
Summary
This paper provides identification conditions for joint treatment 
effects from multiple marginal experiments and develops 
estimators using data from multiple experiments.

Example 1: Treatment-Treatment Interaction

Estimating Joint Treatment Effects 
by Combining Multiple Experiments

Treatment-Treatment Interaction (TTI)

: Covariate for the 1st experiment


: Treatment in the 1st experiment. 


: Outcome in the 1st experiment. 


: Covariate for the 2nd experiment. 


: Treatment in the 2nd experiment. 


: Outcome in the 2nd experiment. 
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V := {C1, X1, W, C2, X2, Y}

Input: Two samples  where  
and .

Output: Estimate the effect .

{D1, D2} D1 ∼ P(V |do(X1 = x1))
D2 ∼ P(V |do(X2 = x2))

𝔼[Y |do(x1, x2)]

‣We compared DR-AC-TTI estimator with competing methods 
(regression, inverse-probability-weighting based).

‣The result showed the doubly robustness and fast convergence of the 

DR-AC-TTI estimator. 
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Example 2: Multiple Treatments Interaction
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: Outcome for the 2nd experiment


: Covariate for the 3rd experiment. 


: Treatment in the 3rd experiment. 


: Outcome in the 2nd experiment. 


W2

C3

X3

Y
V := {C1, X1, W, C2, X2, W2, C3, X3, Y}

Input: Multiple samples  where 
 for . 


Output: Estimate the effect .

{D1, ⋯, Dm}
Di ∼ P(V |do(Xi = xi)) i = 1,⋯, m

𝔼[Y |do(x1, ⋯, xm)]

1. The 2nd experiment’s treatment  doesn’t have a direct effect on the 
previous experiment ( ; and 


2. There are no unmeasured confounders between the treatment  in 
the previous experiments and the outcome of interest . 


Then, 

,


where the r.h.s. can be estimated from the samples from  
and , respectively. 

X2
C1, W )

X1
Y

𝔼[Y |do(x1, x2)] = 𝔼Pdo(x1)
[𝔼Pdo(x2)

[Y |C1, W, x1]]
P(V |do(x2))

P(V |do(x1))

Identification through AC-TTI

• The nuisances are ;  and 

. 


• The doubly robust estimator  for the AC-TTI is the following: 


where  is an empirical average, and  are estimated nuisance after 
sample-splitting.


Then,  is doubly robust w.r.t. . 

μ0(C1, X1, W ) := 𝔼Pdo(x2)
[Y |C1, X1, W ]

π0(C1, X1, W ) :=
P(W |C1, do(x1))

P(W, X1 |C1, do(x2))

Ttti

𝔼D2
[π(C1, X1, W )Ix1

(X1){Y − μ(C1, X1, W )}] + 𝔼D1
[μ(C1, X1, W )}]

𝔼D2
π, μ

Ttti {μ, π}

Doubly Robust AC-TTI Estimator

Multiple-Treatment Interaction (TTI)

1. The i’th experiment’s treatment  doesn’t have the direct effect on the 
previous observations ; and 


2. There are no unmeasured confounders between  and  conditioning 
on previous observations .


Then, the causal effect is identifiable as follows: Let 
.


Let  
where . Then, 


.,


where each nuisances can be estimated from the samples from marginal 
experiments .

Xi
(X(i−1), C(i−1), W(i−1))

Xi Y
(X(i−1), C(i−1), W(i−1))

μm
0 (X(m−1), W(m−1), C(m−1)) := 𝔼Pdo(xm)

[Y |X(m−1), W(m−1), C(m−1)]
μi

0(X
(i−1), W(i−1), C(i−1)) := 𝔼Pdo(xi)

[μ i+1
0 (X(i−1), W(i−1), C(i−1)]

μ i
0 := μi+1

0 (xi, X(i−1), W(i), C(i))

𝔼[Y |do(x1, ⋯, xm)] = 𝔼Pdo(x1)
[μ2

0(W1, C1, x1)]

P(V |do(xi))

Identification through AC-MTI

(a) Fast Convergence (b) Doubly Robustness ( )μ (c) Doubly Robustness ( )π

•
 for . 


• The doubly robust estimator  for the AC-MTI is the following: 


.


Then,  is doubly robust w.r.t.  for .  

π(i)
0 :=

i

∏
j=1

P(Wi |Ci, Hi−1,do(xi))
P(Wi, Xi |Ci, Hi−1, do(xm))

Hi := {C(i), W(i), X(i)}

Tmti

Tmti :=
m

∑
j=1

𝔼Dj
[π( j){μ i+1 − μi}] + 𝔼D1

[μ1}]

Tmti {μi, πi} i = 1,⋯, m

Doubly Robust AC-MTI Estimator

(a) Fast Convergence (b) Doubly Robustness ( )μ (c) Doubly Robustness ( )π

‣The result showed the doubly robustness and fast convergence of the 
DR AC-MTI estimator. 
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