Estimating Joint Treatment Effect from Marginal Experiments

based on: Estimating Joint Treatment Effects by Combining Multiple Experiments, ICML-23

Yonghan Jung

Dept. of Computer Science, Purdue University

yonghanjung.me

2023 Fall QM Seminar

Experiment on X_1

Experiment on X_2

Experiment on X_1 and X_2

Experiment on X_1 and X_2

Experiment on X_1, X_2, X_3

Experiment on X_1, X_2, X_3

1. marginal treatments, which involve intervening with a single treatment.

Practical challenges

Many randomized controlled trials are conducted to evaluate the effectiveness of

- Many randomized controlled trials are conducted to evaluate the effectiveness of marginal treatments, which involve intervening with a single treatment.
- 2. Trials for estimating the joint treatment effect can be costly, especially when multiple treatments are involved, as this requires a large number of participants.

- Many randomized controlled trials are conducted to evaluate the effectiveness of marginal treatments, which involve intervening with a single treatment.
- 2. Trials for estimating the joint treatment effect can be costly, especially when multiple treatments are involved, as this requires a large number of participants.
- 3. What about leveraging existing marginal experiments to estimate the joint treatment effect?

- 1. Many randomized controlled trials are conducted to evaluate the effectiveness of marginal treatments, which involve intervening with a single treatment.
- 2. Trials for estimating the joint treatment effect can be costly, especially when multiple treatments are involved, as this requires a large number of participants.
- 3. What about leveraging existing marginal experiments to estimate the joint treatment effect?

This talk: Combining marginal experiments to estimate joint treatment effects

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

Outline of this talk

- **1. Preliminary and Problem Setup** (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

Structural Causal Model: DGP

Structural Causal Model (SCM) $\langle V, U, F, P(U) \rangle$

Structural Causal Model: DGP

Structural Causal Model (SCM) $\langle V, U, F, P(U) \rangle$

- V: A set of observable variables.
- U: A set of latent variables.
- **F**: A set of functions $\{f_{V_i}\}_{V_i \in \mathbf{V}}$ determining the value of $V_i \in \mathbf{V}$; i.e.,
 - $V_i \leftarrow f_{v_i}(PA_{V_i}, U_{V_i})$ for some $PA_{V_i} \subseteq \mathbf{V}$ and $U_{V_i} \subseteq \mathbf{U}$.
- $P(\mathbf{U})$: A probability distribution for \mathbf{U} .

hining the value of $V_i \in \mathbf{V}$; i.e., **V** and $U_{V_i} \subseteq \mathbf{U}$.

Causal Graphical Model

Causal Graphical Model

 $U_Z, U_X, U_Y \sim \operatorname{normal}(0,1)$ $Z \leftarrow f_{Z}(U_{Z})$ $X \leftarrow f_X(Z, U_X)$ $Y \leftarrow f_Y(X, Z, U_Y)$

Causal Graphical Model

 $U_Z, U_X, U_Y \sim \operatorname{normal}(0,1)$ $Z \leftarrow f_{Z}(U_{Z})$ $X \leftarrow f_X(Z, U_X)$ $Y \leftarrow f_Y(X, Z, U_Y)$

Causal Graphical Model: Intervention

Causal Graphical Model: Intervention

 $U_{Z}, U_{X}, U_{Y} \sim \text{normal}(0,1)$ $Z \leftarrow f_{z}(U_{z})$

 $X \leftarrow \mathbf{x} (= \operatorname{do}(\mathbf{x}))$ $Y \leftarrow f_Y(\mathbf{x}, Z, U_Y)$

Causal Graphical Model: Intervention

 $U_{Z}, U_{X}, U_{Y} \sim \text{normal}(0,1)$ $Z \leftarrow f_{z}(U_{z})$

 $X \leftarrow \mathbf{x} (= \operatorname{do}(\mathbf{x}))$ $Y \leftarrow f_Y(\mathbf{x}, Z, U_Y)$

 $U_{Z}, U_{X}, U_{Y} \sim \text{normal}(0,1)$ $Z \leftarrow f_{Z}(U_{Z})$ $X \leftarrow f_X(Z, U_X)$ $Y \leftarrow f_Y(X, Z, U_Y)$

 $U_{Z}, U_{X}, U_{Y} \sim \text{normal}(0,1)$ $Z \leftarrow f_{Z}(U_{Z})$ $X \leftarrow f_X(Z, U_X)$ $Y(\mathbf{x}) \leftarrow f_Y(\mathbf{x}, Z, U_Y)$

Potential outcome Y(x)Y if X had been fixed to x in the DGP

 $U_{Z}, U_{X}, U_{Y} \sim \text{normal}(0,1)$ $Z \leftarrow f_{Z}(U_{Z})$ $X \leftarrow f_X(Z, U_X)$ $Y(\mathbf{x}) \leftarrow f_Y(\mathbf{x}, Z, U_Y)$

do-Calculus: Rule 1 conditional independence

Conditional Independence after Intervention

do-Calculus: Rule 1 conditional independence

Conditional Independence after Intervention

$$(Y \perp Z \mid X, W)_{G_{\overline{X}}}$$

Z doesn't have an information regarding Y given W after intervening on X.

do-Calculus: Rule 1 conditional independence

Conditional Independence after Intervention

$$(Y \perp Z \mid X, W)_{G_{\overline{X}}} \Rightarrow P(Y \mid do(x), z, w) = P(Y \mid do(x), w)$$

Z doesn't have an information regarding Y given W after intervening on X.

do-Calculus: Rule 2 No unmeasured confounders

No unmeasured confounders

do-Calculus: Rule 2 No unmeasured confounders

No unmeasured confounders

 $(Y \perp Z \mid X, W)_{G_{\overline{XZ}}}$

There are no unmeasured confounders between Y and Z conditioning on W.

do-Calculus: Rule 2 No unmeasured confounders

No unmeasured confounders

$$(Y \perp Z \mid X, W)_{G_{\overline{X}Z}} \quad \Rightarrow \quad P(Y \mid do(x), do(z), w) = P(Y \mid do(x), z, w)$$

There are no unmeasured confounders between Y and Z conditioning on W.

do-Calculus: Rule 3 Intervention independence

Intervention independence

do-Calculus: Rule 3 Intervention independence

Intervention independence

After intervening on X, intervening on Z has no information regarding Y given W

do-Calculus: Rule 3 Intervention independence

Intervention independence

- $(Y \perp \operatorname{do}(z) | X, W)_{G_{\overline{v}}} \quad \Rightarrow \quad P(Y | \operatorname{do}(x), \operatorname{do}(z), w) = P(Y | \operatorname{do}(x), w)$
- After intervening on X, intervening on Z has no information regarding Y given W

do-Calculus in Identification

Pearl's do-Calculus: Graphical criterion for conditional independences of POs in Graphs

1. $(Y \perp Z \mid X, W)_{G_{\overline{v}}} \Rightarrow P(Y \mid do(x), z, Y)$

2. $(Y \perp X \mid X, W)_{G_{\overline{X}Z}} \Rightarrow P(Y \mid do(x), do(z), w) = P(Y \mid do(x), z, w)$

3. $(Y \perp \operatorname{intv}(Z) | X, W)_{G_{\overline{X}}} \Rightarrow P(Y | do(x), do(z), w) = P(Y | do(x), w)$

$$w) = P(Y| do(x), w)$$

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

Identification Condition for Treatment-Treatment Interaction

Identification Condition for Treatment-Treatment Interaction

There is a set of variables W s.t.

- 1. W is a pretreatment variable of the second treatment X_2 .
- post-treatment distribution $X_2 = x_2$

2. There are no unmeasured confounders between X_1 and Y (other than W) in the

Identification Condition for Treatment-Treatment Interaction

There is a set of variables W s.t.

- 1. W is a pretreatment variable of the second treatment X_2 .
- post-treatment distribution $X_2 = x_2$

Equivalently,

- **1.** $(W \coprod X_2 | X_1)_{G_{\overline{X_1}, X_2}}$
- 2. $(Y \coprod X_1 | X_2, W)_{G_{X_1} \overline{X_2}}$

2. There are no unmeasured confounders between X_1 and Y (other than W) in the

- 1. W is a pretreatment variable of the second treatment X_2 .
- 2. There are no unmeasured confounders between X_1 and Y other than W in the post-treatment distribution $X_2 = x_2$

- 1. W is a pretreatment variable of the second treatment X_2 .
- 2. There are no unmeasured confounders between X_1 and Y other than W in the post-treatment distribution $X_2 = x_2$

- 1. W is a pretreatment variable of the second treatment X_2 .
- 2. There are no unmeasured confounders between X_1 and Y other than W in the post-treatment distribution $X_2 = x_2$

- 1. W is a pretreatment variable of the second treatment X_2 .
- 2. There are no unmeasured confounders between X_1 and Y other than W in the post-treatment distribution $X_2 = x_2$

Identification Condition for Treatment-Treatment Interaction

There is a set of variables W s.t.

- 1. W is a pretreatment variable of the second treatment X_2 .
- distribution $X_2 = x_2$

2. There are no unmeasured confounders between X_1 and Y in the post-treatment

Identification Condition for Treatment-Treatment Interaction

There is a set of variables W s.t.

- 1. W is a pretreatment variable of the second treatment X_2 . 2. There are no unmeasured confounders between X_1 and Y in the post-treatment
- distribution $X_2 = x_2$

Then, $\mathbb{E}[Y | do(x_1, x_2)]$ is identifiable from two experimental distributions $P(V | do(x_1))$ and $P(V | do(x_2))$ as follows:

- $\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w \in \mathcal{W}} \mathbb{E}[Y|do(x_2), w, x_1]P(w|do(x_1)).$

Identification Condition for Treatment-Treatment Interaction

There is a set of variables W s.t.

- 1. W is a pretreatment variable of the second treatment X_2 . 2. There are no unmeasured confounders between X_1 and Y in the post-treatment
- distribution $X_2 = x_2$

Then, $\mathbb{E}[Y | do(x_1, x_2)]$ is identifiable from two experimental distributions $P(V | do(x_1))$ and $P(V | do(x_2))$ as follows:

estimable from $P(V | do(x_2))$ $\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w \in \mathcal{W}} \mathbb{E}[Y|do(x_2), w, x_1] P(w|do(x_1)).$

Identification Condition for Treatment-Treatment Interaction

There is a set of variables W s.t.

- 1. W is a pretreatment variable of the second treatment X_2 . 2. There are no unmeasured confounders between X_1 and Y in the post-treatment
- distribution $X_2 = x_2$

Then, $\mathbb{E}[Y | do(x_1, x_2)]$ is identifiable from two experimental distributions $P(V | do(x_1))$ and $P(V | do(x_2))$ as follows:

estimable from $P(V | do(x_1))$ $\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w \in \mathcal{W}} \mathbb{E}[Y|do(x_2), w, x_1] \frac{P(w|do(x_1))}{P(w|do(x_1))}.$

Identification Condition for Treatment-Treatment Interaction

1. $(W \perp X_2 | X_1)_{G_{\overline{X_1}, X_2}}$ 2. $(Y \perp X_1 | X_2, W)_{G_{X_1\overline{X_2}}}$

Identification Condition for Treatment-Treatment Interaction

1. $(W \perp X_2 | X_1)_{G_{\overline{X_1}, X_2}}$ 2. $(Y \perp X_1 | X_2, W)_{G_{X_1}\overline{X_2}}$

 $P(y | do(x_1, x_2)) = \sum_{w} P(y | do(x_1, x_2), w) P(w | do(x_1, x_2))$

Identification Condition for Treatment-Treatment Interaction

1. $(W \perp X_2 | X_1)_{G_{\overline{X_1}, X_2}}$ 2. $(Y \perp X_1 | X_2, W)_{G_{X_1\overline{X_2}}}$

 $P(y | do(x_1, x_2)) = \sum_{w} P(y | do(x_1, x_2), w) P(w | do(x_1, x_2))$ = $\sum_{w} P(y | do(x_1, x_2), w) P(w | do(x_1))$ do-calc. 3 (ID condition 1)

Identification Condition for Treatment-Treatment Interaction

- 1. $(W \perp X_2 | X_1)_{G_{\overline{X_1, X_2}}}$ 2. $(Y \perp X_1 | X_2, W)_{G_{X_1\overline{X_2}}}$
- $P(y | do(x_1, x_2)) = \sum_{w} P(y | do(x_1, x_2), w) P(w | do(x_1, x_2))$
 - $= \sum_{w} P(y | do(x_1, x_2), w) P(w | do(x_1))$

 $= \sum_{w} P(y | do(x_2), x_1, w) P(w | do(x_1))$

 $W P(w | do(x_1))$ do-calc. 3 (ID condition 1)

do-calc. 2 (ID condition 2)

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

Joint Treatment Effect Estimation : Regression

ID Expression of the Joint Treatment Effect:

$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_2), x_1, w] P(w|do(x_1))$

Joint Treatment Effect Estimation : Regression

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1,$$

Regression-based Representation

 $[Y| do(x_2), x_1, w] P(w| do(x_1))$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_2), x_1, w] P(w|do(x_1))$$

Regression-based Representation

 $\mu_0(W, X_1) := \mathbb{E}[Y | do(x_2), x_1, W]$

 $\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)]$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_2), x_1, w] P(w|do(x_1))$$

Regression-based Representation

- $\mu_0(W, X_1) :=$
- $\mathbb{E}[Y|do(x_1, x_2)] = [$

$$\mathbb{E}[Y|do(x_2), x_1, W]$$

$$\mathbb{E}[\frac{\mu_0(W, x_1)}{do(x_1)}]$$

Estimable from $D_2 \sim P(\mathbf{V} \mid do(x_2))$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_2), x_1, w] P(w|do(x_1))$$

Regression-based Representation

- $\mu_0(W, X_1) :=$
- $\mathbb{E}[Y|do(x_1, x_2)] =$

$$\mathbb{E}[Y|do(x_2), x_1, W]$$

$$\mathbb{E}[\mu_0(W, x_1) \,|\, do(x_1)]$$

Estimable from $D_1 \sim P(\mathbf{V} \mid do(x_1))$

 $\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)]$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)]$

$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_2), x_1, w] P(w|do(x_1))$

$\mathbb{E}[Y|do(x_1, x_2)] =$

$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y]$ $= \sum_{w} \mu_0(w)$

$$\mathbb{E}[\mu_0(W, x_1) \mid do(x_1)]$$

$$[do(x_2), x_1, w]P(w | do(x_1))$$

 $= \sum_{w} \mu_0(w, x_1) P(w | do(x_1))$

$\mathbb{E}[Y|do(x_1, x_2)] =$

$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y]$ $= \mathbb{E}[\mu_0(W, x_1) | do(x_1)]$

$$\mathbb{E}[\mu_0(W, x_1) \mid do(x_1)]$$

$$[do(x_2), x_1, w]P(w | do(x_1))$$

 $= \sum_{w} \mu_0(w, x_1) P(w | do(x_1))$

ID Expression of the Joint Treatment Effect:

$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_2), x_1, w]P(w|do(x_1))$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1,$$

Probability Weighting-based Representation

 $\pi_0(W, X_1) := \frac{P(W | do(x_1))}{P(W, X_1 | do(x_2))}$

 $[Y| do(x_2), x_1, w] P(w| do(x_1))$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1,$$

Probability Weighting-based Representation

$$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}$$

 $[Y| do(x_2), x_1, w] P(w| do(x_1))$

 $\pi_0(W, X_1) := \frac{P(W | do(x_1))}{P(W, X_1 | do(x_2))}$

 $\mathbb{E}[\pi_0(W, X_1)I_{x_1}(X_1)Y|do(x_2)]$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1,$$

Probability Weighting-based Representation

 $\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0(W, X_1)I_{x_1}(X_1)Y|do(x_2)]$ Estimable from $D_1 \sim P(\mathbf{V} | do(x_1))$

 $[Y| do(x_2), x_1, w] P(w| do(x_1))$

$$P(W| do(x_1))$$

 $\pi_0(W, X_1) := \frac{1}{P(W, X_1 \mid do(x_2))}$

ID Expression of the Joint Treatment Effect:

$$\mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1, x_2)] = \sum_{w} \mathbb{E}[Y|do(x_1,$$

Probability Weighting-based Representation

$$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}$$

 $= [\pi_0(W, X_1) I_{x_1}(X_1) Y | do(x_2)]$ Estimable from $D_2 \sim P(\mathbf{V} | do(x_2))$

 $[Y| do(x_2), x_1, w] P(w| do(x_1))$

 $\pi_0(W, X_1) := \frac{P(W | do(x_1))}{P(W, X_1 | do(x_2))}$

 $\mathbb{E}[Y|do(x_1, x_2)]$

$\mathbb{E}[Y|do(x_1, x_2)]$

$= \sum_{w} \mathbb{E}[Y| do(x_2), x_1, w] P(w| do(x_1))$

$\mathbb{E}[Y|do(x_1, x_2)]$

 $= \sum_{w} \mathbb{E}[Y|do(x_{2}), x_{1}, w]P(w|do(x_{1}))$ $= \sum_{w, y} yP(y|do(x_{2}), x_{1}, w)P(w|do(x_{1}))$

 $\mathbb{E}[Y|do(x_1, x_2)]$

 $= \sum_{w} \mathbb{E}[Y| do(x_2), x_1, w] P(w| do(x_1))$ $= \sum_{w,v} yP(y | do(x_2), x_1, w)P(w | do(x_1))$ $= \sum_{w,y} y \frac{P(y, x_1, w \mid do(x_2))}{P(x_1, w \mid do(x_2))} P(w \mid do(x_1))$

 $\mathbb{E}[Y|do(x_1, x_2)]$

 $= \sum_{w} \mathbb{E}[Y | do(x_{2}), x_{1}, w] P(w | do(x_{1}))$ $= \sum_{w, y} y P(y | do(x_{2}), x_{1}, w) P(w | do(x_{1}))$ $= \sum_{w, y} y \frac{P(y, x_{1}, w | do(x_{2}))}{P(x_{1}, w | do(x_{2}))} P(w | do(x_{1}))$ $\sum_{w, y} P(w | do(x_{1}))$

 $= \sum_{w,y,x_1'} \frac{P(w \mid do(x_1))}{P(x_1', w \mid do(x_2))} I_{x_1}(x_1') y P(y, x_1', w \mid do(x_2))$

 $=\pi_0(w, x_1')$

 $\mathbb{E}[Y|do(x_1, x_2)]$

 $= \sum_{w} \mathbb{E}[Y| do(x_{2}), x_{1}, w] P(w| do(x_{1}))$ $= \sum_{w,v} yP(y | do(x_2), x_1, w)P(w | do(x_1))$ $= \sum_{w,y} y \frac{P(y, x_1, w \mid do(x_2))}{P(x_1, w \mid do(x_2))} P(w \mid do(x_1))$

 $= \sum_{w,y,x_1'} \frac{P(w \mid do(x_1))}{P(x_1',w \mid do(x_2))} I_{x_1}(x_1') y P(y,x_1',w \mid do(x_2)) = \mathbb{E}[\pi_0(W,X_1) I_{x_1}(X_1) Y \mid do(x_2)]$

 $=\pi_0(w, x_1')$

 $\mathbb{E}[Y|do(x_1, x_2)] = \left\{ \begin{array}{l} \mathbb{E}[\mu_0(W, x_1) | do(x_1)] \\ \mathbb{E}[\pi_0(W, X_1) I_{x_1}(X_1) Y | do(x_2)] \end{array} \right.$

$$\mathbb{E}[Y|do(x_1, x_2)] = \left\langle \begin{array}{c} \mathbb{E}[\mu_0 \\ \mathbb{E}[X|do(x_1, x_2)] \\ \mathbb{E}[\pi_0 \\$$

 $\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)]$

 $(W, x_1) [do(x_1)]$

$_{O}(W, X_{1})I_{x_{1}}(X_{1})Y|do(x_{2})]$

$$\mathbb{E}[Y|do(x_1, x_2)] = \left\langle \begin{array}{c} \mathbb{E}[\mu_0 \\ \mathbb{E}[T] \\ \mathbb{E}[\pi_0] \end{array} \right\rangle$$

 $\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)] \qquad \text{REG}, = \mathbb{E}[Y|do(x_1, x_2)]$

 $(W, x_1) | do(x_1)]$

$E_0(W, X_1)I_{x_1}(X_1)Y|do(x_2)]$

$$\mathbb{E}[Y|do(x_1, x_2)] = \left\langle \begin{array}{c} \mathbb{E}[\mu_0 \\ \mathbb{E}[T] \\ \mathbb{E}[\pi_0] \end{array} \right\rangle$$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)]$

- $(W, x_1) [do(x_1)]$
- $_{0}(W, X_{1})I_{x_{1}}(X_{1})Y|do(x_{2})]$
- $+\mathbb{E}[\pi_0(W, X_1)I_{x_1}(X_1)Y|do(x_2)] \qquad \text{IPW, } = \mathbb{E}[Y|do(x_1, x_2)]$

$$\mathbb{E}[Y|do(x_1, x_2)] = \left\langle \begin{array}{c} \mathbb{E}[\mu_0 \\ \mathbb{E}[T_0] \\ \mathbb{E}[\pi_0] \end{array} \right\rangle$$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\mu_0(W, x_1)|do(x_1)]$

+ $\mathbb{E}[\pi_0(W, X_1)I_{x_1}(X_1)Y|do(x_2)]$

 $-\mathbb{E}[\pi_0(W, X_1)I_{x_1}(X_1)\mu_0(W, X_1) | do(x_2)]$

- $(W, x_1) [do(x_1)]$
- $(W, X_1)I_{x_1}(X_1)Y|do(x_2)]$

Bias correcting term $= \mathbb{E}[Y| do(x_1, x_2)]$

$$\mathbb{E}[Y|do(x_1, x_2)] = \left\langle \begin{array}{c} \mathbb{E}[\mu_0 \\ \mathbb{E}[T] \\ \mathbb{E}[\pi_0] \end{array} \right\rangle$$

DR Representation

$$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}\left[\pi_0 I_{x_1}(X_1)(Y - \mu_0) \left| do(x_2) \right| + \mathbb{E}\left[\mu_0(W, x_1) \left| do(x_1) \right| \right]\right]$$

$(W, x_1) | do(x_1)]$

$(W, X_1)I_{x_1}(X_1)Y|do(x_2)]$

$\mathbb{E}[Y|do(x_1, x_2)] := \Psi(\pi_0, \mu_0) = \mathbb{E} \left| \pi_0 I_{x_1}(X_1)(Y - \mu_0) \left| do(x_2) \right| + \mathbb{E} \left| \mu_0(W, x_1) \left| do(x_1) \right| \right|$

$\mathbb{E}[Y|do(x_1, x_2)] := \Psi(\pi_0, \mu_0) = \mathbb{E} \left[\pi_0 I_{x_1}(X_0, \mu_0) - \mathbb{E} \right]$

Doubly Robustness of DR representation

$$X_1(Y - \mu_0) \left| do(x_2) \right| + \mathbb{E} \left| \mu_0(W, x_1) \right| do(x_1) \right|$$

$$\mathbb{E}[Y|do(x_1, x_2)] := \Psi(\pi_0, \mu_0) = \mathbb{E}\left[\pi_0 I_{x_1}(X_1)(Y - \mu_0) \left| do(x_2) \right| + \mathbb{E}\left[\mu_0(W, x_1) \left| do(x_1) \right| \right]\right]$$

Doubly Robustness of DR representation

The DR representation above $\Psi(\pi_0, \mu_0)$ is unbiased when π_0 or μ_0 is misspecified; i.e., for arbitrary $\pi, \mu \in L_2$,

 $\Psi(\pi_0,\mu_0)=\Psi(\pi,\mu_0)=\Psi(\pi_0,\mu)$

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

DML estimator T^{dml}

1. Randomly split the sample $D_1 := D_{1,a} \cup D_{1,b}$ and $D_2 := D_{2,a} \cup D_{2,b}$.

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

- 1. Randomly split the sample $D_1 := D_{1,a} \cup D_{1,b}$ and $D_2 := D_{2,a} \cup D_{2,b}$.
- 2. Estimate (μ^{a}, π^{a}) for $\mu_{0}(W, X_{1}) := \mathbb{E}[Y | do(x_{2}), X_{1}, W]$ and $\pi_0(W, X_1) := P(W | do(x_1)) / P(W, X_1 | do(x_2))$ using D_{1a}, D_{2a} .

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

- 1. Randomly split the sample $D_1 := D_{1,a} \cup D_{1,a}$
- 2. Estimate (μ^{a}, π^{a}) for $\mu_{0}(W, X_{1}) := \mathbb{E}[Y | do(x_{2}), X_{1}, W]$ and $\pi_0(W, X_1) := P(W | do(x_1)) / P(W, X_1 | do(x_2))$ using $D_{1,a}, D_{2,a}$.
- 3. Evaluate $T^b := \mathbb{E}_{D_{2,b}}[\pi^a I_{x_1}(X_1) \{Y \mu^a(W, X_1)\}] + \mathbb{E}_{D_{1,b}}[\mu^a(W, x_1)]$ using $D_{1,b}, D_{2,b}$.

$$D_{1,b}$$
 and $D_2 := D_{2,a} \cup D_{2,b}$.

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

- 1. Randomly split the sample $D_1 := D_{1,a} \cup D_{1,a}$
- 2. Estimate (μ^a, π^a) for $\mu_0(W, X_1) := \mathbb{E}[Y | do(x_2), X_1, W]$ and $\pi_0(W, X_1) := P(W | do(x_1)) / P(W, X_1 | do(x_2))$ using $D_{1,a}, D_{2,a}$.
- 3. Evaluate $T^b := \mathbb{E}_{D_{2,b}}[\pi^a I_{x_1}(X_1) \{Y \mu^a(W, X_1)\}] + \mathbb{E}_{D_{1,b}}[\mu^a(W, x_1)]$ using $D_{1,b}, D_{2,b}$.
- 4. Repeat 2-3 by switching $D_{1,a}$, $D_{2,a}$ and $D_{1,b}$, $D_{2,b}$ and obtain T^a with (μ^b, π^b) .

$$D_{1,b}$$
 and $D_2 := D_{2,a} \cup D_{2,b}$.

DML Estimator

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

DML estimator T^{dml}

- 1. Randomly split the sample $D_1 := D_{1,a} \cup D_{1,a}$
- 2. Estimate (μ^a, π^a) for $\mu_0(W, X_1) := \mathbb{E}[Y | do(x_2), X_1, W]$ and $\pi_0(W, X_1) := P(W | do(x_1)) / P(W, X_1 | do(x_2))$ using $D_{1,a}, D_{2,a}$.
- 3. Evaluate $T^b := \mathbb{E}_{D_{2,b}}[\pi^a I_{x_1}(X_1) \{Y \mu^a(W, X_1)\}] + \mathbb{E}_{D_{1,b}}[\mu^a(W, x_1)]$ using $D_{1,b}, D_{2,b}$.
- 4. Repeat 2-3 by switching $D_{1,a}, D_{2,a}$ and $D_{1,b}, D_{2,b}$ and obtain T^a with (μ^b, π^b) . 5. $T^{dml} := (T^a + T^b)/2$.

$$D_{1,b}$$
 and $D_2 := D_{2,a} \cup D_{2,b}$.

Estimating Density Ratio

 $\pi_0(W, X_1) := \frac{P(W | do(x_1))}{P(W, X_1 | do(x_2))}$

$$\pi_0(W, X_1) :=$$

Classification-based Density Ratio Estimation

Estimating Density Ratio

 $\frac{P(W| \, do(x_1))}{P(W, X_1 | \, do(x_2))}$

Classification-based Density Ratio Estimation

- 1. For each sample $(W_i, X_{1,i})$,
 - 1. set $\lambda_i = 0$ if $(W_i, X_{1,i}) \in D_1 \sim P(\mathbf{V} | do(x_1))$.
 - 2. Set $\lambda_i = 1$ if $(W_i, X_{1,i}) \in D_2 \sim P(\mathbf{V} | do(x_2))$

Estimating Density Ratio

 $\pi_0(W, X_1) := \frac{P(W | do(x_1))}{P(W, X_1 | do(x_2))}$

Classification-based Density Ratio Estimation

- 1. For each sample $(W_i, X_{1,i})$,
 - 1. set $\lambda_i = 0$ if $(W_i, X_{1,i}) \in D_1 \sim P(\mathbf{V} | do(x_1))$.
 - 2. Set $\lambda_i = 1$ if $(W_i, X_{1,i}) \in D_2 \sim P(\mathbf{V} | do(x_2))$
- 2. Augment (W_i, X_i, λ_i) . Then,

Estimating Density Ratio

 $\pi_0(W, X_1) := \frac{P(W | do(x_1))}{P(W, X_1 | do(x_2))}$

 $\pi_0(W, X_1) = \frac{P(\lambda = 1) P(\lambda = 0 | W, X_1)}{P(\lambda = 0) P(\lambda = 1 | W, X_1)}$

Finite Sample Error Analysis

Finite Sample Error Analysis

With a probability $1 - 4\epsilon$

$T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] \le (a) + (b),$

Finite Sample Error Analysis

With a probability $1 - 4\epsilon$

 $T^{dml} - \mathbb{E}[Y] \alpha$

 $(a) := \frac{1}{2} \sum_{k \in \{a,b\}} \frac{\sqrt{2}}{\sqrt{n_2 \epsilon}} \left(\sqrt{\mathbb{V}_{P_2}[\pi_0(Y - \mu_0)]} + \|\pi^k(Y - \mu_0)\| \right) + \|\pi^k(Y - \mu_0)\| + \|\pi^k(Y$

where $n_1 := |D_1|$, $n_2 := |D_2|$, $|||_P$ is a $L_2(P)$ norm.

$$do(x_1, x_2)] \le (a) + (b),$$

$$-\mu^{k}) - \pi_{0}(Y - \mu_{0}) \|_{P_{2}} + \frac{\sqrt{2}}{\sqrt{n_{1}\epsilon}} \left(\sqrt{\mathbb{V}_{P_{1}}[\mu_{0}]} + \|\mu^{k} - \mu_{0}\|_{P_{1}} \right)$$

Finite Sample Error Analysis

With a probability $1 - 4\epsilon$

 $T^{dml} - \mathbb{E}[Y] \alpha$

 $(a) := \frac{1}{2} \sum_{k \in \{a,b\}} \frac{\sqrt{2}}{\sqrt{n_2 \epsilon}} \left(\sqrt{\mathbb{V}_{P_2}[\pi_0(Y - \mu_0)]} + \|\pi^k(Y - \mu_0)\| \right) + \|\pi^k(Y - \mu_0)\| + \|\pi^k(Y$ (b) := $\sum \mathbb{E}_{P_2}[\{\mu^k - \mu_0\}\{\pi_0 - \pi^k\}]$ $k \in \{a, b\}$

where $n_1 := |D_1|$, $n_2 := |D_2|$, $|||_P$ is a $L_2(P)$ norm.

$$do(x_1, x_2)] \le (a) + (b),$$

$$-\mu^{k}) - \pi_{0}(Y - \mu_{0}) \|_{P_{2}} + \frac{\sqrt{2}}{\sqrt{n_{1}\epsilon}} \left(\sqrt{\mathbb{V}_{P_{1}}[\mu_{0}]} + \|\mu^{k} - \mu_{0}\|_{P_{1}} \right)$$

Asymptotic Error Analysis

35

Asymptotic Error Analysis

Assume

Asymptotic Error Analysis

Assume 2. $\|\pi^k(Y-\mu^k) - \pi_0(Y-\mu_0)\|_{P_2} = O_P(1)$; i.e., $\pi^k(Y-\mu^k) - \pi_0(Y-\mu_0)$ is bounded.

Assume 2. $\|\pi^k(Y-\mu^k) - \pi_0(Y-\mu_0)\|_{P_2} = O_P(1)$; i.e., $\pi^k(Y-\mu^k) - \pi_0(Y-\mu_0)$ is bounded.

 $T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2)$

Asymptotic Error Analysis

$$) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi^k - \pi_0\|_{P_2} \|\mu^k - \mu_0\|_{P_2} \right)$$

Assume 2. $\|\pi^k(Y-\mu^k) - \pi_0(Y-\mu_0)\|_{P_2} = O_P(1)$; i.e., $\pi^k(Y-\mu^k) - \pi_0(Y-\mu_0)$ is bounded.

 $T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2)$

where R_i (for $i \in \{1,2\}$) is a random variable s.t. $\sqrt{n_i}R_i \xrightarrow{d} Z_i \sim \text{normal}(0,\sigma_i^2)$, where $\sigma_1^2 := \mathbb{V}_{P_1}[\mu_0(W, x_1)] \text{ and } \sigma_0^2 := \mathbb{V}_{P_2}[\pi_0(Y - \mu_0)].$

Asymptotic Error Analysis

$$) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi^k - \pi_0\|_{P_2} \|\mu^k - \mu_0\|_{P_2} \right)$$

 $T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2) + \sum_{P_2} O_{P_2} \left(\|\pi^k - \pi_0\|_{P_2} \|\mu^k - \mu_0\|_{P_2} \right)$ $k \in \{a, b\}$

Doubly Robustness & Debiasedness

 $T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2) + \sum_{P_2} O_{P_2} \left(\|\pi^k - \pi_0\|_{P_2} \|\mu^k - \mu_0\|_{P_2} \right)$ $k \in \{a, b\}$

$T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2)$

Doubly Robustness & Debiasedness

1. Doubly Robustness (DR): T^{dml} converges to $\mathbb{E}[Y|do(x_1, x_2)]$ at $n^{-1/2}$ -rate (where $n := \min(n_1, n_2)$ if $\pi = \pi_0$ or $\mu = \mu_0$.

$$_{2}) + \sum_{k \in \{a,b\}} O_{P_{2}} \left(\|\pi^{k} - \pi_{0}\|_{P_{2}} \|\mu^{k} - \mu_{0}\|_{P_{2}} \right)$$

$T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2)$

Doubly Robustness & Debiasedness

- 1. Doubly Robustness (DR): T^{dml} converges to $\mathbb{E}[Y|do(x_1, x_2)]$ at $n^{-1/2}$ -rate (where $n := \min(n_1, n_2)$ if $\pi = \pi_0$ or $\mu = \mu_0$.
- π_0, μ_0 at least at $n^{-1/4}$ rate.

$$_{2}) + \sum_{k \in \{a,b\}} O_{P_{2}} \left(\|\pi^{k} - \pi_{0}\|_{P_{2}} \|\mu^{k} - \mu_{0}\|_{P_{2}} \right)$$

2. Debiasedness (DB): T^{dml} converges to $\mathbb{E}[Y|do(x_1, x_2)]$ at $n^{-1/2}$ -rate if π, μ converges to

 $T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2) + \sum_{P_2} O_{P_2} \left(\|\pi^k - \pi_0\|_{P_2} \|\mu^k - \mu_0\|_{P_2} \right)$ $k \in \{a, b\}$

 $T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2) + \sum_{P_2} O_{P_2} \left(\|\pi^k - \pi_0\|_{P_2} \|\mu^k - \mu_0\|_{P_2} \right)$ $k \in \{a,b\}$

CAN and Efficiency

$T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2)$

CAN and Efficiency

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions, T^{dml} achieves consistency and asymptotic normality (CAN).

$$P_{2} + \sum_{k \in \{a,b\}} O_{P_{2}} \left(\|\pi^{k} - \pi_{0}\|_{P_{2}} \|\mu^{k} - \mu_{0}\|_{P_{2}} \right)$$

$T^{dml} - \mathbb{E}[Y|do(x_1, x_2)] = (R_1 + R_2)$

CAN and Efficiency

- achieves consistency and asymptotic normality (CAN).
- efficiency bound (i.e., achieves the minimum variance).

$$P_{2} + \sum_{k \in \{a,b\}} O_{P_{2}} \left(\|\pi^{k} - \pi_{0}\|_{P_{2}} \|\mu^{k} - \mu_{0}\|_{P_{2}} \right)$$

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions, T^{dml}

2. Statistical Efficiency: Under the {DR,DB} conditions, T^{dml} achieves the nonparametric

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis

(4) Simulation Results

- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

Query: $\mathbb{E}[Y | do(x_1, x_2)]$

Query: $\mathbb{E}[Y | do(x_1, x_2)]$

Input:

1. $D_1 \stackrel{iid}{\sim} P(C_1, C_2, X_2, Z, Y | do(x_1))$ 2. $D_2 \stackrel{iid}{\sim} P(C_1, C_2, X_1, Z, Y | do(x_2))$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

Scenario 1. Regular learning environment.

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

Scenario 1. Regular learning environment.

 $n^{-1/4}$ rate to highlight the fast convergence of the estimator T^{dml} .

Scenario 2. Adding the "convergence noise" $\epsilon \sim \text{normal}(a_n, b_n^2)$ to the estimated nuisance π, μ , where $a_n, b_n = O_P(n^{-1/4})$; i.e., $\pi \leftarrow \pi + \epsilon$ and $\mu \leftarrow \mu + \epsilon$. This forces π, μ converges at

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

Scenario 1. Regular learning environment.

 $n^{-1/4}$ rate to highlight the fast convergence of the estimator T^{dml} .

Scenario 3. π is wrongly estimated.

Scenario 2. Adding the "convergence noise" $\epsilon \sim \text{normal}(a_n, b_n^2)$ to the estimated nuisance π, μ , where $a_n, b_n = O_P(n^{-1/4})$; i.e., $\pi \leftarrow \pi + \epsilon$ and $\mu \leftarrow \mu + \epsilon$. This forces π, μ converges at

$\mathbb{E}[Y|do(x_1, x_2)] = \mathbb{E}[\pi_0 I_{x_1}(X_1)(Y - \mu_0)|do(x_2)] + \mathbb{E}[\mu_0(W, x_1)|do(x_1))]$

Scenario 1. Regular learning environment.

 $n^{-1/4}$ rate to highlight the fast convergence of the estimator T^{dml} .

Scenario 3. π is wrongly estimated.

Scenario 4. μ is wrongly estimated.

Scenario 2. Adding the "convergence noise" $\epsilon \sim \text{normal}(a_n, b_n^2)$ to the estimated nuisance π, μ , where $a_n, b_n = O_P(n^{-1/4})$; i.e., $\pi \leftarrow \pi + \epsilon$ and $\mu \leftarrow \mu + \epsilon$. This forces π, μ converges at

Simulation Results

Scenario 1

Scenario 2

Simulation Results

Scenario 3

Scenario 4

Simulations: Project STAR

1. The Tennessee Student/Teacher Achievement Ratio (STAR) project was a randomized controlled trial that assigned students to different student/teacher ratios of "small," "medium," and "large" through randomization. The outcome measure was the testing score.

- 1. The Tennessee Student/Teacher Achievement Ratio (STAR) project was a randomized controlled trial that assigned students to different student/teacher ratios of "small," "medium," and "large" through randomization. The outcome measure was the testing score.
- 2. The study was longitudinal, with students randomized from Pre-K to the 3rd grade.

- 1. The Tennessee Student/Teacher Achievement Ratio (STAR) project was a randomized controlled trial that assigned students to different student/teacher ratios of "small," "medium," and "large" through randomization. The outcome measure was the testing score.
- 2. The study was longitudinal, with students randomized from Pre-K to the 3rd grade.
- 3. We only focus on the student/teacher ratio for the pre-K students (X_1) and the thirdgrade students (X_2) as well as their testing scores at the third grade (Y).

- 1. The Tennessee Student/Teacher Achievement Ratio (STAR) project was a randomized controlled trial that assigned students to different student/teacher ratios of "small," "medium," and "large" through randomization. The outcome measure was the testing score.
- 2. The study was longitudinal, with students randomized from Pre-K to the 3rd grade.
- 3. We only focus on the student/teacher ratio for the pre-K students (X_1) and the thirdgrade students (X_2) as well as their testing scores at the third grade (Y).
- 4. We created confounders to to ensure that the data aligns with our graphical settings.

Data Generating Process for STAR

Data Generating Process for STAR

Data Generating Process for STAR

- X_1 : The student/teacher ratio for the pre-K students.
- X_2 : The student/teacher ratio for the 3rd grade students.
- Y: The testing score of the third grade students.
- C: Baseline covariates (socioeconomic factors, teacher's education, etc.)
- Z: The testing score of the pre-K students.

Scenario 1

Simulation Results: STAR

Scenario 2

Scenario 3

Simulation Results: STAR

Scenario 4

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions

Identification Condition for Multiple Treatment Interaction

Identification Condition for Multiple Treatment Interaction

There is a set of variables W_1 , W_2 s.t. 1. W_1 is a pretreatment variable of the to variable of the second treatment X_3 .

1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

Identification Condition for Multiple Treatment Interaction

There is a set of variables W_1, W_2 s.t.

- 1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment variable of the second treatment X_3 .
- 2. There are no unmeasured confounders between (Y, X_1) given W_1 in the post-treatment distribution $X_2 = x_2, X_3 = x_3$.

Identification Condition for Multiple Treatment Interaction

There is a set of variables W_1 , W_2 s.t.

- 1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment variable of the second treatment X_3 .
- 2. There are no unmeasured confounders between (Y, X_1) given W_1 in the post-treatment distribution $X_2 = x_2, X_3 = x_3$.
- 3. There are no unmeasured confounders between (Y, X_2) given W_2, X_1, W_1 in the post-treatment distribution $X_3 = x_3$.

Equivalent Condition for Multiple Treatment Interaction

Equivalent Condition for Multiple Treatment Interaction

There is a set of variables W_1, W_2 s.t. variable of the second treatment X_3 . 2. $(Y \perp X_1 \mid W_1)_{G_{X_1}\overline{X_2,X_3}}; (Y \perp X_2 \mid W_2, W_1, X_1)_{G_{X_2}\overline{X_3}}$

- 1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

Multiple Treatment Interaction: Examples

There is a set of variables W₁, W₂ s.t.
1. W₁ is a pretreatment variable of the treatments {X₂, X₃}; W₂ is a pretreatment variable of the second treatment X₃.
2. (Y ⊥ X₁ | W₁)_{G_{X1}X2,X3}; (Y ⊥ X₂ | W₂, W₁, X₁)_{G_{X2}X3}

Multiple Treatment Interaction: Examples

There is a set of variables W₁, W₂ s.t.
1. W₁ is a pretreatment variable of the treatments {X₂, X₃}; W₂ is a pretreatment variable of the second treatment X₃.
2. (Y ⊥ X₁ | W₁)_{G_{X1}X₂,X₃}; (Y ⊥ X₂ | W₂, W₁, X₁)_{G_{X2}X₃}

Multiple Treatment Interaction: Examples

There is a set of variables W₁, W₂ s.t.
1. W₁ is a pretreatment variable of the treatments {X₂, X₃}; W₂ is a pretreatment variable of the second treatment X₃.
2. (Y ⊥ X₁ | W₁)_{G_{X1}X₂,X₃}; (Y ⊥ X₂ | W₂, W₁, X₁)_{G_{X2}X₃}

 $W_1 = \{Z_1, C_1\}, W_2 = \{Z_2, C_2\}$

Identification Condition for Multiple Treatment Interaction

variable of the second treatment X_3 . 2. $(Y \perp X_1 \mid W_1)_{G_{X_1}\overline{X_2,X_3}}; (Y \perp X_2 \mid W_2, W_1, X_1)_{G_{X_2}\overline{X_3}}$

1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

Identification Condition for Multiple Treatment Interaction

- variable of the second treatment X_3 .
- 2. $(Y \perp X_1 \mid W_1)_{G_{X_1}\overline{X_2,X_3}}; (Y \perp X_2 \mid W_2,$

Then, $\mathbb{E}[Y|do(x_1, x_2, x_3)]$ is identifiable from three experimental distributions $\{P(\cdot | do(x_1)), P(\cdot | do(x_2)), P(\cdot | do(x_3))\}$ and $P(\cdot | do(x_2))$ as follows:

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

$$W_1, X_1)_{G_{X_2}\overline{X_3}}$$

Identification Condition for Multiple Treatment Interaction

- variable of the second treatment X_3 .
- 2. $(Y \perp X_1 \mid W_1)_{G_{X_1}\overline{X_2,X_3}}; (Y \perp X_2 \mid W_2,$

Then, $\mathbb{E}[Y|do(x_1, x_2, x_3)]$ is identifiable from three experimental distributions $\{P(\cdot | do(x_1)), P(\cdot | do(x_2)), P(\cdot | do(x_3))\}$ and $P(\cdot | do(x_2))$ as follows:

1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

$$W_1, X_1)_{G_{X_2}\overline{X_3}}$$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Estimable from $D_3 \sim P(\mathbf{V} | do(x_3))$

Identification Condition for Multiple Treatment Interaction

- variable of the second treatment X_3 .
- 2. $(Y \perp X_1 \mid W_1)_{G_{X_1}\overline{X_2,X_3}}; (Y \perp X_2 \mid W_2,$

Then, $\mathbb{E}[Y|do(x_1, x_2, x_3)]$ is identifiable from three experimental distributions $\{P(\cdot | do(x_1)), P(\cdot | do(x_2)), P(\cdot | do(x_3))\}$ and $P(\cdot | do(x_2))$ as follows:

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] \frac{P(w_2|do(x_2), w_1, x_1)}{P(w_1|do(x_1))} P(w_1|do(x_1))$

1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

$$W_1, X_1)_{G_{X_2}\overline{X_3}}$$

Estimable from $D_2 \sim P(\mathbf{V} \mid do(x_2))$

Identification Condition for Multiple Treatment Interaction

- variable of the second treatment X_3 .
- 2. $(Y \perp X_1 \mid W_1)_{G_{X_1}\overline{X_2,X_3}}; (Y \perp X_2 \mid W_2,$

Then, $\mathbb{E}[Y|do(x_1, x_2, x_3)]$ is identifiable from three experimental distributions $\{P(\cdot | do(x_1)), P(\cdot | do(x_2)), P(\cdot | do(x_3))\}$ and $P(\cdot | do(x_2))$ as follows:

1. W_1 is a pretreatment variable of the treatments $\{X_2, X_3\}$; W_2 is a pretreatment

$$W_1, X_1)_{G_{X_2}\overline{X_3}}$$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Estimable from $D_1 \sim P(\mathbf{V} | do(x_1))$ 52

Joint Treatment Effect Estimation : Regression

$\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Joint Treatment Effect Estimation : Regression

$\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

Joint Treatment Effect Estimation : Regression

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

 $\mu_0^2(W_1, W_2, X_1, X_2) := \mathbb{E}[Y | do(x_3), W_1, W_2, X_1, X_2]$

$\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

 $\mu_0^2(W_1, W_2, X_1, X_2) := \mathbb{E}[Y | do(x_3), W_1, W_2, X_1, X_2]$

Estimable from $D_3 \sim P(\mathbf{V} \mid do(x_3))$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

 $\mu_0^2(W_1, W_2, X_1, X_2) := \mathbb{E}[Y | do(x_3), W_1, W_2, X_1, X_2]$ Estimable from $D_3 \sim P(\mathbf{V} \mid do(x_3))$ $\mu_0^1(W_1, X_1) := \mathbb{E}[\mu_0^2(W_1, W_2, X_1, x_2) | do(x_2), W_1, X_1]$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

 $\mu_0^2(W_1, W_2, X_1, X_2) := \mathbb{E}[Y| do(x_3), W_1, W_2, X_1, X_2]$

Estimable from $D_3 \sim P(\mathbf{V} | do(x_3))$ $\mu_0^1(W_1, X_1) := \mathbb{E}[\mu_0^2(W_1, W_2, X_1, x_2) | do(x_2), W_1, X_1]$ Estimable from $D_2 \sim P(\mathbf{V} | do(x_2))$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

 $\mu_0^2(W_1, W_2, X_1, X_2) := \mathbb{E}[Y| do(x_3), W_1, W_2, X_1, X_2]$

 $\mathbb{E}[Y|do(x_1, x_2, x_3)] = \mathbb{E}[\mu_0^1(W_1, x_1)|do(x_1)]$

Estimable from $D_3 \sim P(\mathbf{V} | do(x_3))$ $\mu_0^1(W_1, X_1) := \mathbb{E}[\mu_0^2(W_1, W_2, X_1, x_2) | do(x_2), W_1, X_1]$ Estimable from $D_2 \sim P(\mathbf{V} | do(x_2))$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Regression-based Representation

 $\mu_0^2(W_1, W_2, X_1, X_2) := \mathbb{E}[Y| do(x_3), W_1, W_2, X_1, X_2]$

 $\mathbb{E}[Y|do(x_1, x_2, x_3)] = \mathbb{E}[\mu_0^{\perp}(W_1, x_1)|do(x_1)]$ Estimable from $D_1 \sim P(\mathbf{V} \mid do(x_1))$

Estimable from $D_3 \sim P(\mathbf{V} | do(x_3))$ $\mu_0^1(W_1, X_1) := \mathbb{E}[\mu_0^2(W_1, W_2, X_1, x_2) | do(x_2), W_1, X_1]$ Estimable from $D_2 \sim P(\mathbf{V} | do(x_2))$

$\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\pi_0^2(W_1, W_2, X_1, X_2) := \frac{P(W_1, W_2, X_1 | do(x_2))}{P(W_1, W_2, X_1, X_2 | do(x_3))}$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\pi_0^2(W_1, W_2, X_1, X_2) := \frac{P(W_1, W_2, X_1 | do(x_2))}{P(W_1, W_2, X_1, X_2 | do(x_3))}$ $\pi_0^1(W_1, X_1) := \frac{P(W_1 | do(x_1))}{P(W_1, X_1 | do(x_2))}$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\pi_0^2(W_1, W_2, X_1, X_2) := \frac{P(W_1, W_2, X_1 | do(x_2))}{P(W_1, W_2, X_1, X_2 | do(x_3))}$ $\pi_0^1(W_1, X_1) := \frac{P(W_1 | do(x_1))}{P(W_1, X_1 | do(x_2))}$

 $\mathbb{E}[Y|do(x_1, x_2, x_3)] = \mathbb{E}[\pi_0^1 \pi_0^2 I_{x_1, x_2}(X_1, X_2)Y|do(x_3)]$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\mathbb{E}[Y|do(x_1, x_2, x_3)] = \mathbb{E}[\pi_0^1 \pi_0^2 I_{x_1, x_2}(X_1, X_2)Y|do(x_3)]$

Estimable from $D_3 \sim P(\mathbf{V} | do(x_3))$

 $\pi_0^2(W_1, W_2, X_1, X_2) := \frac{P(W_1, W_2, X_1 | do(x_2))}{P(W_1, W_2, X_1, X_2 | do(x_3))}$

 $\pi_0^1(W_1, X_1) := \frac{P(W_1 | do(x_1))}{P(W_1, X_1 | do(x_2))}$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\pi_0^2(W_1, W_2, X_1, X_2) := \frac{I(W_1, W_2, X_1) I(W_1, W_2, X_1) I(W_1, W_2, X_1, X_2)}{P(W_1, W_2, X_1, X_2) I do(X_3))}$

 $\mathbb{E}[Y|do(x_1, x_2, x_3)] = \mathbb{E}[\pi_0^1 \pi_0^2 I_{x_1, x_2}(X_1, X_2)Y|do(x_3)]$

$$P(W_1, W_2, X_1 | do(x_2))$$

$$P(W_1 \,|\, do(x_1))$$

 $\pi_0^1(W_1, X_1) := \frac{1}{P(W_1, X_1 \mid do(x_2))}$

Estimable from $D_2 \sim P(\mathbf{V} \mid do(x_2))$

 $\mathbb{E}[Y|do(\mathbf{x})] = \sum_{w_1, w_2 \in \mathcal{W}_1, \mathcal{W}_2} \mathbb{E}[Y|do(x_3), w_1, w_2, x_1, x_2] P(w_2|do(x_2), w_1, x_1) P(w_1|do(x_1))$

Probability Weighting-based Representation

 $\mathbb{E}[Y|do(x_1, x_2, x_3)] = \mathbb{E}[\pi_0^1 \pi_0^2 I_{x_1, x_2}(X_1, X_2)Y|do(x_3)]$

 $\pi_0^2(W_1, W_2, X_1, X_2) := \frac{P(W_1, W_2, X_1 | do(x_2))}{P(W_1, W_2, X_1, X_2 | do(x_3))}$

 $\pi_0^1(W_1, X_1) := \frac{P(W_1 | do(x_1))}{P(W_1, X_1 | do(x_2))}$ Estimable from $D_1 \sim P(\mathbf{V} | do(x_1))$

DR Representation

DR Representation

 $\mathbb{E}[Y|do(\mathbf{x})] = \mathbb{E}[\pi_0^2 \pi_0^1 I_{x_1}(X_1) + \mathbb{E}[\pi_0^1 I_{x_1}(X_1)(\mu_1) + \mathbb{E}[\mu_0^1(W_1, x_1)(W_1, x_1)]]$

$$I_{1}I_{x_{2}}(X_{2})(Y - \mu_{0}^{2}(\mathbf{W}, \mathbf{X})) | do(x_{3})]$$

$$\mu_{0}^{2}(\mathbf{W}, X_{1}, x_{2}) - \mu_{0}^{1}(W_{1}, X_{1})) | do(x_{2})]$$

$$| do(x_{1}))]$$

DR Representation

+ $\mathbb{E}[\mu_0^1(W_1, x_1) | do(x_1))]$

- $\mathbb{E}[Y|do(\mathbf{x})] = \mathbb{E}[\pi_0^2 \pi_0^1 I_{x_1}(X_1) I_{x_2}(X_2)(Y \mu_0^2(\mathbf{W}, \mathbf{X})) | do(x_3)]$ + $\mathbb{E}[\pi_0^1 I_{x_1}(X_1)(\mu_0^2(\mathbf{W}, X_1, x_2) - \mu_0^1(W_1, X_1)) | do(x_2)]$
 - $X := (X_1, X_2)$ $W := (W_1, W_2)$

Asymptotic Error Analysis

Assume

1.
$$\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu^2 - \mu_0^2\|_{P_3} = o_{P_3}(1) \|\pi_k^1 - \pi_k^2, \mu_k^2, \pi_k^1, \mu_k^1$$
 converges to the true param

Asymptotic Error Analysis

 $-\pi_0^1 \|_{P_2} \|\mu^1 - \mu_0^1\|_{P_2} = o_{P_2}(1), k \in \{a, b\}; \text{ i.e.,}$ neters.

Assume

1.
$$\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu^2 - \mu_0^2\|_{P_3} = o_{P_3}(1) \|\pi_k^1 - \pi_k^2, \mu_k^2, \pi_k^1, \mu_k^1$$
 converges to the true paran

2.
$$\|\pi_k^1 \pi_k^2 (Y - \mu_k^2) - \pi_0^1 \pi_0^2 (Y - \mu_0^2)\|_{P_3} = O_{P_3}(1)$$
; i.e., $\pi_k^1 \pi_k^2 (Y - \mu_k^2) - \pi_0^1 \pi_0^2 (Y - \mu_0^2)$ is bounded.

Asymptotic Error Analysis

 $-\pi_0^1 \|_{P_2} \|\mu^1 - \mu_0^1\|_{P_2} = o_{P_2}(1), k \in \{a, b\}; \text{ i.e.,}$ neters.

Assume

1.
$$\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu^2 - \mu_0^2\|_{P_3} = o_{P_3}(1) \|\pi_k^1 - \pi_k^2, \mu_k^2, \pi_k^1, \mu_k^1$$
 converges to the true paran

2.
$$\|\pi_k^1 \pi_k^2 (Y - \mu_k^2) - \pi_0^1 \pi_0^2 (Y - \mu_0^2)\|_{P_3} = O_{P_3}(1)$$
; i.e., $\pi_k^1 \pi_k^2 (Y - \mu_k^2) - \pi_0^1 \pi_0^2 (Y - \mu_0^2)$ is bounded.

3.
$$\|\pi_k^1(\mu_k^2 - \mu_k^1) - \pi_0^1(\mu_k^2 - \mu_0^1)\|_{P_2} = O_{P_2}(1)$$

Asymptotic Error Analysis

 $-\pi_0^1 \|_{P_2} \|\mu^1 - \mu_0^1\|_{P_2} = o_{P_2}(1), k \in \{a, b\}; \text{ i.e.,}$ neters.

(1); i.e., $\pi_k^1(\mu_k^2 - \mu_k^1) - \pi_0^1(\mu_k^2 - \mu_0^1)$ is bounded.

Asymptotic Error Analysis

Asymptotic Error Analysis

$T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = (R_1 + C_1)$

$$= R_{2} + R_{3})$$

$$= O_{P_{3}} \left(\|\pi_{k}^{2} - \pi_{0}^{2}\|_{P_{3}} \|\mu_{k}^{2} - \mu_{0}^{2}\|_{P_{3}} \right)$$

$$= O_{P_{2}} \left(\|\pi_{k}^{1} - \pi_{0}^{1}\|_{P_{2}} \|\mu_{k}^{1} - \mu_{0}^{1}\|_{P_{2}} \right)$$

Asymptotic Error Analysis

 $+ \sum_{\substack{k \in \{a, b\}}} + \sum_{\substack{k \in \{a, b\}}}$

where R_i (for $i \in \{1,2,3\}$) is a random variable s.t. $\sqrt{n_i}R_i \xrightarrow{d} Z_i \sim \text{normal}(0,\sigma_i^2)$, where $\sigma_1^2 := \mathbb{V}_{P_1}[\mu_0^2], \sigma_2^2 := \mathbb{V}_{P_2}[\pi_0^1(\mu^2 - \mu_0^1)]$, and $\sigma_3^2 := \mathbb{V}_{P_2}[\pi_0^1\pi_0^2(Y - \mu_0^2)]$.

$$-R_{2} + R_{3})$$

$$O_{P_{3}} \left(\|\pi_{k}^{2} - \pi_{0}^{2}\|_{P_{3}} \|\mu_{k}^{2} - \mu_{0}^{2}\|_{P_{3}} \right)$$

$$O_{P_{2}} \left(\|\pi_{k}^{1} - \pi_{0}^{1}\|_{P_{2}} \|\mu_{k}^{1} - \mu_{0}^{1}\|_{P_{2}} \right)$$

$$\pi_k^2 - \pi_0^2 \|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

 $T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = (R_1 + R_2 + R_3) + \sum_{k \in \{a,b\}} O_{P_3} \left(\|x\|_{k \in \{a,b\}} \right)$

Doubly Robustness & Debiasedness

$$\pi_k^2 - \pi_0^2 \|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

$$T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = (R_1 + R_2 + R_3) + \sum_{k \in \{a,b\}} O_{P_3} \left(\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} \right) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

Doubly Robustness & Debiasedness

1. Doubly Robustness (DR): T^{dml} converges to $\mathbb{E}[Y|do(\mathbf{x})]$ at $n^{-1/2}$ -rate (where $n := \min(n_1, n_2, n_3)$) if $\pi_k^1 = \pi_0^1$ or $\mu_k^1 = \mu_0^1$, and $\pi_k^2 = \pi_0^2$ or $\mu_k^2 = \mu_0^2$.

$$T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = (R_1 + R_2 + R_3) + \sum_{k \in \{a,b\}} O_{P_3} \left(\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} \right) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

Doubly Robustness & Debiasedness

- 1. **Doubly Robustness (DR):** T^{dml} converge $n := \min(n_1, n_2, n_3)$) if $\pi_k^1 = \pi_0^1$ or $\mu_k^1 =$
- 2. **Debiasedness (DB):** T^{dml} converges to converges at least at $n^{-1/4}$ rate.

les to
$$\mathbb{E}[Y|do(\mathbf{x})]$$
 at $n^{-1/2}$ -rate (where μ_0^1 , and $\pi_k^2 = \pi_0^2$ or $\mu_k^2 = \mu_0^2$.

2. Debiasedness (DB): T^{dml} converges to $\mathbb{E}[Y|do(x_1, x_2)]$ at $n^{-1/2}$ -rate if $\pi^2, \pi^1, \mu^2, \mu^1$

 $T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = (R_1 + R_2 + R_3) + \sum_{k \in \{a,b\}} O_{P_3} \left(\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} \right) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$ $k \in \{a, b\}$

 $T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = (R_1 + R_2 + R_3) + \sum O_{P_3} (|| \mathbf{x})$ $k \in \{a,b\}$

$$\pi_k^2 - \pi_0^2 \|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

CAN and Efficiency

$$T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = \frac{(R_1 + R_2 + R_3)}{(R_1 + R_2 + R_3)} + \sum_{k \in \{a,b\}} O_{P_3} \left(\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} \right) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

CAN and Efficiency

achieves consistency and asymptotic normality (CAN).

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions, T^{dml}

$$T^{dml} - \mathbb{E}[Y|do(\mathbf{x})] = \frac{(R_1 + R_2 + R_3)}{(R_1 + R_2 + R_3)} + \sum_{k \in \{a,b\}} O_{P_3} \left(\|\pi_k^2 - \pi_0^2\|_{P_3} \|\mu_k^2 - \mu_0^2\|_{P_3} \right) + \sum_{k \in \{a,b\}} O_{P_2} \left(\|\pi_k^1 - \pi_0^1\|_{P_2} \|\mu_k^1 - \mu_0^1\|_{P_2} \right)$$

CAN and Efficiency

- achieves consistency and asymptotic normality (CAN).
- efficiency bound (i.e., achieves the minimum variance).

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions, T^{dml}

2. Statistical Efficiency: Under the {DR,DB} conditions, T^{dml} achieves the nonparametric

Omitted Results

Omitted Results

Question: When input distributions are arbitrary interventional/observational distributions?

Omitted Results

Question: When input distributions are arbitrary interventional/observational distributions?

 $\mathbb{P} := \{ P(V | do(z_1), \cdot$

 $Q := \mathbb{E}[Y | do(x_1, \cdots, x_m)]$

$$\cdots, P(V | do(z_p))$$

Omitted Results

Question: When input distributions are arbitrary interventional/observational distributions?

$$\mathbb{P} := \{ P(V | do(z_1), \cdots, P(V | do(z_p)) \}$$

$$Q := \mathbb{E}[Y| do(x_1, \cdots,$$

- * Z_i can be any set of variables including the empty set.
- * Generalization of the case of p = m and $Z_1 = X$

 (x_m)]

$$X_1, \cdots, Z_p = X_m$$

Outline of this talk

- 1. Preliminary and Problem Setup (1) Structural Causal Model
- 2. Treatment-Treatment Interaction
 - (1) Identification
 - (2) Estimand
 - (3) Estimation and Error Analysis
 - (4) Simulation Results
- 3. Multiple-Treatment Interaction (+ Omitted Results)
- 4. Future directions & Summary

Scenario: When identification expression is not a covariate adjustment...

Scenario: When identification expression is not a covariate adjustment...

- $\mathbb{P} := \{ P(V | do(z), P(V) \}$
- $\mathbb{Q} := \mathbb{E}[Y| do(x)]$ $id := \sum \mathbb{E}[Y|do(z)] \sum P(z|x,w)P(w)$ Z€Ĩ $w \in \mathcal{W}$

Scenario: When identification expression is not a covariate adjustment...

Estimating Causal Effects Identifiable from a Combination of Observations and Experiments, NeurIPS-23

- $\mathbb{P} := \{ P(V | do(z), P(V) \}$
- $\mathbb{Q} := \mathbb{E}[Y| do(x)]$ $id := \sum \mathbb{E}[Y|do(z)] \sum P(z|x,w)P(w)$ Z€Ĩ $w \in \mathcal{W}$

Scenario: When input (source) distributions are different from the target distribution?

Scenario: When input (source) distributions are different from the target distribution?

 $\mathbb{P} := \{ P(V | do(z_1), S =$

 $Q := \mathbb{E}[Y| do(x_1, \cdots, x_m), S = 0]$

= 1), ...,
$$P(V | do(z_p), S = p)$$
}

Question: Can we estimate the joint treatment effect from marginal experiments?

Question: Can we estimate the joint treatment effect from marginal experiments?

Answer: In general, not identifiable...

Question: Can we estimate the joint treatment effect from marginal experiments?

Answer: In general, not identifiable...

In this study,

Question: Can we estimate the joint treatment effect from marginal experiments?

Answer: In general, not identifiable...

In this study,

1. Sufficient graphical criterion for identifying joint treatment effect $\mathbb{E}[Y | do(x_1, \dots, x_m)]$ from marginal distributions $\mathbb{P} := \{P(V | do(x_1)), \dots, P(V | do(x_m))\}.$

Question: Can we estimate the joint treatment effect from marginal experiments?

Answer: In general, not identifiable...

In this study,

- 1. Sufficient graphical criterion for identifying joint treatment effect $\mathbb{E}[Y | do(x_1, \dots, x_m)]$ from marginal distributions $\mathbb{P} := \{P(V | do(x_1)), \dots, P(V | do(x_m))\}.$
- 2. Double/debiased ML-based estimator, which exhibits fast convergence, doubly robustness, and efficiency.

