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Since Remdesivir costs over $2000, wealthier patients are more likely to receive it.
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Q = f(P)

X

C

Y Q = ∑c
𝔼[Y ∣ x, c]P(c)

 from a distribution D P
Samples 

Input
“When is the causal effect 

computable from available data?” 

Identification 
“How do we compute the 

effect from data?”

Estimation 

“Back-Door”
“Back-Door Adjustment”

Rubin, 74; Robins, 86;  Pearl, 95 Bickel et al., 93; van der Laan and Rubin 06, 
van der Laan and Gruber12;  Chernozhukov 

et al, 2018

One-Step Estimator, TMLE, DML
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Causal graph on acute respiratory 
distress syndrome (ARDS)
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• Goal: Estimate    from single interventions  and .𝔼[Y ∣ do(x1,x2)] do(x1) do(x2)

• Drug interactions between  and X1 X2

• Not identifiable from observations
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Estimating Identifiable Causal Effects 

Complicated dependences

Data fusion  
(observations + experiments)

Computational Ineffi

ChallengesTasks 

1 Estimating causal effects 
from observations  

1

2

3

✔

✔

✔

2 Estimating causal effects 
from data fusion   

3 Unified and scalable 
estimators 
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2 Estimating causal effects from data fusion   

3 Unified and scalable estimation method 

1 Estimating causal effects from observations  

4 Conclusion



9
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2 Estimating causal effects from data fusion   

3 Unifi

1 Estimating causal effects from observations  

4 Conclusion
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10

X Y

Z

Back-door Criterion 
(Pearl 95)

1.  is not a descendent of treatment;  
2.  blocks spurious paths between (treatments, outcome)

Z
Z

“Back-door adjustment (BD)”

“Back-door graph”

    P(y ∣ do(x)) = BD ≜ ∑z
P(y ∣ x, z)P(z)
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X1 Y1

Z1

* I’ll use “BD” for simplicity, but all results extend to mSBD.

X2

Z2
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A seq.  satisfies the mSBD if, for 
,  satisfies the BD relative to 

 conditioning on prev. vectors. 
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“mSBD adjustment” 
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BD( , ) ,μ π =𝔼[μ×π]1 where  and   μ(XC) ≜ 𝔼    π(XC) ≜
𝕀

 

2 “DML-BD”( , ) is a robust estimator: ̂μ ̂π

DML-BD( , ), BD( , )   ,   ,Error( ̂μ ̂π μ π ) = Error( ̂μ μ) × Error( ̂π π)

• Double     if either    or   Error = 0 ̂μ = μ ̂π = π

• Fast Convergence:    fast even when    and    slowly.Error → 0 ̂μ → μ ̂π → π

(i.e., (      ) with sample-splitting )avg ̂π (XC)(Y − ̂μ(XC)) + ̂μ(xC)
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Non-BD Example: “Napkin Graph” 

  𝔼[Y ∣ do(x)] =
∑c 𝔼[Y ∣ x, z, c]P(x ∣ z, c)P(c)

∑c P(x ∣ z, c)P(c)

Identification

Estimation

❓

X Y

Z
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Actual treatment Outcome

Doctors’ recommendation 
on taking treatments

Genetic factors

Patients’ pre-treatment 
health condition Lifestyle factors 
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  𝔼[Y ∣ do(x)]=  𝔼[Y ∣ do(x)]
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Background: Causal Effect Identification 

P(CZXY)

X Y

Z

C

U1 U2

Pdo(Z)(CXY) Pdo(Z)(XY) P(Y ∣ do(X))

P(C)P(XY ∣ ZC)

Factorization

∑c
P(c)P(XY ∣ Zc)

Pdo(Z)(Y ∣ X) ∑c
P(c)P(XY ∣ Zc)

∑c
P(c)P(X ∣ Zc)

=

Marginalization

Causal Effect Identification
• spanning a tree from   
• to reach to causal distribution  
• through factorization & marginalization of 

distributions 

P(V)
P(Y ∣ do(X))

Factorization
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So far,
• BDs (or mSBDs) can be estimated sample-efficiently using 

robust estimators 
• The computation tree for the effect identification is composed 

of interventional distributions as intermediate nodes.
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My Approach: 3-Step

1 Check if each interventional distribution on the tree is expressible as BD

2 Express causal effects as a function of BD

3 Construct robust estimators by using robust BD estimators

So far,
• BDs      ffi  

  
• The computation tree for the efffi

    

To connect BD & Identification,
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Pdo(a)(B)

Interventional 
Distribution

Graph

1 Check if each interventional distribution on the tree is expressible as BD
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Complete Criterion for mSBD Adjustment

Pdo(a)(B)

Interventional 
Distribution

Graph

Sound and complete criterion to check  
 if  is expressed as BDPdo(a)(B)

Sequential Adjustment Criterion  
(Jung et al., NeurIPS-24b) 

1 Check if each interventional distribution on the tree is expressible as BD
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Complete Criterion for mSBD Adjustment

 if 
BD-expressible 

Pdo(a)(B) = BD(μ, π)

Pdo(a)(B)

Interventional 
Distribution

Graph

Sound and complete criterion to check  
 if  is expressed as BDPdo(a)(B)

Sequential Adjustment Criterion  
(Jung et al., NeurIPS-24b) 

1 Check if each interventional distribution on the tree is expressible as BD
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Motivation: Incompleteness of BD/mSBD

1  doesn’t satisfy the mSBD criterion Z

2 P(y1y2 ∣ do(x1x2))=∑z1z2
P(y2 ∣ prev1, z2x2)P(y1z2 ∣ z1x1)P(z1)

 examples s.t.  is BD adjustment even if BD criterion fails. ∃ P(y ∣ do(x))

X1 Y1

Za

X2 Y2

Zb Zc Zd

Z1 ≜ (Za, Zb) Z2 ≜ (Zc, Zd)

“mSBD adjustment”
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Complete Seq. Adjustment Criterion
Sequential Adjustment Criterion (SAC)

A seq.  satisfies the SAC if, for 
,  blocks confounding 

path between 

Z = (Z1, ⋯, Zm)
i = 1,⋯, m Zi ∪ previ−1

(Xi, Y≥i)

⇔

mSBD fails X

 is given as mSBD.P(y ∣ do(x))

Completeness

SAC holds ✔
X1 Y1

Za

X2 Y2

Zb Zc Zd

Z1 ≜ (Za, Zb) Z2 ≜ (Zc, Zd)
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Z

C
U1 U2
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Estimating Causal Effects in 3-Steps
2 Express causal effects as a function of BD

X Y

Z

C
U1 U2

P(CZXY) Pdo(Z)(CXY) P(Y ∣ do(X))BD1(μ, π)

BD1(μ, π)
BD2(μ, π)

=
Factorization Marginalization Factorization

1.  is identifiable from  P(y ∣ do(x)) (𝒢, P)

Theorem (Jung et al., 2021, AAAI)

2.  is expressible as a function of BDs 
through AdmissibleID
P(y ∣ do(x))

The followings are equivalent: 
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DML-ID: Estimator for Identifiable Causal Effects

𝔼[Y ∣ do(x)]    f({BD(μ1,π1), BD(μ2,π2), ⋯, BD(μm,πm)})=

̂𝔼[Y ∣ do(x)] ≜ ̂BD (μ1,π1)  , ̂BD (μ2,π2)  , ⋯, ̂BD (μm,πm)f({ })

DML-BD DML-BD DML-BD⋯

3 Construct robust estimators by combining DML-BD

“DML-ID”
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Robustness of DML-ID 

• Double Robustness:    if either    or    for all .Error = 0 ̂μi = μi ̂πi = πi i = 1,⋯, m

• Fast Convergence:    fast even when    and    slow.Error → 0 ̂μi → μi ̂πi → πi

Theorem

, Error(DML-ID 𝔼[Y ∣ do(x)]) = , , ∑m
i=1Error( ̂μi μi)×Error( ̂πi πi)
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DML-ID - Simulation

X Y

Z

C

U1
U2
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DML-ID - Simulation

,  slowly( ̂μ π̂) → (μ0, π0)

Fast Convergence

DML-ID converges fast, even 
when ,  converge slowly( ̂μ π̂)

DML-ID converges to the true causal effect 
even when  or  are misspecified.̂μ π̂
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Talk Outline 

2 Estimating causal effects from data fusion   

3 Unified and scalable estimation method 

1 Estimating causal effects from observations  

4 Conclusion
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Talk Outline 

2 Estimating causal effects from data fusion   

3 Unifi

1 Estimating causal effects from observations  

4 Conclusion

✔
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Motivation: Joint Treatment Effect Estimation

X1

Platelet Aggregation 
Inhibition

X2

W Y
Bleeding 
Disease

Aspirin Warfarin

Propensities 
to Aspirin

Dietary 
Factors

U2
U1

Challenges for Estimating    𝔼[Y ∣ do(x1, x2)]

• Can’t run experiments  due to 
drug-interactions

do(x1, x2)

• BD is not applicable

• Not identifiable from observations .P(V)

Can    be estimated from two trials   and ?𝔼[Y ∣ do(x1, x2)] Pdo(x1)(V) Pdo(x2)(V)
26
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Joint Treatment Effect Identification

A set  satisfies the BD criterion from marginal experiments  and  
relative to the outcome  for the joint treatment effect  in  if   
1.  is not a descendent of  in  (instead of non-descendant of (X1,X2) ); 

and  
2.  blocks every spurious path between  and  in the experiment 

Z Pdo(x1) Pdo(x2)
Y (X1, X2) 𝒢

Z X2 𝒢

Z X1 Y do(X2)

BD Criterion for Joint Treatment Effect (BD ) 
(Jung et al., ICML 2023)

+
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Joint Treatment Effect Identification

A set  satisfies the BD criterion from marginal experiments  and  
relative to the outcome  for the joint treatment effect  in  if   
1.  is not a descendent of  in  (instead of non-descendant of (X1,X2) ); 

and  
2.  blocks every spurious path between  and  in the experiment 

Z Pdo(x1) Pdo(x2)
Y (X1, X2) 𝒢

Z X2 𝒢

Z X1 Y do(X2)

BD Criterion for Joint Treatment Effect (BD ) 
(Jung et al., ICML 2023)

+

Trial on X2 Trial on X1

  , = ∑z
𝔼do(x2)[Y ∣x1 z]Pdo(x1)(z)  𝔼[Y ∣ do(x1, x2)]
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Example of BD+

X1 X2

W Y

U2
U11.  is not a descendent of  in ; and  

2.  blocks every spurious path between 
 and  in the experiment 

Z = {W} X2 𝒢
Z = {W}
X1 Y do(X2)

  , = ∑w
𝔼do(x2)[Y ∣x1 w]Pdo(x1)(w)  𝔼[Y ∣ do(x1, x2)]

Trial on X2 Trial on X1
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  , = ∑z
𝔼do(x2)[Y ∣x1 z]Pdo(x1)(z)  𝔼[Y ∣ do(x1, x2)]
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Parametrization of BD+

29

  , = ∑z
𝔼do(x2)[Y ∣x1 z]Pdo(x1)(z)  𝔼[Y ∣ do(x1, x2)]

   , μ(X1,Z) ≜ 𝔼do(x2)[Y ∣X1 Z] : Solution of π(X1,Z)

𝔼do(x1)[μ(x1,Z)]

  =𝔼[Y ∣ do(x1, x2)]

    𝔼do(x2)[π(X1Z) × μ(X1Z)] = 𝔼do(x1)[μ(x1,Z)]

=∑z
μ(x1,z)Pdo(x1)(z)

   = 𝔼[Y ∣ do(x1, x2)]

  𝔼do(x2)[π(X1Z) × Y]

   = 𝔼do(x2)[π(X1Z) × μ(X1Z)]

 = 𝔼do(x1)[μ(x1,Z)]
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Doubly Robust Estimator for BD+ 

30

?( , )̂μ ̂π  = 𝔼do(x2)[{ ̂μ−μ}×{π− ̂π}]   + 𝔼do(x2)[μ×π]

 = 𝔼do(x2)[ ̂π{μ− ̂μ}+π ̂μ]

  = 𝔼do(x2)[ ̂π{Y− ̂μ}] +𝔼do(x1)[ ̂μ(x, C)]

( , )   ̂BD+ ̂μ ̂π ≜ 𝔼do(x2)[ ̂π{Y− ̂μ}] +𝔼do(x1)[ ̂μ(x, C)]

DML-BD+

    BD+( , )  𝔼[Y ∣ do(x1, x2)] = μ π ≜ 𝔼do(x2)[μ×π]



Robustness of DML-BD+

31

DML-BD+( , ), BD+( , )  ,   ,Error( ̂μ ̂π μ π = Error( ̂μ μ) × Error( ̂π π)

• Double Robustness:    if either    or   Error = 0 ̂μ = μ ̂π = π

• Fast Convergence:    fast even when    and    slowly.Error → 0 ̂μ → μ ̂π → π
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Fast Convergence
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Factorization
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1.  is identifiable from  P(y ∣ do(x)) (𝒢, {Pdo(ri)})

Theorem

2.  is expressible as a function of 
BD+s through AdmissibleGID (Jung et al., NeurIPS23)
P(y ∣ do(x))

The followings are equivalent: 
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DML-gID: Estimator for Causal Effects from Fusion

𝔼[Y ∣ do(x)]    f({BD+(μ1,π1), BD+(μ2,π2), ⋯, BD+(μm,πm)})=

̂𝔼[Y ∣ do(x)] ≜ ̂BD (μ1,π1)  , ̂BD (μ2,π2)  , ⋯, ̂BD (μm,πm)f({ })

DML-BD+ DML-BD+ DML-BD+⋯

“DML-gID”
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Robustness of DML-gID 

• Double Robustness:    if either    or    for all .Error = 0 ̂μi = μi ̂πi = πi i = 1,⋯, m

• Fast Convergence:    fast even when    and    slow.Error → 0 ̂μi → μi ̂πi → πi

Theorem

, Error(DML-gID 𝔼[Y ∣ do(x)])= , , ∑m
i=1Error( ̂μi μi)×Error( ̂πi πi)
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✔
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Empirically, P( multilinear | ID) > 99% for various random graphs 
(randomness imposed to # observables, # latents, # treatments)
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Identification: Sound and complete graphical criterion for identifying causal 
effects as a multilinear causal estimand  
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Computationally efficiency: A new formulation for multilinear causal estimands 
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2

Sample efficiency: A doubly robust and sample efficient estimation framework3
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The SBD estimand can be estimated in a computationally efficient 
manner using nested conditional expectations.
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Limitation of Nested Expectation: Multilinear Estimand 

 , ,  | ,∑z,x′￼,c
𝔼[Y ∣z x′￼c]P(z x c)P(x′￼c)

  ∑bax′￼c
𝔼[Y ∣ baxc]P(b∣ax′￼c)P(a∣xc)P(x′￼c)

Treatments  are fixed 
to  and marginalized  
simultaneously. 

X
x x′￼

Front-Door (FD)

Verma
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R Y

X1

 , , ,  | , ,  | , ,∑r,z,x′￼1,x′￼2,r′￼

𝔼[Y ∣z r x′￼2 x′￼1]P(z r x1 x2)P(r x1)P(r′￼x′￼1 x′￼2)

Z

X2

U2 U3

U1

Example

Treatments  are fixed 
to  and marginalized  
simultaneously. 

X
x x′￼

variable that is 
marginalized multiple 
times. 

∃

Front-Door (FD)

Verma
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Kernel Policy Product: Representation of MCE

 Expectation of  over  | , ,  | , ,= Y P(Y Z X C)P(Z ·X C)𝕀( ·X=x)P(X C)

 , ,  | ,∑z,x′￼,c
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Copied Proxy:  is an independent copy of  s.t. 
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·X X
P(Z |X, C) = P(Z | ·X, C)

  ∑bax′￼c
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 Expectation of  over  | , , ,  | , ,  | , ,= Y P(Y B A X C)𝕀(X=x)P(B A ·X C)P(A X C)P( ·X C)

Kernel Policy Product: A product of 
conditional probability kernels and policies 
over variables & their copied proxies  
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Simulation Results 

DimensionDimension

TimeTime

MSE MSE

#samples

• Existing estimators’ evaluation time 
increase as dimensions increases

• DML estimator exhibits computational 
efficiency gains.

• DML estimator exhibits sample 
efficiency. 

FD Verma
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Future Directions  

1. Causal Inference under Real-World Imperfections

• unmeasured confounding, limited overlap, or high-dimensionality (e.g., images)

2. Robust and Scalable Estimation
• Inference using large-size pre-trained models.  
• computationally efficient method that scale to high-dimensional and large-scale datasets.

3. Causal AI for Diverse Modalities

• Inference for multi-modal covariates, treatments, and outcomes.  



Thank you

www.yonghanjung.me/
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reviewing the thesis. 

• Other Professors  
• Please sign “Form 11: Report of the Final Examination” 
• Please approve the “Form 9: Electronic Thesis Acceptance Form (ETAF)” after 

reviewing the thesis. 

I kindly ask that you complete these by June 12 to meet the PhD completion deadline for my 
next job appointment — Assistant Professor at UIUC's School of Information Sciences.
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Effect (Q)
𝔼[Y ∣ do(x)]

Graph Q̂ = ̂f(D)Q = f(P)

 from D P
Samples 

Input Identification Estimation 

✔
Approximated, 

Incomplete Graph ✔

Jung et al., ICML 2021
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Other Work 2: Instrumental Variable (IV) Analysis

Effect (Q)
P(Y ∣ do(x), complier)

Graph

Q̂ = ̂f(D)Q = f(P)

 from D P
Samples 

Input Identification Estimation 

X YIV

actual 
treatment

prescribed 
treatment

✔

Jung et al., NeurIPS 2021 (Spotlight)

Imbens & Angrist won the 
2021 Nobel Prize in 
Economics for their 

achievements in IV analysis.

✔with additional 
assumptions 
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Confounding bias

Easy to collect
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Application 1. Emulating RCT from EHR
Input Identification Estimation

Effect (Q)
𝔼[Y ∣ do(x)]

EHR
 from D P

Domain 
Knowledge

Graph Q = f(P) Q̂ = ̂f(D)

Graph Discovery
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Application 1. Emulating RCT from EHR

Causal graph on Acute Respiratory 
Distress Syndrome (ARDS)

For seminal RCTs, 
Our treatment recommendation 

= Trials’ treatment recommendation

Result

Our method can be used to 
construct an initial hypothesis 

before conducting trials.

Impact

Jung et al., American Thoracic Society, 2018
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• SHAP value: one of the most cited 
measure for the feature importance 

• Larger discounts contribute less to 
retention?

• Mismatch with human intuition is 
due to computing the importance 
based on correlation  
(e.g. )𝔼[retention∣discount]

Causality-based feature importance 
measure is essential

Retention

Economy

Discount

Needs

Sales 
calls

Interactions

Upgrade

Ads

Usage

Bugs
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• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Attribution 

ϕi =
1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{𝔼[Y |do(xS, xi)] − 𝔼[Y |do(xS)]}

Jung et al.,ICML  2022
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• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Identification Estimation Attribution 

ϕi = f(P)

Determine if  is 
computable from 

available data 

ϕi

̂ϕi = ̂f(D)

DML-do-Shapley

Jung et al.,ICML  2022
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do-Shapley: Causality-based Feature Attribution

• Input:  
• output: 

(X1, ⋯, Xm)
f(X1, ⋯, Xm)

Data

Graph

do-Shapley

Causality-based 
feature attribution 

 (ϕ1, ⋯, ϕm)

Input Identification Estimation Attribution 

ϕi = f(P)

Determine if  is 
computable from 

available data 

ϕi

̂ϕi = ̂f(D)

DML-do-Shapley

DML-ID

Jung et al.,ICML  2022
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Simulation: Better Interpretability

Rank Correlation with 
True Importances

DML-do-Shapley

Estimator

SHAP

1.0

-0.28

Estimated feature importance ranking

= True ranking of feature importance

Implication

High true importance ranking 

= Low estimated ranks
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Impact on Explainable AI

Unique causality-based feature importance measure that aligns 
with human intuition:

• Two features receive equal contributions whenever their causal effects are the same.

• Feature’s contribution = 0 if it has no causal effect 

• Feature contributions closely approximate their causal effects on the outcome

• The sum of feature contributions = The outcome f(X1, ⋯, Xm)
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Future 1: Inference with Multi-modal Data

X Y

CR

   𝔼[Y ∣ do(x)] = ∑c
 , 𝔼[Y ∣x c] P(c)❓∑r
 , 𝔼[Y ∣x r] P(r)

Representation 
learning

 doesn’t satisfy the BD criterionR

• Representation learning taking 
account of causal dependencies 

Approach

• New causal inference methods 
that allows us to use existing 
representation learning modelsX Y

C

   𝔼[Y ∣ do(x)] =❓
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Future 2: Causal Inference with Spatiotemporal Data

X Y

C

Vaccine

Characteristics 

outcome

Space

Longitude

La
titu

de

Time

Approach
• Develop causal inference methods 

with spatiotemporal dataset

• Optimal treatment policy with 
spatiotemporal dates
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Future 3: Causal Inference Loop with Uncertainty 

Effect (Q)
𝔼[Y ∣ do(x)]

Observations 
or 

Experiments

Domain 
knowledge

Graph Q = f(P) Q̂ = ̂f(D)

LLM

Uncertainty/Unreliability 

❓ Q̂ = ̂f(D)❓

Approach
• Bounds of effects when unidentifiable

• Sensitive analysis on graphs

• Efficient decision making with bounds


