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® Not identiflable from observations
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Background: Back-door Adjustment (BD)

/

“Back-door graph”

X Y
Back-door Criterion

1. Z.is not a descendent of treatment;
2. /4. blocks spurious paths between (treatments, outcome)
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Background: Multi-outcome sequential BD

Multi-outcome Sequential BD
(MSBD)

Aseq. L = (4, -+, 1, ) satisfies the mSBD if, for
1 = 1,---,m, Z; satisfies the BD relative to

(X, Y= conditioning on prev. vectors.

m+1
P(y [dox))= ), ] Pyl previy.x;2)

“mSBD adjustment”

*I'll use “BD” for simplicity, but all results extend to mSBD.
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Background: Robust Estimator for BD

Q “DML-BD”(z,7) is a robust estimator:
(i.e., ave( T(XC)Y — (X)) + /i(xC) ) with sample-splitting )

Error(DML-BD(i1,7), BD(i,7)) = Error(gi,1t) X Error(7z,7)

® Double Robustness: Error = O if either i = porz=rn
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Background: Robust Estimator for BD

(i.e., ave( T(XC)Y — (X)) + /i(xC) ) with sample-splitting )

Error(DML-BD(i1,7), BD(i,7)) = Error(gi,1t) X Error(7z,7)

e Fast Convergence: Error — 0 fast even when /i — 1 and 7 — 7 slowly.
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Causal Effect Identification

e spanning a tree from P(V)

to reach to causal distribution P(Y | do(X))
through

factorization & marginalization of
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1ONS
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Factorization Marginalization Factorization
P do(Z)(CXY ) P do(Z)(XY )

TP(C)P(XY | ZC)

TZ P(c)P(XY | Zc)

P(Y | do(X))
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 BDs (or mSBDs) can be estimated sample-efficiently using

S O f a r robust estimators
5 + The computation tree for the effect identification is composed

of interventional distributions as intermediate nodes.
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My Approach: 3-Step

To connect BD & Identification,

c Check if each interventional distribution on the tree is expressible as BD
e Express causal effects as a function of BD

e Construct robust estimators by using robust BD estimators
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Complete Criterion for mSBD Adjustment

G Check if each interventional distribution on the tree is expressible as BD
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P do(a) (B )
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~

Seqguential Adjustment Criterion

(Jung et al., NeurlPS-24Db)

\_

Sound and complete criterion to check
if Pyo)(B) is expressed as BD

_J

S

BD-expressible
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Motivation: Incompleteness of BD/mSBD

J examples s.t. P(y | do(x)) is BD adjustment even if BD criterion fails.

Z,2 (2,2, Z,2 (2.7,

a Z. doesn’t satisfy the mSBD criterion “mSBD adjustment”

/\
— N

e P(y,y, | do(xx,))= Z P(y, | prev,, 2,x,)P(y,Z, | Z;x,)P(z,)

1,7,
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Complete Seq. Adjustment Criterion

— Sequential Adjustment Criterion (SAC) — Completeness

Aseq. L = (4, -, 1, ) satisfies the SAC if, for S P(y | do(x)) is given as mSBD.
(1= 1,--,m, Z;V prev._, blocks confounding

path between (X, Y=

Z,2 (2,7, Z,2 (2.7,
ZCZ

Zb Zc Zd

X mSBD fails

v SAC holds
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Y
P(C)P(XY | ZC) JZCP(C)P(XY | Zc)

Factorization Marginalization

Z P(c)P(XY | Zc)

Z P(c)P(X | Zc)

y

P(CZXY) ——— Pyoz)(CXY) ———— Py (XV) 0 poy | do(X)
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e Express causal effects as a function of BD

_ BDi(u, )

Factorization BDZ(ﬂ, ﬂ)
BDy(4, 1) ———— P(Y | do(X))



Estimating Causal Effects in 3-Steps

e Express causal effects as a function of BD

Theo re m (Jung et al., 2021, AAAI)

The followings are equivalent:

1. P(y | do(x)) is identifiable from (&, P)

2. P(y | do(x)) is expressible as a function of BDs
through AdmissiblelD

21
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DMVL-ID: Estimator for Identifiable Causal Effects

e Construct robust estimators by combining DML-BD

[Y | dox)] = f(1BD(,7;), BD(5,75), +-+, BD(i,,.77,,) })

| | |

DML-BD DML-BD DML-BD

S B

_[Y‘ dO(X)] — f({ /BB(//tlaﬂl) ] /BB(//t297T2) 5 %, /BB(//tmaﬂm) })
"DML-1D”




Robustness of DML-ID

Theorem

Error(DML-ID, E[Y | do(x)]) =

m A\ Va\
- Error(ge;, p;)XError(7;, ;)
® Double Robustness: Error = 0 if either i, = . or 7, = forall i = 1,---, m.

® Fast Convergence: Error — 0 fast even when /i. — . and 7; — 7. slow.
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Fast Convergence
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DML-ID converges to the true causal effect

even when I or 7t are misspecified.
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Motivation: Joint Treatment Effect Estimation

ASpPIrN Wartari - -
v v Challenges for Estimating E[Y | do(x,, x,)]
1 2
U, U, e BD is not applicable
Propengiﬁies ;'{ »~. Dietary
o Asprn =, ' Factors e Not identifiable from observations P(V).
1 ‘» e Can’t run experiments do(x;, x,) due to
%4 Y drug-interactions
Platelet Aggregation Bleeding
INhipition Disease

Can E[Y | do(x, x,)] be estimated from two trials Py, (V) and Py, y(V)?

20



Joint Treatment Effect Identification

BD Criterion for Joint Treatment Effect (BD™)

(Jung et al., ICML 2023)
A set Z satisfies the BD criterion from marginal experiments Pyo(x,) @nd Pdo(xz)

relative to the outcome Y for the joint treatment effect (X, X,) in & if

1. Z is not a descendent of X, in & ( );
and

2. Z. blocks every spurious path between X, and Y in the experiment do(X,)
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Joint Treatment Effect Identification

1. Z is not a descendent of X, in & (
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BD Criterion for Joint Treatment Effect (BD™)

(Jung et al., ICML 2023)
A set Z satisfies the BD criterion from marginal experiments Pyo(x,) @nd Pdo(xz)

relative to the outcome Y for the joint treatment effect (X, X,) in & if

);

2. Z. blocks every spurious path between X, and Y in the experiment do(X,)

[V [ do(x;, %) = )

_do(xz)[Y X, z|P do(xl)(z)
Z _ NG ,

~N
Trial on X, Trial on X
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Example of BD+

1. Z = {W} is not a descendent of X, in &; and

2. 1. = { W} blocks every spurious path between
X, and Y in the experiment do(X,)

[V | do(xy, x,)] = 2

1 2%
N—

¢
%
U,
1.°
-’
4 3\

%4

_do(xz)[Y ‘xp w|P do(xl)(W)

L _J
S

N
Trial on X,

Trial on X
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Parametrization of BD+
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/’t(XDZ) é

=[Y | do(x, x,)] = Z

_do(xz)[Y X, Z]

Z

_do(xz)[Y ‘Xl’ Z]Pdo(xl)(z)



Parametrization of BD+

=[Y | do(x, x,)] = Z

Z

u(X,.Z) = “do(x) L Y 1K, Z]

_do(xl)[ﬂ(xlaz)]

zzzﬂ(xl,z)Pdo(Xl)(z)
=E[Y]| do(x,, x,)]

_do(xz)[Y ‘Xl’ Z]Pdo(xl)(z)
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Parametrization of BD+

[V [ do(x). %)l = )

Z

_dO(Xz)[Y ‘Xl’ Z]Pdo(xl)(z)

u(X,.Z) = “do(x) L Y 1K, Z]

_do(xl)[ﬂ(xlaz)]

=ZZ,M(X1,Z)P do(x)(Z)
=E[Y | do(x;, x,)]

m(X,Z.): Solution of
_do(X2)[”(X1Z) X p(X24)] = _do(xl)[ﬂ(xlaz)]
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Parametrization of BD+

u(X,.Z) = “do(x) L Y 1K, Z]

_do(xl)[ﬂ(xlaz)]

[V [ do(x). %)l = )

Z

_dO(Xz)[Y ‘Xl’ Z]Pdo(xl)(z)

Zzﬂ(XpZ)P do(Xl)(Z)

[ Y| do(x, x,)]

m(X,Z.): Solution of
_do(X2)[”(X1Z) X p(X24)] = _do(xl)[ﬂ(xlaz)]

~do(x,) [ﬂ(XIZ) X V]

= Ego) 77X Z) X p(XZ)]

= _do(xl)[ﬂ(XPZ)]
=[E[Y | do(x,, x,)]
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_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tXﬂ]

"‘Double Robustness”

20,7 — EgopylX7] = Egoe[{fi—p }x{7—7}]




Doubly Robust Estimator for BD+

20,7 =

E[Y | do(x,. X,)] = BD*(,7) 2

= doGi) L VA= X =1} +

~do(x,) [//tXﬂ]

—~do(x,) [//tXﬂ']




Doubly Robust Estimator for BD+

_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tX]T]

2,7
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Doubly Robust Estimator for BD+

_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tXﬂ]

2060.,7) = Egouy [ {A—p}x{m=7}] + E oy [ux7]
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Doubly Robust Estimator for BD+

2,7

_[Yl dO(Xl? XZ)] — BD+(//t’7Z-) é _d()(Xz)[//tXﬂ]

_do(x2)[{/:t\_//t }X{ﬂ_ﬁ'}] + _do(xz)[//tXﬂ]

~do(x,) [7%{;”_/2 } +7T/:t\]

_do(xz)[ﬁ'{ Y_/;t\}] T

_do(xl)[/;t\(xa C)]

DML-BD+

= o) T Y =4} ] +

~do(x;) [///t\(xa C)]
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Robustness of DML-BD+

Error(DML-BD+(j1,7), BD+(i4,77) = Error(/i,11) X Error(7, )

® Double Robustness: Error = O ifeither i = porn=n

e Fast Convergence: Error — 0 fast even when /i — 1 and 7 — 7 slowly.

31
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DML-BD+ converges to the true causal
effect even when jI or t are misspecified.
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Example where BD+ Falils

ASPIrN
Xl

\Wartarin

%)

Mediator
R

Blood

oressure W Cardiovascular

Y Disease

X BD+ fails

Z P do(xl)(r | x,)P do(xz)(y | 7 le)z P do(xl)(w | 7, x5)P do(xl)(xé)
rw %%

Can E[Y | do(x,, x,)] be sample-efficiently estimated?
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Background: General Identification from Data Fusion

General Identification (glD)

e spanning a tree from available distributions { Pyo (V) }r cv

e to reach to causal distribution P(Y | do(X))
® through factorization & marginalization of distributions

34
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Causal effects as a function of BD+
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Causal effects as a function of BD+

Theorem

The followings are equivalent:
1. P(y | do(x)) is identifiable from (&, {Pdo(r,-)})

2. P(y | do(x)) is expressible as a function of
BD+s through AdmissibleGID (Jung et al., NeurlPS23)
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DML-gID: Estimator for Causal Effects from Fusion

(Y | do(x)] = f{BD™(yy,7,), BD" (45, 75), +++, BD™(14,,,,77,,) })

| | |

DML-BD+ DML-BD+ DML-BD+

| l l

[V ] do(x)] = f({ BD (u.7,) , BD (o) ... BD(1,,.7,) })

"DML-gID”




Robustness of DML-gID

Theorem

Error(DML-gID, E[Y | do(x)]) =

m A\ Va\
- Error(ge;, p;)XError(7;, ;)
® Double Robustness: Error = 0 if either i, = . or 7, = forall i = 1,---, m.

® Fast Convergence: Error — 0 fast even when /i. — . and 7; — 7. slow.
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Motivation: Multilinear Causal Estimands

A causal effect E[) | do(x)] is often identified as a multilinear functional.

Empirically, P( multilinear | ID) > 99% for various random graphs
(randomness imposed to # observables, # latents, # treatments)
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Computationally efficiency: A new formulation for multilinear causal estimands
with computational efficiency.

Sample efficiency: A doubly robust and sample efficient estimation framework
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E[Y | do(x,,x,)] éZ ELY [x),¢5,x,¢11P(cH|x;,c)P(cy)
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0 (X5, Gy, X4,C) = [V X, Gy, Xi,C ]

9 Xy, Cy) = [y (0, Gy, X1,CH) |1X,,C ] <

ZC E[Y ] x5,65,X;,Ci1P(c, | X;,C)

© E[Y|do(x,x)] =Elp(x, C)] —— 3.

The SBD estimand can be estimated in a computationally efficient

manner using nested conditional expectations.
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Limitation of Nested Expectation: FD

Front-Door (FD): E[Y | do(x)] éz

9 /’tl(X5C) é

/
oA ,C

© 1LZ X OAEY|Z X C]

1,2, X, ©) |X.C]

(3, [y (v, O] # E[Y | do()]

1Y |zx',c]P(z | x,c)P(x'c)

Y |2, X,Cl1P(z | X,0)

2.

ZZ,XI,C

1Y |z,x,¢c]P(z | x,¢)P(c)

The standard nested expectation cannot represent multilinear estimands

when treatments are both marginalized and fixed simultaneously.
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Example

%ﬁ%®

Treatments X are fixed

to X and marginalized X’
simultaneously.

Jvariable that is

marginalized multiple
times.
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— Expectation of Y over P(Y | Z,X,C)P(Z | X,O)l(X=x)P(X,C)

\

Copied Proxy: X is an independgnt copy of X s.t. Kernel Policy Product: A product of
PZ|X,C)=PZ|X,(O). conditional probability kernels and policies

over variables & their copied proxies

Verma Zb E[Y| baxc|P(blax'c)P(alxc)P(x'c) /

— Expectation of Y over P(Y | B,A,X,O)l(X=x)P(B | A,X,O)P(A |X,O)P(X,C)
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— Expectation of Y over P(Y | Z,X,C)P(Z | X,O)l(X=x)P(X,C)

Computational efficiency gain via replacing Z ~ through KPP

Lo X ,C
expression with copied proxies and nested conditional expectations
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® |nference using large-size pre-trained models.
e computationally efficient method that scale to high-dimensional and large-scale datasets.

3. Causal Al for Diverse Modalities

® |nference tor multi-modal covariates, treatments, and outcomes.
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® ecature’s contribution = O If It has no causal effect

® Feature contributions closely approximate their causal effects on the outcome
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