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We give a step-by-step review of empirical excess risk for Neyman-orthogonal
losses. Each technical statement is followed by two working examples: a DR-learner
for the ATE (AIPW squared loss) and a constant-effect R-learner.
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1 Setup & Preliminaries

We study a population risk L(7,7n), where the target 7 € T and the nuisance n € H live in
normed spaces (7, ||-||7) and (H, || ||%), respectively. Throughout, 79 denotes the true nuisance.
We define the (possibly non-unique) oracle minimizer
€ in L 1
7o € argmin L(7, 7o), (1)
which we assume is nonempty.

Directional derivatives. For a functional F' and direction h, the (Géateaux) derivative with
respect to a variable x at zg is

Vo F(ao)h] £ lim F(o +tf;) — F(xo)

: (2)

and second derivatives V2F (zq)[h1,ho] are defined analogously; mixed derivatives such as
V, VL will be used for orthogonality.

Sample splitting and plug-in. We assume a two-way split into independent folds of approx-
imately equal size: one to learn 7 (using data D,), and one to learn 7 by minimizing L(7,1)
over T, i.e.,

T 2 arg min L(t,7), so that 0 = Ty -

This separation prevents overfitting-induced bias when we later linearize around (79, 70).

Target-class statistical term. Let Ry (7;7,¢) > 0 be a data-dependent rate function such that,
with probability at least 1 — e,

L(Tﬂ]) - L(T;ﬂ]) < RT(TW%G)- (3)
You may instantiate Ry via localized complexity (e.g., critical radius) or algorithm-specific

bounds; we keep it abstract to highlight how nuisance error propagates into target error.

Goal and norms. Our goal is to upper bound the target error |7 —79||%. When we write || - ||,
we mean the L,(P) norm with respect to the underlying distribution.

1.1 Examples (R- and DR-learners)

We use standard notation: T € {0, 1} (treatment), X (covariates), Y (outcome). The estimand
is the CATE

70(X) £ E[Y(1) - Y(0) | X], (4)
under the usual positivity (¢ < mp(X) <1 —c a.s.) and i.i.d. sampling. We assume

Y) LT | X = E[Y(t)| X] =E[Y | ¢,X], Vt € {0,1}. (5)



1.1.1 R-Learner

The Robinson decomposition posits

Y:fU(X)+TTO(X)+€Y, E[Ey’T,X]:O,
T:Td'o(X)—i-Ex, E[ex’X]ZO,

and with mg(X) £ E[Y | X] we have mo(X) = fo(X) + mo(X)7o(X). Hence
Y —mo(X) = (T — (X)) 70(X) + ey
Thus, viewing 79 as an OLS-type coeflicient in a residualized regression, we define
Ly(r,m0={mo, m}) = E[{Y —mo(X) — (T - WO(X))T(X)ﬂ :

so that 79 € argmin, Ly (7,10).

1.1.2 DR-Learner

We define following nuisances:

2T — 1
L T £ -
,u,[)(T,X) E[Y ’ ,X], wo(T,X) P(T | X)

Define the pseudo-outcome

e(Vino={po,mo}) £ wo(T, X){Y — po(T, X)} + po(1, X) — p10(0, X),

and the squared-loss objective

Lor(rn) 2 E[{e(Vin) - 7(X)}7].

This loss is centered at the CATE in virtue of E[p(V;no) | X| = 10(X).

2 Assumptions

(10)

(11)

(12)

We now state structural conditions that yield fast rates. The exposition follows the orthogonal-
statistical-learning (OSL) template: first-order optimality at truth, curvature in 7, and orthog-

onality to damp the impact of nuisance error.

the population risk at the true nuisance:

Assumption 1 (First-order optimality in 7). Moving away from 7y cannot reduce

V:L(t9,m0)[hs] > 0 for all feasible directions h, from 7. (13)

A >0,k >0,and r € [0,1) such that, for any 7 on the line segment between 7 and 7,

4

Assumption 2 (Strong convexity (quadratic growth) in 7). There exist constants

VEL(Z,n)[r = 10,7 = m0] = |7 = 7olF — #lln—nolly" (14)




Rationale: The risk function L(7,7n) is in a bowl-shape over 7. The x term allows mild
curvature deterioration when 7 # no; the exponent 4/(1 + r) is chosen to balance mixed

terms via Young’s inequality later.

2.1 Assumption checks for the examples

We verify that the R- and DR-losses satisfy the above, clarifying how positivity yields curvature

and how residualization/DR construction yields orthogonality.

2.1.1 R-Learner: assumptions hold

[I>

First-order optimality. With Y £ Y — mg(X), T — mo(X),

T
Vo Li(0,m0)[hs] = —2E|(Y = Tro) T hr(X)| = —2E[E[ey | T, X]T h(X)] = 0.

Hence Assumption 1 holds.

Strong convexity. We have
V2L(7, )7 — 10,7 = 0] = 2E[{r(X) = (X))} {T = n(X)}?],

where

E[(T—#(X))*| X] = Var(T'| X) + (mo(X) —7(X))* = mo(X)(1 = mo(X)).

—_————
=mo(X)(1=mo(X))

Therefore,
V2L(F,n)lr = 70,7 — 0] = 2E[{r(X) = 7(X)}*{T — =(X)}?]
> 2B |{7(X) — 70(X)}*Var(T | X)|
= 2B [{(X) = 70(X)Pmo(X){1 = mo(X)}]
> 2B [{7(X) = 10(X)}2e{1 - c}]
=2¢(1 — ¢)||7 — 103
Hence, Assumption 2 holds with A = 2¢(1 — ¢) and x = 0 (taking || - |7 = || - ||2)-

2.1.2 DR-Learner: assumptions hold

First-order optimality.
VrLpr(10,m0) [hr] = =2E[{p(V;m0) — 70(X)} hr (X)] = 0,

since Elp(V;n0) | X] = 10(X).

Strong convexity. We first note that

V- Lpr(70,7m0) [T — 70] = —2E[{(V;n) — 7(X) {7 (X) — 70(X)}].

(15)

(24)



This gives
VZLpr(7,n)[r — 70,7 — 70] = 2|7 — 70|13, (25)

which shows that kK =0 and A = 2 (taking || - [[7 = - ||2)-

3 Main Result

Theorem 1 (Fast Rate Convergence). Suppose Assumption 1 and 2 hold. Then,
4
IT = 70lF < 3R7 (759, €) + 3{V+L(0, m0)[# = 70] = V7 L(70,7)[F — 70]} + §lIn — noll3"-
(26)
Proof of Thm. 1. By applying the Taylor’s expansion and rearranging, we have
sVIL(T, (7 —70)?] = L(7,7) — L(70,79) — V7L(70,7)[7 — 70],
where T is on the line segment between 7 and 7.
Using Assumption 2, we have
A K 4
Slr = moll3 < LG 4) = Lo, #) =V L(ro, DI = 0] + 5 ln = o137
Ry (#51,€)
Since V. L(19,10)[T — 70] > 0 by Assumption 1, we have
A 2 . A s a T
5 I =70l < Br(7:0, €) + {V-L(70,m0)[F — 7] = V- L(70,7)[7 = 70]} + S lIn = moll3 ™" -
(27)
O
The middle difference
{V+L(r0,n0) — V+L(70,0) }[F — 70] (28)

is the nuisance leakage of the first-order optimality condition. It is the main channel through
which nuisance error affects the target. Under Neyman orthogonality, the leakage is higher than
first order in ||f) — no|| (typically quadratic or a product of nuisance errors), so 7 inherits only a
higher-order remainder rather than linear bias. In particular, for the DR-learner it factors into
a product of nuisance errors (yielding double robustness), whereas for the R-learner it enables
fast rates once the nuisances are sufficiently accurate. We quantify these forms below for each
loss.



3.1 Nuisance Leakage: R-learner

Theorem 2 (Error Analysis: R-learner). Suppose Assumption 1 and 2 hold with
- ll7 = || - ll2- Let a £ ||7o]|% and A = 2¢(1 — ¢), where c is a constant satisfying
¢ < 7p(X) <1—c. Then, with probability 1 — e,

32a

. 4 R . 32 R
|7 — 70|13 < XRT(T;U, €) + THW — mol|3 + p”m — mo||3l1% — moll3- (29)

Proof of Thm. 2. Let h(X) = #(X) — 70(X). Let ,,(X) £ (m(X) — mo(X)) and
0r(X) & (m(X) — mo(X)).
Note, the first-order risk function is the following;:

VeLr[r,nl(hr) = =2B[{Y —m(X) — 7(X)(T — 7(X))} - {T — n(X)} - b (X)],  (30)

We note that V. Lg[r,m0](hr) = 0, as shown in the first-order optimality condition
analysis. To analyze the leakage, we rewrite a few terms here:

€y
T—m=T-m—0r. (32)

Then, we can rewrite the first-order risk as follows:
V. Lilro,nl(he) = ~2E[{ey — b + 7002} - (T = 70 — 35) - by (33)
= 2E[{7002 — Spbr }hr] (34)
< 2[E[rod7hr]| + 2|E[dmrhr]| (35)
< 2(10x (13 - 7olloo - 1hr ll2 + 201dm |4 - 118zl - [[-l2 (36)
=22+ ([17ollooll0l13 + [16m 14 - 1312 - (37)

Then, for any a > 0, Young’s inequality (with p = ¢ = 2) gives

V. L(19,m0)[7 — 70} — V+L(70,9)[T — T0] (38)

< 2[|hrll2 - (HToHooH(SwH?L + dmlla - H57r\|4) (39)
1 2

< a|h.3+ > (\|70HooH5wH?1 + [[0m[4 - H57r|’4) (40)
2 2

= allh|3 + EHTngonSwHZL + EH%H%H%HZ- (41)

Choose a = \/4. Let Ry = R7(#;7,¢). Then, by Thm. 1, we have

2 2 16a 16
2 2 2 2 2
el < SR + 5 7 Waeld + 102113 + 55 10m 13164113, (42)
1 9 2 160, . o 16, o
= Slelly < SRy + 5 162l + 35 10m316 3 (43)

which completes the proof.




3.2 Nuisance Leakage: DR-learner

|- ll7 =1 - |l2- Then, with probability 1 — e,

17 = 70l3 < 2R7 (754, €) + 8]lw — woll3llxo — w13

Theorem 3 (Error Analysis: DR-learner). Suppose Assumption 1 and 2 hold with

(44)

(X) £ (w(X) = wo(X)).

Note

Ve Lpr(7,n)[hr] = =2E[{e(V;n) — T}he] < 2[E[{o(Vin) — 7}hc].

Also,

[E[{e(V;n) — 10}h-]]|
= [E{w(TX){Y — w(TX)} + wo(TX)(TX) — wo(TX)po(TX) }hr (X)]|
= [E{w(TX){po(TX) = i(TX)} + wo(TX){u(TX) — puo(TX)} }hr (X)]|
= [E{w(TX) — wo(TX) Hpo(TX) — p(TX) phr(X)]|

< hrll2l[(w — wo) (1o — 1) 2

< ||Rrll2llw — wollallro — plf4-

Then, for any a > 0, Young’s inequality (with p = ¢ = 2) gives
2[E{e(Vin) —To}h Il

< a3 + = Hw wol|llHo — pll-

Choose a = \/4. Let Ry = R7(#;7,¢). Then, by Thm. 1, we have

2

-3 < RT+ 7 1hr ”2 )\zllw woll3ll1o — w3

A
Hh I3 < RT+ 2||w woll3ll1o — wll3,

which completes the proof.

Pm of of Thm. 3. Let h,(X) = #(X) — 19(X). Let 0,(X2Z) £ (W(XZ) — uo(XZ)) and

(45)

We note V., Lpr (70, m0)[hr] = 0, as shown in the first-order optimality condition analysis.

W
()

AN N N N N N
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N

S~ Nt N N N N

(54)

(55)

4 Universal Analysis with Orthogonality

In this section, we present a general result: fast rate convergence can be achieved whenever
the risk function satisfies certain smoothness conditions and, at the same time, its first-order
condition remains stable under small errors in nuisance estimation. To formalize this idea, we

introduce the following assumptions together with their rationales.

Assumption 3 (Orthogonality at the truth (Neyman orthogonality)).

Small

errors in the nuisance 1 do not change the first-order optimality condition in 7 (i.e.,




V.L(79,-)) at the true nuisance 7.

VyV.L(19,m0)[hr, hy] =0 for all directions h, € T, h, € H. (56)

Assumption 4 (Curvature Bound)). There exist constants by > 0 such that,
VIL(F, )T = 70,7 — 0] < billr — 7ol (57)

Rationale: (with Assumption 2), the curvature of the risk function a quadratic function
of 7 — 1.

Assumption 5 (Smoothness on Nuisance)). There exist constants bo > 0 and r €
[0, 1] defined in Assumption 2 such that,

V2V - L7, )T — 70,1 — 10,1 — 0] < ballT — 70l In — moll3, (58)

Rationale: The curvature of the first-order function of the risk is O(||n — nol|3,), allowing
mild deterioration when 7 # 9.

Under these conditions, we obtain the following universal fast rate result.

Theorem 4 (Fast Rate Convergence - Universal). Suppose Assumption 1 to 5 hold.
1

Let f1 = 2/ and fy = 3 <‘72ﬁ+’“)(”2<1;7”))1+r + g) Then, with probability 1 — e,

_4
1 = 7ollF < BLR7 (737, €) + Ballt — m0ll 3™ (59)

Proof of Thm. 4. By applying the Taylor’s expansion and rearranging, we have
%VEL(%v ﬁ) [hT’ hT] = L(ﬁ 77) - L(TO’ 77) - v7'11(7—0’ 72) [h‘f']v

where T is on the line segment between 7 and 7.

Using Assumption 2, we have

A . A . Koy T
el < L7, ) = Lo, 1) =V L(70, ) [hr] + 5 [l 137

R (570,€)

By applying Taylor’s expansion,

—V.L(1,7)[hs]| = =V L(70,m0)[hr] = Vi, V- L(70, 10) [r, By —%V%VTL(TO, M[hr, by, By].

<0, by Assumption 1 =0, by Assumption 3
(60)
Continuing,
~V-L(70,%)[hr] = =V L(70,m0)[hr] = V2V L(70,7) [P, By, i) (61)
< —%V%VTL(TO, 77) [hTa hn, hn] (62)
< %QHT — 7'0||%7T||77 — 770H3_[, by Assumption 5. (63)




Invoking Young’s inequality, for any constant a > 0,

1—
Blr = 1ol5"lIn = mollf, < Z2lr — ol5 7 + 5227 lln — moll3F-
Choose p = l—zr and ¢ = 7 +T Then, it becomes
r—1
_ b b al+r -
b 7 — oSy — moll3, < 22070 |7 — |3 4 T

Choose a = bQ(f‘_T). Then, the upper bound will be

r r) /b —r P
b2 |17 — o)A 1 — mm_4ww7+<Hkl%JﬂwmuH.
Combining, we have
(1+r) bo(1—r) \ Tt T
—V.L(r0, ) [hr] < 2lhr)|F + (U0 57 | |57

Then,

A . r) (ba(1—r v 47«
DB < Rrr:,€) + 4+ O (B I 57 4

which implies that

A . BYCEEIN P N
S el < Rrsie) + (G (0 157 5 ) 7

(65)

(68)

(69)
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