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This talk:  Combining marginal experiments to estimate joint treatment etfects
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effect? 
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Structural Causal Model: DGP

• : A set of observable variables. 


• : A set of latent variables. 


• : A set of functions  determining the value of ; i.e., 

 for some  and . 


• : A probability distribution for . 

V
U
F {fVi

}Vi∈V Vi ∈ V

Vi ← fvi
(PAVi

, UVi
) PAVi

⊆ V UVi
⊆ U

P(U) U

Structural Causal Model (SCM) ⟨V, U, F, P(U)⟩
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(Y ⊥⊥ Z |X, W)GXZ

No unmeasured confounders

There are no unmeasured confounders between  and  conditioning on . Y Z W
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do-Calculus in Identification 

1.   (Y ⊥⊥ Z |X, W)GX
⇒ P(Y |do(x), z, w) = P(Y |do(x), w)

Pearl’s do-Calculus: Graphical criterion for 
conditional independences of POs in Graphs  

2.   (Y ⊥⊥ X |X, W)GXZ
⇒ P(Y |do(x), do(z), w) = P(Y |do(x), z, w)

3.    (Y ⊥⊥ intv(Z) |X, W)GX
⇒ P(Y |do(x), do(z), w) = P(Y |do(x), w)
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Joint Treatment Effect Estimation : 
DR Estimand

𝔼[Y |do(x1, x2)] := Ψ(π0, μ0) = 𝔼 [π0Ix1
(X1)(Y − μ0) do(x2)] + 𝔼 [μ0(W, x1) do(x1))]

Doubly Robustness of DR representation
The DR representation above  is unbiased when  or  is misspecified; 

i.e., for arbitrary , 
Ψ(π0, μ0) π0 μ0

π, μ ∈ L2

Ψ(π0, μ0) = Ψ(π, μ0) = Ψ(π0, μ)
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3. Evaluate  using . Tb := 𝔼D2,b
[πaIx1

(X1){Y − μa(W, X1)}] + 𝔼D1,b
[μa(W, x1)] D1,b, D2,b

4. Repeat 2-3 by switching  and  and obtain  with . D1,a, D2,a D1,b, D2,b Ta (μb, πb)

5. . Tdml := (Ta + Tb)/2

DML estimator Tdml
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P(W |do(x1))
P(W, X1 |do(x2))

Classification-based Density Ratio Estimation
1. For each sample , 


1. set  if . 

2. Set  if 

(Wi, X1,i)
λi = 0 (Wi, X1,i) ∈ D1 ∼ P(V |do(x1))
λi = 1 (Wi, X1,i) ∈ D2 ∼ P(V |do(x2))

2. Augment . Then, 
(Wi, Xi, λi)

π0(W, X1) =
P(λ = 1)
P(λ = 0)

P(λ = 0 |W, X1)
P(λ = 1 |W, X1)
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2.  ; i.e.,  is bounded.∥πk(Y − μk) − π0(Y − μ0)∥P2
= OP(1) πk(Y − μk) − π0(Y − μ0)

Tdml − 𝔼[Y |do(x1, x2)] = (R1 + R2) + ∑
k∈{a,b}

OP2 (∥πk − π0∥P2
∥μk − μ0∥P2)

where  (for ) is a random variable s.t. , where 

 and .

Ri i ∈ {1,2} niRi
d→ Zi ∼ normal(0,σ2

i )
σ2

1 := 𝕍P1
[μ0(W, x1)] σ2

0 := 𝕍P2
[π0(Y − μ0)]
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Doubly Robustness & Debiasedness

1. Doubly Robustness (DR):  converges to  at -rate (where 
) if  or . 

Tdml 𝔼[Y |do(x1, x2)] n−1/2

n := min(n1, n2) π = π0 μ = μ0

2. Debiasedness (DB):  converges to  at -rate if  converges to 
 at least at  rate.  

Tdml 𝔼[Y |do(x1, x2)] n−1/2 π, μ
π0, μ0 n−1/4
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Tdml − 𝔼[Y |do(x1, x2)] = (R1 + R2) + ∑

k∈{a,b}

OP2 (∥πk − π0∥P2
∥μk − μ0∥P2)

CAN and Efficiency

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions,  
achieves consistency and asymptotic normality (CAN). 

Tdml

2. Statistical Efficiency: Under the {DR,DB} conditions,  achieves the nonparametric 
efficiency bound (i.e., achieves the minimum variance). 

Tdml
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Simulations: Synthetic Dataset

X1

Z

X2

Y

C1 C2 Query: 𝔼[Y |do(x1, x2)]

Input: 

1. 

2.

D1
iid∼ P(C1, C2, X2, Z, Y |do(x1))

D2
iid∼ P(C1, C2, X1, Z, Y |do(x2))
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Simulation Scenario 
𝔼[Y |do(x1, x2)] = 𝔼[π0Ix1

(X1)(Y − μ0) |do(x2)] + 𝔼[μ0(W, x1) |do(x1))]

Scenario 1. Regular learning environment.  

Scenario 2. Adding the “convergence noise”  to the estimated nuisance 
, where ; i.e.,  and . This forces  converges at 

 rate to highlight the fast convergence of the estimator . 

ϵ ∼ normal(an, b2
n)

π, μ an, bn = OP(n−1/4) π ← π + ϵ μ ← μ + ϵ π, μ
n−1/4 Tdml

Scenario 3.  is wrongly estimated .π

Scenario 4.  is wrongly estimated .μ
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of "small," "medium," and "large" through randomization. The outcome measure 
was the testing score.

2. The study was longitudinal, with students randomized from Pre-K to the 3rd grade.

3. We only focus on the student/teacher ratio for the pre-K students ( ) and the third-
grade students ( ) as well as their testing scores at the third grade ( ). 

X1
X2 Y

4. We created confounders to to ensure that the data aligns with our graphical settings.
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Data Generating Process for STAR

X1

Z

X2

Y

C

• : The student/teacher ratio for the pre-K 
students.


• : The student/teacher ratio for the 3rd grade 
students.


• :  The testing score of the third grade students.


• : Baseline covariates (socioeconomic factors, 
teacher’s education, etc.)


• : The testing score of the pre-K students. 

X1

X2

Y

C

Z
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Outline of this talk 

1. Preliminary and Problem Setup

(1) Structural Causal Model


2. Treatment-Treatment Interaction

(1) Identification  

(2) Estimand 

(3) Estimation and Error Analysis

(4) Simulation Results 


3. Multiple-Treatment Interaction (+ Omitted Results) 
4. Future directions 
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X1

W

X2

Y

Graph G

Query 𝚀
𝔼[Y |do(x1, ⋯, xm)]

ID: MTI
Applies do-calculus to 
represent  w.r.t. 𝚀 {P}

ID expression
 or FAILf({P}) = 𝚀

Dist. {P}
  

for 
{P(V |do(xi)}

i = 1,⋯, m

In this talk, m = 3
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Identification Condition for Multiple Treatment Interaction 

There is a set of variables  s.t. 

1.  is a pretreatment variable of the treatments ;  is a pretreatment 

variable of the second treatment . 

W1, W2
W1 {X2, X3} W2

X3

2. There are no unmeasured confounders between  given  in the post-
treatment distribution . 


(Y, X1) W1
X2 = x2, X3 = x3

3. There are no unmeasured confounders between  given  in the 
post-treatment distribution . 

(Y, X2) W2, X1, W1
X3 = x3
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There is a set of variables  s.t. 

1.  is a pretreatment variable of the treatments ;  is a pretreatment 

variable of the second treatment . 

2. ; 

W1, W2
W1 {X2, X3} W2

X3
(Y ⊥⊥ X1 |W1)GX1X2, X3

(Y ⊥⊥ X2 |W2, W1, X1)GX2X3

Equivalent Condition for Multiple Treatment Interaction 
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Examples

W1 = {Z1, C1}, W2 = {Z2, C2}

There is a set of variables  s.t. 

1.  is a pretreatment variable of the treatments ;  is a pretreatment 

variable of the second treatment . 
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Joint Treatment Effect Estimation : 
DR Estimand

𝔼[Y |do(x)] = 𝔼[π2
0π1

0Ix1
(X1)Ix2

(X2)(Y − μ2
0(W, X)) |do(x3)]

DR Representation

+𝔼[π1
0Ix1

(X1)(μ2
0(W, X1, x2) − μ1

0(W1, X1)) |do(x2)]

+𝔼[μ1
0(W1, x1) |do(x1))]
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DR Estimand

𝔼[Y |do(x)] = 𝔼[π2
0π1

0Ix1
(X1)Ix2

(X2)(Y − μ2
0(W, X)) |do(x3)]

DR Representation

+𝔼[π1
0Ix1
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0(W, X1, x2) − μ1
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+𝔼[μ1
0(W1, x1) |do(x1))]


X := (X1, X2)
W := (W1, W2)
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k (Y − μ2

k ) − π1
0π2

0(Y − μ2
0)∥P3

= OP3
(1) π1

k π2
k (Y − μ2

k ) − π1
0π2

0(Y − μ2
0)

3.  ; i.e.,  is bounded.∥π1
k (μ2

k − μ1
k ) − π1

0(μ2
k − μ1

0)∥P2
= OP2

(1) π1
k (μ2

k − μ1
k ) − π1

0(μ2
k − μ1

0)
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+ ∑
k∈{a,b}

OP2 (∥π1
k − π1

0∥P2
∥μ1

k − μ1
0∥P2)

Tdml − 𝔼[Y |do(x)] = (R1 + R2 + R3)

+ ∑
k∈{a,b}

OP3 (∥π2
k − π2

0∥P3
∥μ2

k − μ2
0∥P3)
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+ ∑
k∈{a,b}

OP2 (∥π1
k − π1

0∥P2
∥μ1

k − μ1
0∥P2)

where  (for ) is a random variable s.t. , where 

, , and .

Ri i ∈ {1,2,3} niRi
d→ Zi ∼ normal(0,σ2

i )
σ2

1 := 𝕍P1
[μ2

0] σ2
2 := 𝕍P2

[π1
0(μ2 − μ1

0)] σ2
3 := 𝕍P2

[π1
0π2

0(Y − μ2
0)]

Tdml − 𝔼[Y |do(x)] = (R1 + R2 + R3)

+ ∑
k∈{a,b}

OP3 (∥π2
k − π2

0∥P3
∥μ2

k − μ2
0∥P3)
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Doubly Robustness & Debiasedness

1. Doubly Robustness (DR):  converges to  at -rate (where 
) if  or , and  or .

Tdml 𝔼[Y |do(x)] n−1/2

n := min(n1, n2, n3) π1
k = π1

0 μ1
k = μ1

0 π2
k = π2

0 μ2
k = μ2
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+ ∑
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Doubly Robustness & Debiasedness

1. Doubly Robustness (DR):  converges to  at -rate (where 
) if  or , and  or .

Tdml 𝔼[Y |do(x)] n−1/2

n := min(n1, n2, n3) π1
k = π1

0 μ1
k = μ1

0 π2
k = π2

0 μ2
k = μ2

0

2. Debiasedness (DB):  converges to  at -rate if  
converges at least at  rate.  

Tdml 𝔼[Y |do(x1, x2)] n−1/2 π2, π1, μ2, μ1

n−1/4

+ ∑
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OP2 (∥π1
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Efficiency of DML estimator 

CAN and Efficiency

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions,  
achieves consistency and asymptotic normality (CAN). 

Tdml

2. Statistical Efficiency: Under the {DR,DB} conditions,  achieves the nonparametric 
efficiency bound (i.e., achieves the minimum variance). 

Tdml

+ ∑
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Omitted Results

*  can be any set of variables including the empty set. 

* Generalization of the case of  and  . 

Zi
p = m Z1 = X1, ⋯, Zp = Xm

Question: When input distributions are arbitrary interventional/observational 
distributions?

ℙ := {P(V |do(z1), ⋯, P(V |do(zp)}

𝚀 := 𝔼[Y |do(x1, ⋯, xm)]
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Outline of this talk 

1. Preliminary and Problem Setup

(1) Structural Causal Model


2. Treatment-Treatment Interaction

(1) Identification  

(2) Estimand 

(3) Estimation and Error Analysis

(4) Simulation Results 


3. Multiple-Treatment Interaction (+ Omitted Results)

4. Future directions & Summary 
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X

Z Y

W ℙ := {P(V |do(z), P(V)}

𝚀 := 𝔼[Y |do(x)]

𝚒𝚍 := ∑
z∈𝒵

𝔼[Y |do(z)] ∑
w∈𝒲
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Future Research Direction 1
Scenario: When identification expression is not a covariate adjustment…

X

Z Y

W ℙ := {P(V |do(z), P(V)}

𝚀 := 𝔼[Y |do(x)]

𝚒𝚍 := ∑
z∈𝒵

𝔼[Y |do(z)] ∑
w∈𝒲

P(z |x, w)P(w)

Estimating Causal Effects Identifiable from a Combination of Observations and Experiments, NeurIPS-23
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Future Research Direction 2

Scenario: When input (source) distributions are different from the target 
distribution?
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Future Research Direction 2

Scenario: When input (source) distributions are different from the target 
distribution?

ℙ := {P(V |do(z1), S = 1), ⋯, P(V |do(zp), S = p)}

𝚀 := 𝔼[Y |do(x1, ⋯, xm), S = 0]
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2. Double/debiased ML-based estimator, which exhibits fast convergence, doubly 
robustness, and efficiency. 

Answer: In general, not identifiable… 

1. Sufficient graphical criterion for identifying joint treatment effect  
from marginal distributions . 

𝔼[Y |do(x1, ⋯, xm)]
ℙ := {P(V |do(x1)), ⋯, P(V |do(xm)}

Question: Can we estimate the joint treatment effect from marginal experiments? 
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