Estimating Joint Treatment Effect
from Marginal Experiments

based on:

Estimating Joint Treatment Effects by Combining Multiple Experiments, ICML-23

Yonghan Jung

Dept. of Computer Science, Purdue University

yonghanjung.me

2023 Fall QM Seminar


http://yonghanjung.me

Treatment-Treatment interaction



Treatment-Treatment interaction

N Antihypertensive
drug
Blood pressure

Experiment on X;




Treatment-Treatment interaction

@

N Antihypertensive
drug

Blood pressure

Experiment on X; \éj



Treatment-Treatment interaction

@ @

N Antihypertensive N Anti-diabetic
drug drug

Blood pressure Cardiovascular disease

Experiment on X; \%j Experiment on X,



Treatment-Treatment interaction

@ @

N Antihypertensive N Anti-diabetic
drug drug

Blood pressure Cardiovascular disease

Experiment on X; wa Experiment on X, @



Treatment-Treatment interaction



Treatment-Treatment interaction

Antihypertensive\ \‘@]9 Anti-diabetic

drug drug

@ @ Cardiovascular disease

Experiment on X; and X,



Treatment-Treatment interaction

Antihypertensive\ \‘@]9 Anti-diabetic

drug drug

@ @ Cardiovascular disease

Experiment on X, and X, (‘t f)




Multiple-Treatment interaction



Multiple-Treatment interaction

@

@ Aspirin
@ Blood
pressure

Experiment on X; \%j




Multiple-Treatment interaction

@ @

@ Aspirin ? Acetaminophen

Blood Blood
pressure coagulation

Experiment on X, \%’J Experiment on X, \'v'j



Multiple-Treatment interaction

@ @ @

N\, N\, N\,
@ Aspirin ? Acetaminophen ? Ibuprofen

Blood Blood Gl
pressure coagulation disease

Experiment on X, \%J Experiment on X, wa Experiment on X; \%’J

4



Multiple-Treatment interaction



Multiple-Treatment interaction

N\ N\ N\,
@ Aspirin ?Acetamnophen @ Ibuprofen

gastrointestinal

e —



Multiple-Treatment interaction

N\ N\ N\,
@ Aspirin ?Acetamnophen @ Ibuprofen

gastrointestinal

e —

Experiment on X, X,, X3



Multiple-Treatment interaction

N\ N\ N\,
@ Aspirin ?Acetamnophen @ Ibuprofen

gastrointestinal

e —

Experiment on X, X,, X3 Q} f)



Practical challenges



Practical challenges

1. Many randomized controlled trials are conducted to evaluate the effectiveness of
marginal treatments, which involve intervening with a single treatment.



Practical challenges

1. Many randomized controlled trials are conducted to evaluate the effectiveness of
marginal treatments, which involve intervening with a single treatment.

2. Trials for estimating the joint treatment effect can be costly, especially when multiple
treatments are involved, as this requires a large number of participants.



1.

Practical challenges

Many randomized controlled trials are conducted to evaluate the effectiveness of
marginal treatments, which involve intervening with a single treatment.

. Trials for estimating the joint treatment effect can be costly, especially when multiple

treatments are involved, as this requires a large number of participants.

. What about leveraging existing marginal experiments to estimate the joint treatment

effect?



1.

Practical challenges

Many randomized controlled trials are conducted to evaluate the effectiveness of
marginal treatments, which involve intervening with a single treatment.

. Trials for estimating the joint treatment effect can be costly, especially when multiple

treatments are involved, as this requires a large number of participants.

. What about leveraging existing marginal experiments to estimate the joint treatment

effect?

This talk: Combining marginal experiments to estimate joint treatment etfects
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Structural Causal Model (SCM) (V, U, F, P(U))

e V: A set of observable variables.
o U: A set of latent variables.

. F: A set of functions {fV,-}V,-eV determining the value of V. € V; i.e.,
% <—fvi(PAVi, UV,-) for some PAV,- C Vand Uy C U.
» P(U): A probability distribution for U.
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L« fAU)
X <« fi(Z, Uy)

Y(x) « fi(x,Z, Uy)

Potential Outcome

Potential outcome Y(x)
Y if X had been fixed to x in the DGP
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No unmeasured confounders

(Y 1L Z| X, Wic,, = P(Y|do(x),do(z),w) = P(Y|do(x), z, w)

There are no unmeasured confounders between Y and Z conditioning on W.
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(Y AL do(2) | X, W),
After intervening on X, intervening on Z has no information regarding Y given W

do(2) do(z)
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do-Calculus: Rule 3
Intervention independence

Intervention independence

(Y L do(2)| X, W)g. = P(Y|do(x),do(z),w) = P(Y|do(x), w)
After intervening on X, intervening on Z has no information regarding Y given W

do(2) do(z)

}: ; O @—C@\
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do-Calculus in Identification

Pearl’s do-Calculus: Graphical criterion for

conditional independences of POs in Graphs

1. (Y UL Z[X, W)s. = P(Y|do(x),z, w) = P(Y|do(x), w)
2. (Y 1 X|X, W)G)_(_Z = P(Y|do(x),do(z),w) = P(Y|do(x), z,w)

3. (Y 1L intv(Z) | X, Wi, = P(Y|do(x),do(z),w) = P(Y|do(x), w)
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Treatment-Treatment Interaction

I Grath I

Dlst {P

Applies do-calculus to
present  w.r.t. { P}

(P} == {P(V|do(x))), P(V |do(x,))}

II
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Treatment-Treatment Interaction

ID: TTI -
Applies do-calculus to
represent § w.r.t. { P} J{P}) = ( or FAIL
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1. Wis a pretreatment variable of the second treatment X,.
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(WAL X | X)6,
2. (Y 1L XX, W)g,
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-[Y|do(xy, x,)]

=ZW

“[Y|do(xy,x,)] =

—[ Y] do(x,), x, wlP(w | do(x,))
where (W, X;) =

— ZW ) yP(y ‘ dO(Xz), X1s W)P(W ‘ dO(xl))

=Z’

=

P(y,x;, w|do(x,))

y
W,y

P(w|do(x,))
W,Y,X] P()Cl W ‘ dO(Xz))

=

=7T()(Wax1)

P(x, w|do(x,))

P(w|do(x,))

xl(x1)yP (y, x1 W‘dO(xz))

=7 (W, X)L (X)) Y | do(x,) ]

P(W|do(x,))
P(W9 Xl ‘ dO(XZ))
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-[Y|do(xy, x,)]

— ZW C[Y | do(x,), x;, wIP(w | do(x,)))

=Zw,y
=Z’

“[Y|do(xy,x,)] =

yP(y|do(x,), x;, w)P(w|do(x,))

P(y,x;, w|do(x,))

W,y Y P(x;,w|do(x,)) Plwldo(x,))

P(w|do(x,))

where (W, X;) =

W,Y,X] P(.Xfl W ‘ dO()Cz))
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=7T()(Wax1)
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“[ (W, xp) | do(x,) ]
[ Y| do(xy, x,)] :<
= [7my(W, X)L (X)) Y | do(x,)]

=[Y]do(x, x,)] =E[uy(W,x,) | do(x,)]

+E[7zy(W, X)L, (XY | do(x,)]

- Bias correcting term
—Elz(W, X)L (XDuo(W, X)) [ do(x,)]
0 1M A 1)Hg 1 2 — E[Y|do(x, x,)]
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Joint Treatment Effect Estimation:
DR Estimand

“[ (W, xp) | do(x,) ]
[ Y| do(xy, x,)] =<
= [7my(W, X)L (X)) Y | do(x,)]

DR Representation

do(xl))]

“[Y|do(x,x,)] = [ﬂOle(Xl)(Y — Up) d0(x2)] + [E [ﬂo(Wa?ﬁ)
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Joint Treatment Effect Estimation:
DR Estimand

“[Y|do(x, x,)] := Y (7, uy) = E

ﬂOle(Xl)(Y — //t())

dO(Xz)] +

[//tO(Wa X)

dO(xl))]
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Joint Treatment Effect Estimation:
DR Estimand

“[Y|do(x, x,)] := Y (7, uy) = E

ﬂolxl(XQ(Y — Hp)

dO(Xz)] + =

lﬂO(Wa xl)

Doubly Robustness of DR representation

do(xl))]
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Joint Treatment Effect Estimation :

DR Estimand

[ Y| do(xy, x,)] := Y (my, y) =

= ﬂolxl(XQ(Y_//to)

dO(Xz)] +

- lﬂO(Wa xl)

do(xl))]

Doubly Robustness of DR representation

The DR representation above Y (r, 1) is unbiased when i, or y, is misspecified;

.e., for arbitrary 7, u € L,,

(7, py) = (7, py) = Y(my, u)
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2.

DML Estimator

—[Y|do(x),x,)] = "[ﬂonl(X1)(Y_//lo)‘dO(Xz)] + Elpg(W, x1) | do(x,))]
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DML Estimator

—[Y|do(x),x,)] = "[ﬂonl(X1)(Y_//lo)‘dO(Xz)] + Elpg(W, x1) | do(x,))]

DML estimator 79"

1.

2.

Randomly split the sample D, := D, ,U D, ,and D, := D, ,UD,,

Estimate (u“, n“) for uo (W, X,) := E[Y|do(x,), X;, W] and
(W, X,) := P(W|do(x,))/P(W, X, |do(x,)) using D, ,, D, .

Evaluate 77 := =p, L (XDUY = p (W, X)) j] + Ep [u"(W, x)] using Dy 4, D, .

Repeat 2-3 by switching D, ,, D, ,and D, ,, D, ;, and obtain T with (u?, n°).
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Estimating Density Ratio

P(W|do(x,))

oW X0 = By X, | do(x,))

Classification-based Density Ratio Estimation

1. For each sample (W, X ,),
1. set 4, =0if (W, X,,) € D, ~ P(V|do(x))).
2. Setd; = 1if (W, X,,) € D, ~ P(V|do(x,))

2. Augment (W, X., 4.). Then,

e P(l=1)PA=0|W.X
o xy < PA=D PA=01W.X)

P =0) PA=1|W,X,)
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Finite Sample Error Analysis

With a probability 1 — 4¢
T — =[Y|do(xy, x,)] < (a) + (b),

1 2 2
(Cl) — 5 2 \i;e <\/\/P2[7ZO(Y_//£O)] 4 H]Z'k(Y_//lk) — ﬂO(Y—//tO)HP2> | \/\il% <\/\/P1[//l()] T H//lk —//tOHPl)

kela,b}

where n, := |D,|,n, :=|D,|, |||l » is a L,(P) norm.
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Finite Sample Error Analysis

Finite Sample Error Analysis

With a probability 1 — 4¢
T — =[Y|do(xy, x,)] < (a) + (b),

2
(a) := 2 \f <\/wp [70(Y — )] + 7Y = b — m(¥ — uowp) e <\/\/pl[ﬂ0]+ﬂﬂk—ﬂoﬂpl)

ke{ b} \/716
(b):= ) Epl{u*—up}{m—7*}]
ke{a,b}

where n, := |D,|,n, :=|D,|, |||l » is a L,(P) norm.
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1. ||7* — ﬂOHPQH,uk — Hollp, = 0p (1), k € {a,b}; i.e, 7, u* converges to the true parameters.

2. |I7°Y — u*) — m(Y — po)llp, = Op(1); ice., (Y — p*) — 7(Y — pag) is bounded.

kela,b)

: d
where R, (for i € {1,2}) is a random variable s.t. \ﬂRl- — Z: ~ normal(0,67), where

op 1= Vp [o(W, x;)] and o := Vp [(Y — )] N



Robustness of DML estimator

Tém! — [ Y| do(xy, x))] = (R} + Ry) + Z Op, (Hﬂk N ﬂOHPZH’uk - ’MO”P2)
kela,b}
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Doubly Robustness & Debiasedness

1. Doubly Robustness (DR): 7¢"" converges to E[Y| do(x;, x,)] at n~1"?_rate (where
n = min(n,,n,)) if & = my or 4 = Y.

2. Debiasedness (DB): 7" converges to E[Y] do(x;,x,)] at n~Y2_rate if 7, u converges to
—1/4

Ty, Ko at least at n rate.
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Efficiency of DML estimator
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1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions, T
achieves consistency and asymptotic normality (CAN).
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Efficiency of DML estimator

T — ELY|do(x;, )] = (R + R) + Y, Op, (117 = Il = ol )
kela,b}

CAN and Efficiency

Tdml

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions,
achieves consistency and asymptotic normality (CAN).

2. Statistical Efficiency: Under the {DR,DB} conditions, T achieves the nonparametric
efficiency bound (i.e., achieves the minimum variance).
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Simulations: Synthetic Dataset

O o

Input:
1. D, " P(C,, Cy, X5, Z, Y| do(x,))
2. Dz l’lg’ P(Cl, CZ’ Xla Za Yl dO(xZ))
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Simulation Scenario

[ Y| do(xy, x,)] =

"[ﬂonl(XQ(Y— Ho) | do(x,)] +

=[po(W, x1) | do(xy)) ]
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n~1"% rate to highlight the fast convergence of the estimator T,
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Simulation Scenario

[ Y] do(x, x,)] = =F 8 (X1)(Y ﬂo)‘dO(xz)] T "[ﬂo(Wax1)‘d0(x1))]

Scenario 1. Regular learning environment.

Scenario 2. Adding the “convergence noise” € ~ normal(a,,, b ) to the estimated nuisance

n’>—n

7, i, where a,, b, = OP(n_1/4) l.e., T < m+ €and u < u + €. This forces x, 4 converges at

n>—n
n~1"% rate to highlight the fast convergence of the estimator T,

Scenario 3. 7 is wrongly estimated .

Scenario 4. /1 is wrongly estimated .
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Simulations: Project STAR

1. The Tennessee Student/Teacher Achievement Ratio (STAR) project was a
randomized controlled trial that assigned students to different student/teacher ratios
of "small,” "medium," and "large" through randomization. The outcome measure
was the testing score.
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3. We only focus on the student/teacher ratio for the pre-K students (X) and the third-
grade students (X,) as well as their testing scores at the third grade (¥).
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Simulations: Project STAR

. The Tennessee Student/Teacher Achievement Ratio (STAR) project was a
randomized controlled trial that assigned students to different student/teacher ratios
of "small,” "medium," and "large" through randomization. The outcome measure
was the testing score.

. The study was longitudinal, with students randomized from Pre-K to the 3rd grade.

. We only focus on the student/teacher ratio for the pre-K students (X,) and the third-
grade students (X,) as well as their testing scores at the third grade (¥).

. We created confounders to to ensure that the data aligns with our graphical settings.
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Data Generating Process for STAR

» X;: The student/teacher ratio for the pre-K

students.

» X,: The student/teacher ratio for the 3rd grade

students.

» Y: The testing score of the third grade students.

« (: Baseline covariates (socioeconomic factors,

teacher’s education, etc.)

« /: The testing score of the pre-K students.
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Multiple Treatment Interaction

I Grath I

Applies do-calculus to
present  w.r.t. { P}

{P(V |do(x;) }
fori=1,---.m

Iﬂ
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Multiple Treatment Interaction

Graph G

i

: ID: MTI -
-
Applies do-calculus to
{P(V|do(x;)} represent Q w.r.t. { P} J({{P}) = Q or FAIL

fori=1,---.m
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Multiple Treatment Interaction

- m In this talk, m = 3

ID: MTI -
Applies do-calculus to
represent ) w.r.t. { P} J{P}) = ( or FAIL

(P(V |do(x;)}

fori=1,---,m

Iﬂ
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Identification Condition for Multiple Treatment Interaction
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Sufficient ID Condition: MTI

Identification Condition for Multiple Treatment Interaction

There is a set of variables W, W, s.t.
1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment
variable of the second treatment X;.
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1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment
variable of the second treatment X;.

2. There are no unmeasured confounders between (Y, X,) given W, in the post-
treatment distribution X, = x5, X5 = x;.

3. There are no unmeasured confounders between (Y, X,) given W,, X;, W, in the

post-treatment distribution X; = x;.
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Sufficient ID Condition: MTI

Equivalent Condition for Multiple Treatment Interaction

There is a set of variables W, W, s.t.
1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment
variable of the second treatment X;.

2. (Y I X, |W, (Y L X | W, W, X)),

)GﬁXza X3
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Multiple Treatment Interaction:
Examples

There is a set of variables W, W, s.t.
1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment
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Multiple Treatment Interaction:
Examples

There is a set of variables W, W, s.t.
1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment

variable of the second treatment X.
2. (YL X, |W, (Y AL X, | W, Wl’Xl)ze;g

)GﬁXza?%

’Q‘.@ Wy =14,C}, W, = {4, G)
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Multiple-Treatment Interaction

Identification Condition for Multiple Treatment Interaction

1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment
variable of the second treatment X;.

2. (Y L Xy | Wi)g, oot (V L X5 | Wy, Wi, X))g,
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Multiple-Treatment Interaction

Identification Condition for Multiple Treatment Interaction

1. W, is a pretreatment variable of the treatments { X,, X5 }; W, is a pretreatment
variable of the second treatment X;.

2. (Y L Xy | Wi)g, oot (V L X5 | Wy, Wi, X))g,

Then, E[Y | do(x,, x,, x3)] is identifiable from three experimental distributions
{P(- |do(xy)), P(-|do(x,)), P(-|do(x;))} and P( - |do(x,)) as follows:

-[Y|do(x)] = Zm P, [ Y| do(x3), wi, wy, X1, X, |P(W, | do(x,), wy, x)P(w; | do(x;))
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Wl,W2€%1,W2

Regression-based Representation
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Joint Treatment Effect Estimation :

E[Y|do(x)] = )

Probability Weighting

W19W2€W19W2

[ Y] dO(x3)9 Wi, Wh, x19x2]P(W2 | dO(xZ)a W1,x1)P(W1 ‘dO(x1))
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Joint Treatment Effect Estimation:
Probability Weighting

-[Y|do(x)] = Z [ Y| do(x3), wi, wo, X1, X, |P(W, | do(x,), wi, x1)P(w; | do(x;))

W13W2€W19W2

Probability Weighting-based Representation
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Joint Treatment Effect Estimation :

W13W2€W19W2

Probability Weighting

-[Y|do(x)] = Z [ Y| do(x3), wi, wo, X1, X, |P(W, | do(x,), wi, x1)P(w; | do(x;))

Probability Weighting-based Representation

ﬂ'g(Wl, Wz, Xl’ Xz) . —

“[Y|do(xy, x5, x3)] =

P(W,,W,, X, |do(x,))
P(Wla W29 Xla X2 ‘ dO(X3))
P(W, | do(x,))

P(W,, X, |do(x,))
Estimable from D, ~ P(V | do(x,))

[my gl (X1, X5)Y | do(xy)]
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DR Representation

“[Y|do(x)] = _[ﬂgﬂll (XL, (Xz)(Y ﬂg(w X)) | do(x3)]

+E[my L (X)) (g (W, X1, %) — s (W1, X)) | do(x,)]
+ ‘[//t (W, x)) | do(x))]




Joint Treatment Effect Estimation:
DR Estimand

DR Representation

—[Y|do(x)] = _[ﬂ (X1)IXZ(X2)(Y Ko (W, X)) [do(x3)]

¥ —[nglxgxow (W, X, %) — pud (W, X)) | do(xy)]

gal'= [//i() (Wi, x)) [ do(x)))]

X = (X, X,)
— (Wla Wz)
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Assume
2 2 2 2 | | | | s
1 lmp = myllp i — ugllp, = op (1) Il — mollp llpe” = ppllp, = 0p (1), k € {a,b}; e,
Jl'kz, ,ukz, Jl'kl, ,ukl converges to the true parameters.
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2 .2 1 .1
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1 lmp = myllp i — ugllp, = op (1) Il — mollp llpe” = ppllp, = 0p (1), k € {a,b}; e,
Jl'kz, ,ukz, Jl'kl, ,ukl converges to the true parameters.

2. |lmim (Y — wp) — mymy(Y — pg)llp, = Op (Vs e, mmp (Y — pp) — mymy (Y — ;) is
bounded.

3. ml (i — ) — my(ui — )l p, = Op (1) ie., m(ug — ) — 7y (ui — pg) is bounded,
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Asymptotic Error Analysis

Asymptotic Error Analysis

T — E[Y|do(x)] = (R; + R, + R;)

2 2 2 2
+ Y 0p, (I8 = i li? — 1511,
ke{a,b}

1 1 1 1
+ Y 0, (Il = il — sl
ke{a,b)
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Asymptotic Error Analysis

Asymptotic Error Analysis

T — E[Y|do(x)] = (R; + R, + R;)

+ Y 0p, (I8 = i li? — 1511,
ke{a,b}

+ Y 0, (Il = il — sl
ke{a,b)

: d
where R; (fori € {1,2,3}) is a random variable s.t. \ﬂRi — Z: ~ normal(0,67), where

67 = \/Pl[,ug], Gy 1= \/Pz[ir&(,uz — /45)], and 032 = Pz[ir&ﬂg(Y— ,ug)].
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Robustness of DML estimator

%! — E[Y|do(X)] = (R, + R, + Ry) + Y Op (Hﬂkz - 7\l p 11 —//‘3”13) + ), Op (Hﬂkl = oIl _”‘;H&)
ke{a.b) ke{a,b}
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Tdml _

Robustness of DML estimator

E[Y[do(X)] = (Ry+ Ry + Ry) + Z Op, <H7Tk2 - 773”})3”/413 _//t(%HP3> T Z Op, <H7Tk1 — ﬂ(}HPZH,“kl _ﬂ(%HP)

ke{a,b) kela,b}

Doubly Robustness & Debiasedness
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Doubly Robustness & Debiasedness

1. Doubly Robustness (DR): 7% converges to E[Y | do(x)] at n~"?-rate (where

n = min(n,, n,, ny)) if ﬂ'kl = 71'5 or ,ukl = //t(}, and 71',3 = ﬂg or ,u,g = //tg.

2. Debiasedness (DB): 7" converges to E[Y] do(x;,x,)] at n~ . rate if 7%, 7', //tz, ,ul
~1/4

converges at least at n rate.
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Efficiency of DML estimator

%! — E[Y|do(X)] = (R, + R, + Ry) + Y Op (Hﬂkz - 7\l p 11 —//‘3”13) + ), Op (Hﬂkl = oIl _”‘;H&)
ke{a.b) ke{a,b}
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Efficiency of DML estimator

%! — E[Y|do(X)] = (R, + R, + Rs) + Y Op <\\7f;3—”§”103”ﬂ13—ﬂ3”133> + ), Op (Hﬂkl = oIl _”5”})2)
ke{a.b) ke{a,b}

CAN and Efficiency



Efficiency of DML estimator
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CAN and Efficiency

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions, T
achieves consistency and asymptotic normality (CAN).
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Efficiency of DML estimator

Tdml _

“[Y[do(X)] = (Ry+ Ry + Ry) + Z Op, <H7Tk2 - ﬂgHP3Hﬂ1? _//t(%HP3> T Z Op, (H”/cl — ﬂ(%szul/tkl _//l(%HPz)

ke{a,b) ke{a,b}

CAN and Efficiency

Tdml

1. Consistency and Asymptotic Normality (CAN): Under the {DR,DB} conditions,

achieves consistency and asymptotic normality (CAN).

2. Statistical Efficiency: Under the {DR,DB} conditions, T achieves the nonparametric
efficiency bound (i.e., achieves the minimum variance).
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Omitted Results

Question: When input distributions are arbitrary interventional/observational
distributions?

P := {P(V|do(z)), -+, P(V|do(z,)}

Q= E[Y|do(x;, -, x,)]

* Z:can be any set of variables including the empty set.

* Generalization of the case of p = mand £, = Xy, -+, £, = X,,.
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Outline of this talk

1. Preliminary and Problem Setup
(1) Structural Causal Model
2. Treatment-Treatment Interaction
(1) Identification
(2) Estimand
(3) Estimation and Error Analysis
(4) Simulation Results
3. Multiple-Treatment Interaction (+ Omitted Results)
4. Future directions & Summary
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Future Research Direction 1

Scenario: When identification expression is not a covariate adjustment...
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Future Research Direction 1

Scenario: When identification expression is not a covariate adjustment...

P := {P(V|do(z), P(V)}

Q = E[Y]do(x)]
id:= ) E[Y|do(2)] ) P(z]x,w)P(w)

@ = WEW
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Future Research Direction 1

Scenario: When identification expression is not a covariate adjustment...

P := {P(V|do(z), P(V)}

Q = E[Y]do(x)]
id:= ) E[Y|do(2)] ) P(z]x,w)P(w)

@ = WEW

Estimating Causal Effects |Identifiable from a Combination of Observations and Experiments, NeurlPS-23
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Future Research Direction 2

Scenario: When input (source) distributions are different from the target

distribution?
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Future Research Direction 2

Scenario: When input (source) distributions are different from the target

distribution?

P = {P(V‘dO(Zl),S — 1)3 "',P(V‘dO(Zp),S :p)}

Q :=E[Y]|do(xy, -+, x,),S = 0]
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In this study,

1. Sufficient graphical criterion for identifying joint treatment effect E[ Y | do(x;, -+, x,,,) ]

from marginal distributions

P .= {P(V|do(x,)), -, P(V]|do(x,)}.
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Summary

Question: Can we estimate the joint treatment effect from marginal experiments??

Answer: In general, not identifiable... =5/

In this study,

1. Sufficient graphical criterion for identifying joint treatment effect E[ Y | do(x;, -+, x,,,) ]
from marginal distributions P := { P(V|do(x,)), ---, P(V|do(x,) }.

2. Double/debiased ML-based estimator, which exhibits fast convergence, doubly
robustness, and efficiency.



