

1 := ⇓.

• P
3(C3 | S→

2) = P (Z | do(x), C) with Sb
2 = ⇓ and S→

2 := {C}.

• P
4(Y | S→

3) = P (Y | R,Z) with Sb
2 = ⇓ and S→

3 := {R,Z}.

Here, S→
1 = ⇓ ⇐= (C(1) ⇒ R(1)) \ Sb

1 = {C}. Also, S→
2 = {C} ⇐= (C(2) ⇒ R(2)) \ Sb

2 = {C,R}.
Finally, S→

3 = {R,Z} ⇐= (C(3) ⇒ R(3)) \ Sb
3 = {C,R,Z}. Therefore, Eq. (C.2) is not within

UCA-class.

Now, we will witness that the target estimand cannot be correctly represented through the nested
regression and empirical bifurcation. Applying the nested regression, we have

µ
3
0(S

→
3) = µ

3
0(R,Z) := EP [Y | R,Z]

µ̌
3
0(Š

→
3) = µ

3
0(R,Z) = EP [Y | R,Z].

Then,

µ
2
0(S

→
2) = E[µ3

0(R,Z) | C, do(x)] =
∑

r,z

EP [Y | r, z]P (r, z | c, do(x)).

This doesn’t correctly represent the target estimand in Eq. (C.2) because P (r, z | c, do(x)) is not
decomposed into P (r) and P (z | r, c,do(x)).

C.4 Time Complexity

In this section, we provide a detailed analysis on the time complexity in Table 2. Here, n is the
sample size. When there are multiple sample sets (i.e., K > 1), we will use nmax to denote the size
of the largest sample set. K is the number of sample sets in Eq. (11). m is the number of variables in
a causal graph.
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C.4.1 BD/SBD

Here, we focus on the back-door adjustment, since the SBD can be analyized similarly. The back-door
(BD) adjustment estimand is given as

∑

z

EP [Y | x, z]P (z).

Plug-in. The plug-in estimator composed of two stage – learn the conditional probability table
and and evaluate it for each samples. For a detailed description, we define some notations. Let
D := {V(j) : j = 1, · · · , n}, where V(j) denote the j’th sample. For any W ≃ V, we will use Dw

to denote the sub-sample of D that W is fixed to w; i.e., Dw := {V(j) ↓ D such that W(j) = w}.
We will use I(Dw) to denote the index set for Dw. Finally, we will use nw := |Dw|.
For the BD adjustment, the plug-in estimator is

∑

z

Ê[Y | x, z]P̂ (z), (C.3)

where

Ê[Y | x, z] := 1

nx,z

∑

j↓I(Dx,z)

Y(j), (C.4)

P̂ (z) =
nz

n
. (C.5)

For the fixed (x, z), learning Ê[Y | x, z] and P̂ (z) take O(n). Such learning needs to be done for
all possible realizations (x, z), where the cardinality of the realization is O(2m). As a result, the
computational complexity is O(n2m).

IPW, OM, AIPW We first consider the inverse probability-weighting (IPW) estimator (Rosenbaum
and Rubin, 1983). The IPW estimator is

1

n

n∑

i=1

x(X(i))

ϑ̂(X(i) | Z(i))
Y(i), (C.6)

where ϑ̂(X | Z) is the evaluated function for P (X | Z). Learning the nuisance parameter ϑ̂ takes
T (n,m) and evaluating the IPW estimator takes O(n). As a result, the time complexity for the IPW
estimator is O(n+ T (n,m)).

Next, we consider the outcome-model (OM) estimator (Robins, 1986). The OM estimator is

1

n

n∑

i=1

µ̂(X(i),Z(i)), (C.7)

where µ̂(X,Z) is the evaluated function for EP [Y | X,Z]. Learning the nuisance parameter ϑ̂ takes
T (n,m) and evaluating the OM estimator takes O(n). As a result, the time complexity for the OM
estimator is O(n+ T (n,m)).

Finally, the AIPW estimator (Robins and Rotnitzky, 1995) is

1

n

n∑

i=1

x(X(i))

ϑ̂(X(i) | Z(i))
Y(i) +

1

n

n∑

i=1

µ̂(X(i),Z(i))↑
1

n

n∑

i=1

x(X(i))

ϑ̂(X(i) | Z(i))
µ̂(X(i),Z(i)). (C.8)

Learning the nuisance parameters ϑ̂ and µ̂ takes T (n,m) and evaluating the OM/IPW estimator takes
O(n). As a result, the time complexity for the OM estimator is O(n+ T (n,m)).
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C.4.2 Front-door adjustment (FD)

The front-door adjustment (Pearl, 2000) is
∑

z,c

P (z | x, z)
∑

z

EP [Y | z,x→
, c]P (x→ | c)P (c).

The FD estimators of (Fulcher et al., 2019; Guo et al., 2023) is

1

n

n∑

i=1

ξ̂(Z(i), x,C(i))

ξ̂(Z(i),X(i),C(i))
{Y(i) ↑ µ̂(C(i),X(i),Z(i))}

+
1

n

n∑

i=1

x(X(i))

ϑ̂(X(i),C(i))


∑

x

µ̂(C(i),x,Z(i))ϑ̂(x,C(i))↑
∑

x,z

µ̂(C(i),x, z)ξ̂(z,X(i),C(i))ϑ̂(x,C(i))



+
1

n

n∑

i=1

{
∑

z

µ̂(C(i),X(i), z)ξ̂(z,x,C(i))}, (C.9)

where µ̂(C,X,Z), ξ̂(Z,X,C) and ϑ̂(X,C) are the evaluated functions for EP [Y | C,X,Z],
P (Z | X,C) and P (X | C). Learning these nuisances takes T (n,m) time. Equipped with µ̂, ξ̂, ϑ̂,
evaluating the FD estimator takes O(n2m), since the evaluation over n samples is repeated for O(2m)
realization of every (x, z). Therefore, the overall time complexity is O(n2m + T (n,m)).

C.4.3 Tian’s adjustment

The Tian’s adjustment (Tian and Pearl, 2002a) is

∑

v\xy

∑

x→

EP → [Y | v(K)]
K∏

i=1

P
→(vi | v(i↔1)).

The estimator for Tian’s adjstment proposed in (Bhattacharya et al., 2022) is 1
n

∑n
i=1 ς(V(i); ϱ̂),

where ς(V; ϱ0) is given as

∑

Vi↓V↑k+1\SX






i↔1∏

j=1

x(X)

P (Vj | V(j↔1))

∑

x→,v↑i+1

y

∏

Vj↓(V↑k≃SX)↗V↑i+1

P (vj | v(j↔1))|x=x→ if Vj ⇐↓SX






↑
∑

Vi↓V↑k+1\SX






i↔1∏

j=1

x(X)

P (Vj | V(j↔1))

∑

x→,v↑i+1

y

∏

Vj↓(V↑k≃SX)↗V↑i

P (vj | v(j↔1))|x=x→ if Vj ⇐↓SX






+
∑

Vi↓Vi↓V↑k+1≃SX

∏
Vj↓V(i↓1) P (Vj | V(j↔1))|X=x
∏

Vj↓V(i↓1) P (Vj | V(j↔1))





∑

v↑i+1

y

∏

Vj↓V↑i+1

P (vj | v(j↔1))|x=x→ if Vj ⇐↓SX






↑
∑

Vi↓Vi↓V↑k+1≃SX

∏
Vj↓V(i↓1) P (Vj | V(j↔1))|X=x
∏

Vj↓V(i↓1) P (Vj | V(j↔1))





∑

v↑i

y

∏

Vj↓V↑i+1

P (vj | v(j↔1))|x=x→ if Vj ⇐↓SX






+
∑

v↑k+1

y

∏

Vj↓V↑k+1\SX

P (vj | v(j↔1))|x→=x

∏

Vr↓V↑k+1≃SX

P (vr | v(r↔1)).

Learning these nuisances takes T (n,m) time. Equipped with nuisances corresponding to P̂ (vi |
v(i↔1)), evaluating the estimator takes O(n2m), since the evaluation over n samples is repeated for
O(2m) realization of every v. Therefore, the overall time complexity is O(n2m + T (n,m)).
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C.4.4 DML-UCA (BD, FD, and Tian’s).

For BD, FD, and Tian’s, the time complexity can be derived by specializing Thm. 2 with K = 1
and nmax = n, and T (m,n) := K ↙ L ↙ (Tµ + Tε). Then, the complexity in Thm. 2 reduces to
O(n+ T (m,n)).

C.4.5 DML-UCA (general).

Set T (m,nmax,K) := L↙K↙ (Tµ+Tε). Then, the complexity in Thm. 2 reduces to O(Knmax+
T (m,nmax,K)).

C.4.6 DML-ID (obsID).

The DML-ID estimator of (Jung et al., 2021a) writes the identification functional of causal effect as
am arithmetic function of multiple sequential back-door adjustments, where the arithmetic function
is an arbitrary combination of marginalization, product, and division. Let f({Ak : k = 1, · · · ,K})
denote the DML-ID, where each A

k is the sequential back-door adjustment, and f denotes the
arithmetic function.

To evaluate the DML-ID functional, the first step is to learn all nuisances composing each A
k. This

takes O(T (m,n)) time. The second step is to evaluate f({Ak : k = 1, · · · ,K}). Whenever f
contains a marginalization over some random vector, the time complexity for evaluating it is O(n2m).
In DML-ID, such marginalization can happen O(2m) times in worst case. Therefore, evaluating
f({Ak : k = 1, · · · ,K}) can take O(n2m ↙ 2m) = O(n22m). As a result, the total time complexity
is O(n22m + T (n,m)).

C.4.7 DML-gID (gID).

The DML-gID estimator of (Jung et al., 2023a) writes the identification functional of causal effect
as am arithmetic function of multiple generalized sequential back-door adjustments called g-mSBD
(Jung et al., 2023a), where the arithmetic function is an arbitrary combination of marginalization,
product, and division. Let f({Aj : j = 1, · · · , J}) denote the DML-ID, where each A

j is the
g-mSBD, and f denotes the arithmetic function.

To evaluate the DML-gID functional, the first step is to learn all nuisances composing each A
j . This

takes O(T (m,nmax,K)) time. The second step is to evaluate f({Aj : j = 1, · · · , J}). Whenever
f contains a marginalization over some random vector, the time complexity for evaluating it is
O(nmax2m). In DML-gID, such marginalization can happen O(2m ↙ K) times in worst case.
Therefore, evaluating f({Aj : j = 1, · · · , J}) can take O(nmax2m ↙ 2m ↙K) = O(Knmax22m).
As a result, the total time complexity is O(Knmax22m + T (m,nmax,K)).

D Proofs

D.1 Proof of Proposition 1

The algorithm provides a product of probabilities in a form of

![P] :=
∏

Vi↓SX

P (Vi | V(i))
∏

Vj ⇐↓V\SX

P (Vj | V(j) \X,x).

Then, by taking an expectation over Y , it gives

∑

v\xy

∑

x→

EP → [Y | v(K)]
K∏

i=1

P
→(vi | v(i↔1)).

↭
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D.2 Proof for Proposition 2

First, define

set1 := ((Si+1 ⇒Bi+1) \Ri+1 \Bi)

= (((C(i+1) ⇒R(i) ⇒Bi+1) \ Sb
i+1) \Bi) ⇒B→

i,

and

set2 := Si ⇒B→
i = (C(i) ⇒R(i) \ Sb

i ) ⇒B→
i.

Then, we claim that set1 \ set2 = Ci+1. This holds when Bi+1 \ Bi \ Si = ⇓. To prove this
with contradiction, suppose Bi+1 \ Si ⇐= ⇓. This holds when Bi+1 ≃ Sb

i . Recall that Bi+1 is a
subset of fixed variables in Sb

i+1 in P
i+2. Then, Bi+1 ≃ Sb

i means that this variable will be fixed
in P

i+1. However, for this variable to be bifurcated in some Cj , this variable should be within Bi.
However, this is a contradiction of the definition of Bi+1 and Bi. Therefore, Bi+1 \Bi \ Si = ⇓
and set1 \ set2 = Ci+1.

Then,

µ
i
0(Si,B

→
i) = EP i+1 [µ̌i+1

0 (Ši+1) | Si,B
→
i]

= EP i+1 [µ̌i+1
0 (((Si+1 ⇒Bi+1) \Ri+1 \Bi) ⇒B→

i) | Si,B
→
i]

=
∑

ci+1,ri+1

P
i+1(ci+1 | Si,B

→
i)ω

i+1
Ri+1

(ri+1)µ
i+1
0 (ci+1, ri+1,Si,B

→
i)

=
∑

ci+1,ri+1

P
i+1(ci+1 | Si)ω

i+1
Ri+1

(ri+1)µ
i+1
0 (ci+1, ri+1,Si,B

→
i).

By recursion,

EP 1 [µ̌1
0(Š1)] =

∑

c(m),r(m)

m∏

j=1

P
j(cj | sj↔1)ω

j
Rj

(rj | sj \ rj)EPm+1 [Y | sm].

↭

D.3 Proof for Proposition 3

By definition of ϑm
0 . ↭

D.4 Proof for Theorem 1

If conditions in Theorem 1 met, the estimand reduces to the UCA by definition. ↭

D.5 Proof for Theorem 2
1. The sample-splitting takes O((m+ 1)nmax).
2. For the fixed ϖ, learning µ̂

i
ω for i = m, · · · , 1 takes O(Tµ↙m). Therefore, learning all regression-

nuisances takes O(Tµ ↙m↙ L).
3. For the fixed ϖ, learning ϑ̂

i
ω for i = 1, · · · ,m takes O(Tε ↙ m). Therefore, learning all ratio-

nuisances takes O(Tε ↙m↙ L).
4. Evaluating the DML estimator in Eq. (8) takes O((m+ 1)nmax).

In total, the time complexity is

O((m+ 1)nmax) +O(Tµ ↙m↙ L) +O(Tε ↙m↙ L) +O((m+ 1)nmax)

= O(m↙ {nmax + L↙ (Tµ + Tε)})

↭
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D.6 Proof for Theorem 3

Define !i :=
∏i

k=1 P
k(Ck | Sk↔1)ωk(Rk | Sk \Rk). Define

!i
t := P

i
t (Ci | Si↔1)ω

i(Ri | Si \Ri)
i↔1∏

k=1

P
k(Ck | Sk↔1)ω

k(Rk | Sk \Rk).

Define

µ
i
t(S

→
i) := EP i+1

t
[µ̌i+1 | S→

i].

For any P
i, we choose the following parametric submodel:

P
i
t := P

i + t(Qi ↑ P
i).

For any i = m, · · · , 1,

ε0 := E!i [µ
i
0(S

→
i)].

Fix i ↓ {1, · · · ,m}. Then, consider the differention with respect to P
i+1
t .

∂

∂t
E!i

0
[µi

t(S
→
i)] =

∂

∂t
EP i+1 [µi

t(S
→
i)ϑ

i
0]

=
∂

∂t
EP i+1

t
[µi

t(S
→
i)ϑ

i
0]↑

∂

∂t
EP i+1

t
[µi

0(S
→
i)ϑ

i
0]

=
∂

∂t
EP i+1

t
[ϑi

0µ̌
i+1(Ši+1)]↑

∂

∂t
EP i+1

t
[ϑi

0µ
i
0(S

→
i)]

=
∂

∂t
EP i+1

t
[ϑi

0


µ̌
i+1(Ši+1)↑ µ

i
0(S

→
i)

]

= EQi+1 [ϑi
0


µ̌
i+1(Ši+1)↑ µ

i
0(S

→
i)

].

Also, consider the differentiation with respect to P
1:

∂

∂t
EP 1

t
[µ̌1

0(Š1)] = EQ1 [µ̌1
0(Š1)↑ ε0].

Then, define ς
i as the differentiation with respect to P

i as

ς
i(Ši; ϱ

i
0,ε0) :=


ϑ
i↔1
0 {µ̌i

0 ↑ µ
i↔1
0 } if i > 1

µ̌
1
0 ↑ ε0 if i = 1.

Then,

∂

∂t
!(P1, · · · , Pkt , · · · , PK)


t=0

=
∑

i↓Ik

∂P
i
t

∂t

∂

∂P i
t

!(P 1
, · · · , P i

t , · · · , Pm+1;ω)


t=0

=
∑

i↓Ik

EQi [ςi(Ši; ϱ
i
0,ε0)],

which completes the proof. ↭

D.7 Proof for Theorem 4

Structure of the proof. Theorem 4 will be proven based on Lemma D.2, Lemma D.3, and
Lemma D.4. Specifically, we proceed the proof as follows:

1. We will prove Lemma D.2, Lemma D.3, and Lemma D.4.
2. Berry-Essen’s inequality (Berry, 1941) will be stated as a preliminary in Prop. D.1.
3. Theorem 4 will be proven based on the main lemmas and Berry-Essen’s inequality.
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D.7.1 Helper lemmas

We first state and prove helper lemmas.

Lemma D.1.

ε0 =
m∑

i=1

EP i+1 [ϑi
0{µ̌i+1

0 ↑ µ
i
0}] + EP 1 [µ̌1

0]. (D.1)

Proof of Lemma D.1. By the total expectation law, it suffices to show that

!(P;ω) = EP 1 [µ̌1
0(Š1)].

This holds from Prop. 2.

Lemma D.2 (Decomposition). Define the following

”(µ̂, ε̂) :=
m∑

i=1

EP i+1 [ϑ̂i{µ̌i+1 ↑ µ̂
i}] + EP 1 [µ̌1] (D.2)

”(µ0,ε0) :=
m∑

i=1

EP i+1 [ϑi
0{µ̌i+1

0 ↑ µ
i
0}] + EP 1 [µ̌1

0]. (D.3)

The following decomposition holds:

”(µ̂, ε̂)↑ ”(µ0,ε0) =
m∑

r=1

EP r+1 [▷̂(r↔1){µr
0 ↑ µ̂

r}{ϑ̂r ↑ ϑ
r
0}]. (D.4)

Proof of Lemma D.2. First,

”(µ̂, ε̂)↑ ε0 = ”(µ̂, ε̂)↑ ”(µ0,ε0).

Also,

EPm+1 [ϑ̂m{µm
0 ↑ µ̂

m}] + EPm+1 [ϑm
0 µ̂

m]↑ EPm+1 [ϑm
0 µ

m
0 ]  

:=ϱ0

= EPm+1 [{ϑm
0 ↑ ϑ̂

m}{µ̂m ↑ µ
m
0 }].

For i = m↑ 1, · · · , 1, define

µ
i
0[µ̌

i+1] := EP i+1 [µ̌i+1(Ši+1) | Si,B
→
i].

Then,

EP i+1 [ϑ̂i{µi
0[µ̌

i+1]↑ µ̂
i}] + EP i+1 [ϑi

0µ̂
i]↑ EP i+1 [ϑi

0µ
i
0[µ̌

i+1]]

= EP i+1 [{ϑi
0 ↑ ϑ̂

i}{µ̂i ↑ µ
i
0[µ̌

i+1]}].

Also, for any µ
i+1 and corresponding µ̌

i+1, and for all i = m↑ 1, · · · , 1, by the definition of the ϑi
0

nuisance,

EP i+2 [ϑi+1
0 µ

i+1] = EP i+1 [ϑi
0µ

i
0[µ̌

i+1]].
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Then,

EPm+1 [ϑ̂m{µm
0 ↑ µ̂

m}] + EPm+1 [ϑm
0 µ̂

m]↑ EPm+1 [ϑm
0 µ

m
0 ]

+
m↔1∑

i=1

EP i+1 [ϑ̂i{µi
0[µ̌

i+1]↑ µ̂
i}] + EP i+1 [ϑi

0µ̂
i]↑ EP i+1 [ϑi

0µ
i
0[µ̌

i+1]]

=
m∑

i=1

EP i+1 [ϑ̂i{µi
0[µ̌

i+1]↑ µ̂
i}] + EP 2 [ϑ1

0µ̂
1]↑ ε0

=
m∑

i=1

EP i+1 [{ϑi
0 ↑ ϑ̂

i}{µ̂i ↑ µ
i
0[µ̌

i+1]}].

Note that EP 2 [ϑ1
0µ̂

1] = EP 1 [µ̌1], since

EP 1 [µ̌1(S1 ⇒B1)]

= EP 1 [ω1
R1

(R1 | S1 \R1)µ
1((S1 ⇒B1) \R1)]

= EP 2


P

1((S1 ⇒B1) \R1)

P 2(S1 ⇒B1)
ω
1
R1

(R1 | S1 \R1)µ
1((S1 ⇒B1) \R1)

]

= EP 2


P

1(C1)

P 2(S1 ⇒B1)
ω
1
R1

(R1 | S1 \R1)µ
1((S1 ⇒B1) \R1)

]

= EP 2 [ϑ1
0µ

1
0].

Therefore,

”(µ̂, ε̂)↑ ”(µ0,ε0)

=
m∑

i=1

EP i+1 [{ϑi
0 ↑ ϑ̂

i}{µ̂i ↑ µ
i
0[µ̌

i+1]}].

Lemma D.3 (Stochastic Equicontinuity). Let D iid↖ P . Let D = D0 ·⇒D1, where n := |D0|. Let f̂
be a function estimated from D1. Then, in probability greater than 1↑ ↽ for any ↽ ↓ (0, 1),

ED0↔P

[f̂ ↑ f


] w.p 1↔ς

<
→f̂ ↑ f→P′

n↽
, (D.5)

which implies that

ED0↔P [|f̂ ↑ f |] = OP


→f̂ ↑ f→P′

n


.

Proof of Lemma D.3. This proof is from (Kennedy et al., 2020, Lemma 2). Since f̂ is a function of
D1, we will denote f̂D1 . Define a following random variable of interest:

X := ED0↔P [f̂D1 ↑ f ].

Then, the conditional expectation of X given D1 is zero, since

EP

[
1

n

n∑

i=1

f̂D1(Vi)

 D1

]
=

1

n

n∑

i=1

EP [f̂D1(Vi) | D1] =
1

n

n∑

i=1

EP [f̂D1(V) | D1] = EP [f̂D1(V) | D1],
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where the third equality holds by the independence of D0 and D1. Therefore,

EP [X | D1] = EP [ED0↔P [f̂D1 ↑ f ] | D1]

= EP [ED0 [f̂D1 ↑ f ] | D1]↑ EP [EP [f̂D1 ↑ f ] | D1]

= EP [EP [f̂D1 ↑ f ] | D1]↑ EP [EP [f̂D1 ↑ f ] | D1] = 0.

Also,

VP [X | D1] = VP [ED0↔P [f̂D1 ↑ f ] | D1]

= VP [ED0 [f̂D1 ↑ f ] | D1]

=
1

n
VP [f̂D1 ↑ f | D1]

⇑ 1

n
→f̂D1 ↑ f→2P .

By applying the (conditional-) Chevyshev’s inequality,

P (|X ↑ EP [X | D1]| △ t | D1) ⇑
1

t2
VP [X | D1] ⇑

1

nt2
→f̂D1 ↑ f→2P .

Then,

P (|X| △ t) = P (|X ↑ EP [X | D1]| △ t)

= EP (D1)[P (|X ↑ EP [X | D1]| △ t | D1)]

⇑ 1

nt2
→f̂D1 ↑ f→2P .

In other words, X < t in probability greater than 1 ↑ 1
nt2 →f̂D1 ↑ f→2P . If t =

⇒f̂D1↔f⇒P⇑
nς

, then

X <
⇒f̂D1↔f⇒P⇑

nς
in the probability greater than 1↑ ↽ for any ↽ ↓ (0, 1).

Lemma D.4 (Combining concentration inequalities). Suppose P (Ak > t) ⇑ bk/t
2 for k =

1, · · · ,K. Then,

P


K∑

k=1

Ak ⇑ tK


△ 1↑ 1

t2

K∑

k=1

bk.

Proof. The event
∑K

k=1 Ak ⇑ tK includes the case where Ak < t for k = 1, · · · ,K. Therefore,

P


K∑

k=1

Ak ⇑ tK


△ P (A1 ⇑ t and · · · and AK ⇑ t)

= 1↑ P (A1 > t or · · · or AK > t)

△ 1↑
K∑

k=1

P (Ak > t)

△ 1↑
K∑

k=1

bk

t2
.
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D.7.2 Preliminary Results

Proposition D.1 (Berry–Esseen’s inequality (Berry, 1941; Esseen, 1942; Shevtsova, 2014)). Sup-
pose D = {X1, · · · , Xn} are independent and identically distributed random variables with
EP [Xi] = 0, EP [X2

i ] = ω
2 and EP [|Xi|3] = ⇀

3. Then, for all x and n,
P

(′
n

ω0
ED[X] < x

)
↑ ”(x)

 ⇑
0.4748⇀3

ω3
′
n

.

D.7.3 Proof of Theorem 4 - (1)

By Lemma D.2, we decompose the error as follow:

ε̂ ↑ ε0 =
K∑

k=1

EDk↔Pk [φ
k
0 ] (D.6)

+
1

L

L∑

ω=1

K∑

k=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ] (D.7)

+
1

L

L∑

ω=1

m∑

i=1

EP i+1 [{µi
0 ↑ µ̂

i
ω}{ϑ̂i

ω ↑ ϑ
i
0}]. (D.8)

Define

R
k
1 := EDk↔Pk [φ

k
0 ] +

1

L

L∑

ω=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ].

Then it completes the proof.

D.7.4 Proof of Theorem 4 - (2)

We first study the term EDk↔Pk [φ
k
0 ]. By Chebyshev’s inequality,

P


EDk↔Pk [φ

k
0 ]
 > t

↼k,0√
|Dk|


<

1

t2
.

Equivalently,

P
EDk↔Pk [φ

k
0 ]
 > t


<

1

t2

↼
2
k,0

|Dk| .

By Lemma D.4,

P


K∑

k=1

EDk↔Pk [φ
k
0 ]
 ⇑ t1K


> 1↑ 1

t21

K∑

k=1

↼
2
k,0

|Dk| .

By Lemma D.3,

Pk
(EDk

ω ↔Pk [φ̂
k
ω ↑ φ

k
0 ]
 > t2

)
⇑ 1

t22

→φ̂k
ω ↑ φ

k
0→2Pk

|Dk
ω |

. (D.9)

By Lemma D.4,

P


1

L

L∑

ω=1

K∑

k=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ]
 ⇑ Kt2


△ 1↑ 1

t22

L∑

ω=1

K∑

k=1

→φ̂k
ω ↑ φ

k
0→2Pk

|Dk
ω |

. (D.10)
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Choose t1 :=

√
2
ς

∑K
k=1

φ2
k,0

|Dk| and t2 :=

√
2
ς

∑L
ω=1

∑K
k=1

⇒↼̂k
ω↔↼k

0⇒2
Pk

|Dk
ω |

. Then, with a probability

greater than 1↑ ↽,

K∑

k=1

R
k
1 ⇑ K





√√√√2

↽

K∑

k=1

↼2k,0

|Dk| +

√√√√2

↽

L∑

ω=1

K∑

k=1

→φ̂k
ω ↑ φk

0→2Pk
|Dk

ω |





= K

√
2

↽





√√√√
K∑

k=1

↼2k,0

|Dk| +

√√√√
L∑

ω=1

K∑

k=1

→φ̂k
ω ↑ φk

0→2Pk
|Dk

ω |



 .

D.7.5 Proof of Theorem 4 - (3)

By Lemma D.3,

Pk
(EDk

ω ↔Pk [φ̂
k
ω ↑ φ

k
0 ]
 > t

)
⇑ 1

t2

→φ̂k
ω ↑ φ

k
0→2Pk

|Dk
ω |

. (D.11)

By Lemma D.4,

Pk


1

L

L∑

ω=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ]
 ⇑ t


△ 1↑ 1

t2

L∑

ω=1

→φ̂k
ω ↑ φ

k
0→2Pk

|Dk
ω |

. (D.12)

Equivalently, by choosing t =

√
1
ς

∑L
ω=1

⇒↼̂k
ω↔↼k

0⇒2
Pk

|Dk
ω |

,

1

L

L∑

ω=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ]


w.p 1↔ς
⇑

√√√√1

↽

L∑

ω=1

→φ̂k
ω ↑ φk

0→2Pk
|Dk

ω |
. (D.13)

Define

A
k := EDk↔Pk [φ

k
0 ] (D.14)

B
k :=

1

L

L∑

ω=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ] (D.15)

C
k :=

1

L

L∑

ω=1

EDk
ω ↔Pk [φ̂

k
ω ↑ φ

k
0 ]
 (D.16)

#k :=

√√√√1

↽

L∑

ω=1

→φ̂k
ω ↑ φk

0→2Pk
|Dk

ω |
. (D.17)

Here,

R
k := A

k +B
k
. (D.18)

Then,

Pk

R

k
< x


(D.19)

= Pk (Ak +Bk < x) (D.20)

= Pk (Ak < x↑Bk) (D.21)

⇑ Pk (Ak < x+ Ck) (D.22)
w.p 1↔ς
⇑ Pk (Ak < x+#k) . (D.23)
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Then,
Pk (Ak < x+#k)↑ ”(x)

 (D.24)

=
Pk (Ak < x+#k)↑ ”(x+#k) + ”(x+#k)↑ ”(x)

 (D.25)

⇑
Pk (Ak < x+#k)↑ ”(x+#k)

+ |”(x+#k)↑ ”(x)| (D.26)

⇑ 0.4748⇀3
0

↼3k,0

√
|Dk|

+ |”(x+#k)↑ ”(x)| (Prop. D.1) (D.27)

=
0.4748⇀3

0

↼3k,0

√
|Dk|

+ |”→(x→)#k| (Mean-value theorem) (D.28)

⇑ 0.4748⇀3
0

↼3k,0

√
|Dk|

+
1′
2ϑ

#k. (D.29)

This completes the proof. ↭

D.8 Proof for Corollary 4

By Cauchy-Schwartz’ inequality,

1

L

L∑

ω=1

m∑

i=1

EP i+1 [{µi
0 ↑ µ̂

i
ω}{ϑ̂i

ω ↑ ϑ
i
0}] ⇑

1

L

L∑

ω=1

m∑

i=1

OP i+1


→µi

0 ↑ µ̂
i
ω→→ϑi

0 ↑ ϑ̂
i
ω→

. (D.30)

Given assumption, the upper bound in Eq. (15) converges at oPk(1/
√
|Dk

ω |). Therefore, we conclude
that Rk converges in distribution to normal(0, ↼2k,0).

E More Experiments

In this section, we demonstrate the DML-UCA estimator through examples for the ETT, S-
admissibility, FD, Verma’s equation, and Ctf-DE described in Sec. 2. For each example, the proposed
estimator is constructed using a dataset Dk following a distribution Pk. Our goal is to provide em-
pirical evidence of the fast convergence behavior of the proposed estimator compared to competing
baseline estimators. We consider two standard baselines in the literature: the ‘regression-based
estimator (reg)’ only uses the regression nuisance parameters µ, and the ‘ratio-based estimator (ratio)’
that only uses the ratio nuisance parameters ε, while our DML-UCA estimator (‘dml’) uses both.
Details of the regression-based (‘reg’) and the ratio-based (‘ratio’) estimators are provided in Sec. A.
Details of experimental setting is provided in Sec. F. In this experiments, we set all variables other
than the treatment variable X as continuous.

We compare DML-UCA estimator to the regression-based estimator (‘reg’) and the ratio-based
estimator (‘ratio’). In particular, we use ε̂

est for est ↓ {reg, pw, dml} to denote the regression-
based, probability-weighting, and DML-UCA estimators. We assess the quality of the estimators by
computing the average absolute error AAEest which is defined as follow. For the ETT and Ctf-DE,
AAEest := |ε̂est ↑ ε0|, where ε0 := E[YX=0 | X = 1] for the ETT and ε0 := E[YX=0,WX=1 | X =

2] for the Ctf-DE. For the other examples, AAEest := 1
domqin(X)

∑
x↓domain(X) |ε̂est(x) ↑ ε0(x)|

where ε0(x) := E[Y | do(x)], ε̂est(x) is an estimator for ε0(x) and dom(X) is a cardinality of the
domain of X . Nuisance functions are estimated using XGBoost (Chen and Guestrin, 2016). We ran
100 simulations for each number of samples n = {2500, 5000, 10000, 20000} and drew the AAE
plot. We evaluate the AAEest in the presence of the ‘converging noise ↽’ as in Sec. 4.

Statistical Robustness. The AAE plots for all scenarios are presented in Fig. E.4. For all examples,
all the estimators (‘reg’, ‘pw’, ‘dml’) converge as the sample size grows. Furthermore, the proposed
DML-UCA estimator outperforms the other two estimators by achieving fast convergence. This result

35



(a) (b) (c) (d) (e)

Figure E.4: (a) ETT in Sec. B, (b) Transportability (S-admissibility) in Sec. B, (c) Front-door in
Example 1, (d) Verma in Example 2, (e) Ctf-DE in Example 3.

corroborates the robustness property in Thm. 4, which implies that DML-UCA converges faster than
the other counterparts.

F Details in Experiments

As described in Sec. 4, we used the XGBoost (Chen and Guestrin, 2016) as a model for estimating
nuisances. We implemented the model using Python. In modeling nuisance using the XGBoost, we
used the command xgboost.XGBClassifier(eval_metric=’logloss’)1 to use the XGBoost.
We tuned the parameters for each examples to empirically guarantee the convergence of the regression
and ratio nuisances. For each examples, the same parameters are used globally for implementing
DML-UCA, regression-based estimator, ratio-based estimator, or other competing estimators (Fulcher
et al., 2019; Jung et al., 2021a).

Now, we present the structural causal models (SCMs) utilized for generating the dataset. Furthermore,
we include a segment of the code employed to generate the dataset.

F.1 FD (Fig. 1a) for Simulation in Fig. 2a

We define the following structural causal models:

U ↖ normal(0.5, 0, 5),
UZi ↖ normal(0, 1), for i = 1, · · · , dZ
Ci := fCi(U), where C := {Ci : i = 1, · · · , dC}
X := fX(C, U),

Zi := fZi(C, X), where Z := {Zi : i = 1, · · · , dZ}
Y := fY (C, Z, U),

where

fCi(U) :=

⌊
1

1 + exp(0.25UZ + 2U ↑ 1)

⌋
,

fX(C, U) := Binary
(

1

1 + exp(2C↭1↑ 1 + U)

)
,

fZi(C, X) := Binary
(

1

1 + exp(2X ↑ 1 + 0.5C↭1+ UZi)

)

fY (C, Z, U) :=
1

1 + exp((1/dC)C↭1+ (1/dZ)(2Z↭1↑ 1) + 2U)
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

1Detailed parametrization of parameters including learning rates, maximum depth of the trees,
etc. are explained in https://xgboost.readthedocs.io/en/stable/python/python_api.html#
module-xgboost.training.
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mu_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4

}

pi_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 0.0,
'colsample_bytree': 1,
'objective': 'binary:logistic',
'eval_metric': 'logloss',
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}

F.2 Verma (Fig. 1b) for Simulation in Fig. 2b

We define the following structural causal models:

UXB ↖ normal(1, 0, 5),
UAY ↖ normal(↑1, 0, 5),

UA ↖ normal(0, 1)
UB ↖ normal(0, 1)
X := fX(UXB)

Ai := fAi(X,UAY ), for i = 1, · · · , dA
Bi := fBi(X,UXB), for i = 1, · · · , dB
Y := fY (B, UAY ),

where

fX(UXB) := Binary
(

1

1 + exp(2UXB ↑ 1)

)
,

fAi(X,UAY ) := Binary
(

1

1 + exp(2X ↑ 1 + UA + UAY )

)

fBi(X,UXB) := Binary
(

1

1 + exp(2A↭1↑ 1 + UB + 0.5UXB)

)

fY (B, UAY ) :=
1

1 + exp(2B↭1↑ 1 + 0.5UAY )
.
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The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.35,
'gamma': 0,
'max_depth': 6,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4 # Assuming you have 4 cores

}

pi_params = {
'booster': 'gbtree',
'eta': 0.1,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 0.0,
'colsample_bytree': 1,
'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}

F.3 Example estimand (Fig. 1e) for Simulation in Fig. 2c

We define the following structural causal models:

UX1,Z ↖ normal(1, 0, 5),
UX1,Y ↖ normal(↑1, 0, 5),

UZ,Y ↖ normal(0.5, 0.5)
UR ↖ normal(0, 0.5)
UZ ↖ normal(0, 0.5)
UX2 ↖ normal(0, 0.5)
X1 := fX1(UX1,Z , UX1,Y )

Zi := fZi(X1, UX1,Z , UZ,Y ), for i = 1, · · · , dZ
Ri := fRi(X1), , for i = 1, · · · , dR
Y := fY (B, UAY ),
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where

fX1(UX1,Z , UX1,Y ) := Binary
(

1

1 + exp(2UX1,Z ↑ UX1,Y ↑ 1)

)
,

fRi(X1) := Binary
(

1

1 + exp(2X1 ↑ 1 + UR)

)

fZi(X1, UX1,Z , UZ,Y ) := Binary
(

1

1 + exp(4X1 ↑ 1 + UZ + UX1,Z + UZ,Y )

)

fX2(Z, X1) := Binary
(

1

1 + exp((2X1 ↑ 1)Z↭1↑ UX2)

)
,

fY (R, X2, UX1,Y , UZ,Y ) :=
1

1 + exp((1/dR)R↭1+ 2X2 ↑ 1 + 2(UX1,Y + UZ,Y ))
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': 0,
'max_depth': 8,
'min_child_weight': 1,
'subsample': 0.8,
'colsample_bytree': 0.8,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4 # Assuming you have 4 cores

}

pi_params = {
'booster': 'gbtree',
'eta': 0.1,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 0.75,
'colsample_bytree': 0.75,
'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}
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F.4 ETT in Sec. B for Simulation in Fig. E.4a

We define the following structural causal models:

UX ↖ normal(0, 1)
UY ↖ 0.5 textttnormal(0, 1)

Z ↖ 0.25normal(0, 1, dZ),

X := fX(Z)

Y := fY (X,Z)

where

fX(Z) := Binary
(

1

1 + exp(2Z↭1↑ 1 + UX)

)

fY (Z, X) :=
1

1 + exp(Z↭1(2X ↑ 1) + UY )
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.5,
'gamma': 0,
'max_depth': 15,
'min_child_weight': 1,
'subsample': 0.8,
'colsample_bytree': 1,
'lambda': 0,
'alpha': 0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4 # Assuming you have 4 cores

}

pi_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1,
'colsample_bytree': 1,
'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 1,
'reg_alpha': 0,
'nthread': 4

}
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F.5 Transportability in Sec. B for Simulation in Fig. E.4b

We define the following structural causal models:

UX ↖ normal(0, 1)
UY ↖ 0.5 textttnormal(0, 1)

Z ↖ 0.25normal(0, 0.5, dZ) + Snormal(0.1, 0.5, dZ)

X := fX(Z)

Y := fY (X,Z)

where

fX(Z) := Binary
(

1

1 + exp((1/dZ)(2Z↭1↑ 1) + UX)

)

fY (Z, X) :=
1

1 + exp(Z↭1(2X ↑ 1) + UY )
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': 0,
'max_depth': 15,
'min_child_weight': 1,
'subsample': 0.8,
'colsample_bytree': 1,
'lambda': 0,
'alpha': 0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4 # Assuming you have 4 cores

}

pi_params = {
'booster': 'gbtree',
'eta': 0.1,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1,
'colsample_bytree': 1,
'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 1,
'reg_alpha': 0,
'nthread': 4

}
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F.6 FD with continuous mediators for Simulation in Fig. E.4c

We define the following structural causal models:

UC ↖ normal(0, 1, dC)
U ↖ normal(0, 1)
C := fC(U)

X := fX(U,C)

Z := fZ(X,C)

Y := fY (U,Z,C)

where

fC(U) := 0.25UC + 2U ↑ 1

fX(U,C) := Binary
(

1

1 + exp((2C↭1↑ 1) + U)

)

fZ(X,C) :=
1

1 + exp(0.1C↭1(2X ↑ 1) +X)

fY (Z, X) :=
1

1 + exp(C↭1+ (2Z ↑ 1) + U)
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.01,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4

}

pi_params = {
'booster': 'gbtree',
'eta': 0.3,
'gamma': 0,
'max_depth': 20,
'min_child_weight': 1,
'subsample': 0.0,
'colsample_bytree': 1,
'objective': 'binary:logistic',
'eval_metric': 'logloss',
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}
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F.7 Verma’s equation with continuous mediators for Simulation in Fig. E.4d

We define the following structural causal models:

UXB ↖ normal(1, 0, 5),
UAY ↖ normal(↑1, 0, 5),

X := fX(UXB)

A := fA(X,UAY )

B := fB(X,UXB)

Y := fY (B,UAY ),

where

fX(UXB) := Binary
(

1

1 + exp(2UXB ↑ 1)

)
,

fA(X,UAY ) := Binary
(

1

1 + exp(2X ↑ 1 + 0.5UAY )

)

fB(X,UXB) := Binary
(

1

1 + exp(2A↑ 1 + 0.5UXB)

)

fY (B,UAY ) :=
1

1 + exp(2B ↑ 1 + 0.5UAY )
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.35,
'gamma': 0,
'max_depth': 6,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4 # Assuming you have 4 cores

}

pi_params = {
'booster': 'gbtree',
'eta': 0.1,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 0.0,
'colsample_bytree': 1,
'objective': 'binary:logistic', # Change as per your objective
'eval_metric': 'logloss', # Change as per your needs
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4}
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F.8 Ctf-DE in Example 3 for Simulation in Fig. E.4e

We define the following structural causal models:

U ↖ normal(0, 2),
X := fX(U)

Z := fZ(U)

W := fW (X,Z)

Y := fY (X,Z,W ),

where

fX(U) :=






0 if 1
1+exp(2UXB↔1) < 0.5

1 if ⇑ 0.5 1
1+exp(2UXB↔1) < 0.8

2 if ⇑ 0.8 1
1+exp(2UXB↔1) .

fZ(U) :=
1

1 + exp(↑U + 1)

fW (X,Z) :=
1

1 + exp(X ↑ 1 + Z)

fY (Z,X,W ) :=
1

1 + exp(3X ↑ 1 + 0.1Z + 0.1W +W (X ↑ 1))
.

The parameterization for XGBoost used in µ called (mu_params) and ε called (pi_params) is the
following:

mu_params = {
'booster': 'gbtree',
'eta': 0.3, # vab
'gamma': 0.0,
'max_depth': 6, #vb (same as va)
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'lambda': 0.0,
'alpha': 0.0,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'n_jobs': 4 # Assuming you have 4 cores

}

pi_params = {
'booster': 'gbtree',
'eta': 0.05,
'gamma': 0,
'max_depth': 10,
'min_child_weight': 1,
'subsample': 1.0,
'colsample_bytree': 1,
'objective': 'multi:softprob', # Change as per your objective
'num_class': 3,
'eval_metric': 'mlogloss', # Change as per your needs
'reg_lambda': 0.0,
'reg_alpha': 0.0,
'nthread': 4

}
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