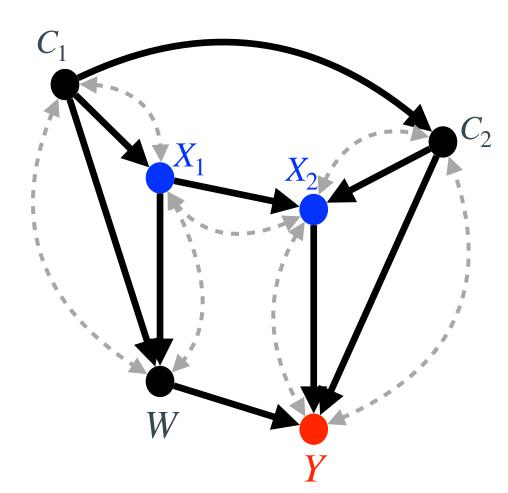
Estimating Joint Treatment Effects by Combining Multiple Experiments

Summary

This paper provides identification conditions for joint treatment effects from multiple marginal experiments and develops estimators using data from multiple experiments.

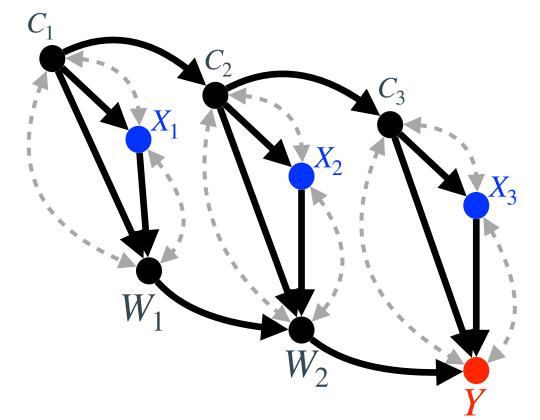
Example 1: Treatment-Treatment Interaction



 C_1 : Covariate for the 1st experiment X_1 : Treatment in the 1st experiment. *W*: Outcome in the 1st experiment. C_2 : Covariate for the 2nd experiment. X_2 : Treatment in the 2nd experiment. *Y*: Outcome in the 2nd experiment. $\mathbf{V} := \{C_1, X_1, W, C_2, X_2, Y\}.$

Input: Two samples $\{D_1, D_2\}$ where $D_1 \sim P(\mathbf{V} | do(X_1 = x_1))$ and $D_2 \sim P(\mathbf{V} | do(X_2 = x_2))$. **Output**: Estimate the effect $\mathbb{E}[Y | do(x_1, x_2)]$.

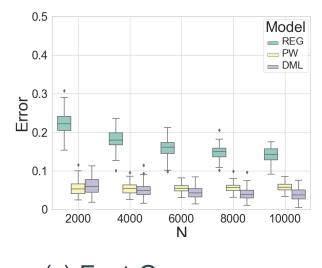
Example 2: Multiple Treatments Interaction



 W_2 : Outcome for the 2nd experiment C_3 : Covariate for the 3rd experiment. X_3 : Treatment in the 3rd experiment. *Y*: Outcome in the 2nd experiment. $:= \{C_1, X_1, W, C_2, X_2, W_2, C_3, X_3, Y\}$

Input: Multiple samples $\{D_1, \dots, D_m\}$ where $D_i \sim P(\mathbf{V} \mid do(X_i = x_i))$ for $i = 1, \dots, m$. **Output**: Estimate the effect $\mathbb{E}[Y | do(x_1, \dots, x_m)]$. 1. The 2nd experiment's treatment X_2 doesn't have a direct effect on the previous experiment (C_1, W); and

Then



Yonghan Jung¹; Jin Tian²; Elias Bareinboim³

- ¹ Purdue University
- ² Iowa State University
- ³ Columbia University

Treatment-Treatment Interaction (TTI)

Identification through AC-TTI

2. There are no unmeasured confounders between the treatment X_1 in the previous experiments and the outcome of interest Y.

$$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}_{P_{do(x_1)}}[\mathbb{E}_{P_{do(x_2)}}[Y|C_1, W, x_1]],$$

where the r.h.s. can be estimated from the samples from $P(\mathbf{V} | do(x_2))$ and $P(\mathbf{V} | do(x_1))$, respectively.

Doubly Robust AC-TTI Estimator

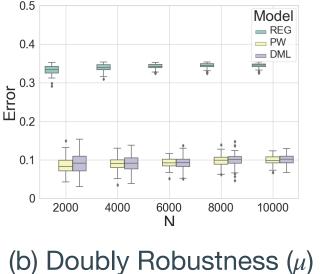
• The nuisances are $\mu_0(C_1, X_1, W) := \mathbb{E}_{P_{do}(w)}[Y | C_1, X_1, W];$ and $\pi_0(C_1, X_1, W) := \frac{P(W | C_1, do(x_1))}{P(W, X_1 | C_1, do(x_2))}.$

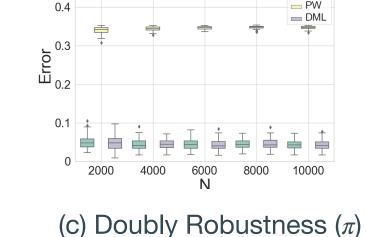
• The doubly robust estimator T^{tti} for the AC-TTI is the following:

 $\mathbb{E}_{D_2}[\pi(C_1, X_1, W) I_{X_1}(X_1) \{ Y - \mu(C_1, X_1, W) \}] + \mathbb{E}_{D_1}[\mu(C_1, X_1, W) \}]$ where \mathbb{E}_{D_2} is an empirical average, and π, μ are estimated nuisance after sample-splitting.

Then, T^{tti} is doubly robust w.r.t. $\{\mu, \pi\}$.

(a) Fast Convergence





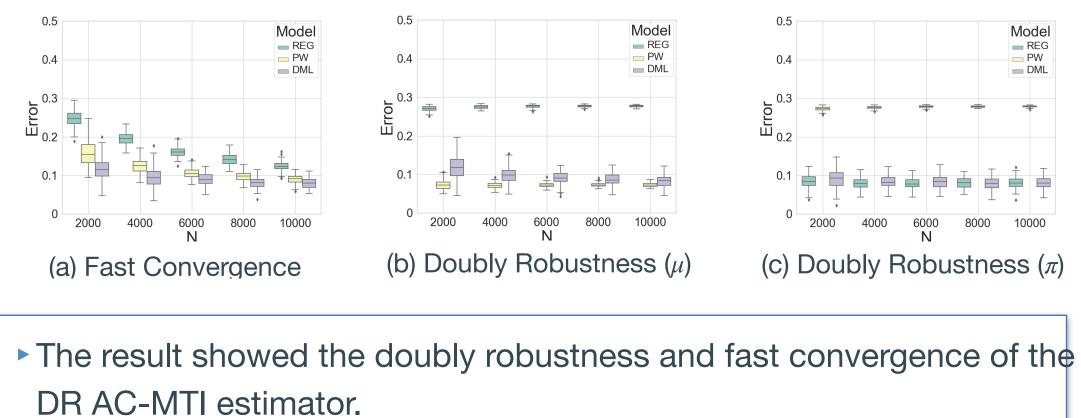
We compared DR-AC-TTI estimator with competing methods (regression, inverse-probability-weighting based). The result showed the doubly robustness and fast convergence of the

DR-AC-TTI estimator.

Then, the causal effect is identifiable as follows: Let $\mu_0^m(\mathbf{X}^{(m-1)}, \mathbf{W}^{(m-1)}, \mathbf{C}^{(m-1)}) := \mathbb{E}_{P_{do(x_m)}}[Y | \mathbf{X}^{(m-1)}, \mathbf{W}^{(m-1)}, \mathbf{C}^{(m-1)}].$ Let $\mu_0^i(\mathbf{X}^{(i-1)}, \mathbf{W}^{(i-1)}, \mathbf{C}^{(i-1)}) := \mathbb{E}_{P_{do(x_i)}}[\overline{\mu}_0^{i+1}(\mathbf{X}^{(i-1)}, \mathbf{W}^{(i-1)}, \mathbf{C}^{(i-1)}]$ where $\overline{\mu}_{0}^{i} := \mu_{0}^{i+1}(x_{i}, \mathbf{X}^{(i-1)}, \mathbf{W}^{(i)}, \mathbf{C}^{(i)})$. Then,

where each nuisances can be estimated from the samples from marginal experiments $P(\mathbf{V} | do(x_i))$.

 T^{mti} :=



Multiple-Treatment Interaction (TTI)

Identification through AC-MTI

1. The i'th experiment's treatment X_i doesn't have the direct effect on the previous observations ($\mathbf{X}^{(i-1)}, \mathbf{C}^{(i-1)}, \mathbf{W}^{(i-1)}$); and 2. There are no unmeasured confounders between X_i and Y conditioning on previous observations ($\mathbf{X}^{(i-1)}, \mathbf{C}^{(i-1)}, \mathbf{W}^{(i-1)}$).

$$\mathbb{E}[Y|do(x_1,\cdots,x_m)] = \mathbb{E}_{P_{do(x_1)}}[\mu_0^2(W_1,C_1,x_1)].,$$

Doubly Robust AC-MTI Estimator

 $\boldsymbol{\pi}_{0}^{(i)} := \prod_{i=1}^{l} \frac{P(W_{i} | C_{i}, \mathbf{H}_{i-1}, do(x_{i}))}{P(W_{i}, X_{i} | C_{i}, \mathbf{H}_{i-1}, do(x_{m}))} \text{ for } \mathbf{H}_{i} := \{ \mathbf{C}^{(i)}, \mathbf{W}^{(i)}, \mathbf{X}^{(i)} \}.$

• The doubly robust estimator T^{mti} for the AC-MTI is the following:

$$= \sum_{j=1}^{m} \mathbb{E}_{D_{j}}[\pi^{(j)}\{\overline{\mu}^{i+1} - \mu^{i}\}] + \mathbb{E}_{D_{1}}[\mu^{1}\}].$$

Then, T^{mti} is doubly robust w.r.t. $\{\mu^i, \pi^i\}$ for $i = 1, \dots, m$.