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Challenges of interpretation in ML

Interpreting behaviors of ML 
result is important!
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What is interpretability?
Even if there are no technical definitions due to the perceived subjectivity, common 
consensus is the following: 

Interpretability is the degree to which a human can

2. understand the cause of a prediction [Miller, 2019]

1. consistently predict the model's result [Kim et al., 2016]

This leads “Feature attribution task” 
taking account of Causality! 💁

https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://proceedings.neurips.cc/paper/2016/file/5680522b8e2bb01943234bce7bf84534-Paper.pdf
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Feature attribution given (v, f(v))
• Input: A pair of , where  is a black-box machine learning model 

prediction for some input  (where  means the th feature).
(v, f(v)) f(v)

v = {v1, v2, ⋯, vn} xi i

• Output: A vector  where  is an importance of  on . attr( f, v) ≡ {ϕv1
, ⋯, ϕvn

} ϕi vi f(v)

💡
This task is called local (or ‘unit’) explanation since it only consider an individual 
input-output pair .  (v, f(v))
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Attribution task in a coalition game - 1
• Coalition game — The prediction result with  features (called coalition function 

) made by those  players, how do we attribute the payoff to each individual 
players? 

n
v([n]) n

🙂🙂 🙂

v({1,2,3,4,5}) = 1000

🙂 🙂
1 2 3 4 5

v({1,2,5}) = 500

🙂🙂😡
1 2 5

v({1,5}) = 600

🙂 😃
1 5

How do we attribute the total payoff (e.g., ) to individual players, 
taking account of interaction between players? 

v({1,2,3,4,5}🙋

 for  is a “coalition 
function”, a payoff of a coalition . 

v(S) S ⊆ [n] = {1,⋯, n}
S
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Attribution task in a coalition game - 2

• Let  denote the total payoff made by  players. ν([n]) [n] := {1,2,⋯, n}

• Let  for  denote the payoff made by a set of players . ν(S) S ⊆ [n] S

.ϕi ≡
1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{v(S ∪ {i}) − v(S)}

• Shapley value: The contribution of the player  is given by the average of the 
marginal contribution of the player i

i

Marginal contribution of  given xi xS
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Application of Shapley to ML
• Set the ML output  as . Then the problem is to assign the contribution of 

individual features  for explaining .  
f(v) ν([n])
v1, ⋯, vn f(v)

.

ϕvi
≡

1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{𝔼[Y |vS] − 𝔼[Y |vS, vi]}
Marginal contribution of vi

• [Lundberg & Lee, 2017] proposed to use the Shapley value to explain the ML output 
 —“SHAP” or “Conditional Shapley”. For , f(v) Y := f(V)

• The conditional Shapley measures the importance by its association / predictive 
power for the output . f(V)

https://arxiv.org/abs/1705.07874
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Limitation of Conditional Shapley - (1) 

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

Scenario: Predict customers’ retention rate. 

The data-generating process is here:

We measure the feature importance 
of “Discount” to explain Retention.

𝔼[Rentention |Discount, vS]
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Limitation of Conditional Shapley - (2) 

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

The results state that providing more discount leads to less retention. 🤷
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Lundberg, who developed SHAP, diagnosed this model fails due to the lack of 
considering causality. 

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

“interpreting a normal predictive model as causal are often unrealistic.”

Limitation of Conditional Shapley - (3) 

Feature attribution method must 
take account of causality! 
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Structural Causal Model ℳ = ⟨V, U, F, P(u)⟩

• : A set of endogenous (observable) variables. V

• : A set of exogenous (latent) variables. U

• : A set of structural equations  determining the value of , 
where  for some  and . 
F {fVi

}Vi∈V Vi ∈ V
Vi ← fvi

(PAVi
, UVi

) PAVi
⊆ V UVi

⊆ U

• : A probability measure for . P(u) U

An SCM induced a qualitative description in the form of a “causal graph” 
. G ≡ G(ℳ)💡
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Interpretability Tasks w.r.t. SCM
Task — Interpretability task w.r.t. SCM 

Output: A vector  where  is an importance of a node . attr( f, v) ≡ {ϕv1
, ⋯, ϕvn

} ϕvi
vi

Input: A causal graph ; an input-output ; and a dataset for . Note  is 
induced by the SCM. 

G (v, f(v)) G G

1. A causal graph  is on  for . G V, Y Y := f(V)

2. A pair of an individual input-output: ,(v, f(v))

3. A dataset  of  .D {Vi, Yi = f(Vi)}N
i=1

What properties a desirable causally 
interpretable feature attribution method 

should satisfy? 
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Task: Application to ML Interpretation 

Causal Graph 

G = G(V)

Samples 

 D ∼ P(V)

Output of the ML 
model  
f( ⋅ )
Q := f(v)

Feature 
Attribution 

Contribution of 
inputs  to 

the ML output 
vi ∈ v

f(v)

When the outcome is a ML model output 
, the target is reduced to 

, and the problem 
reduces to measuring the importance of 
inputs. 

Y := f(V)
Q := f(v) = 𝔼[Y |do(v)]
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Desideratum for causally IML methods

“Causal IML Axiom”: Desideratum for causally interpretable ML

• Perfect assignment: .∑vi∈v
ϕvi

= f(v)

• Causal Irrelevance: If  is causally irrelevant to , then . Vi Y = f(V) ϕvi
= 0

• Causal Symmetry: If  have the same causal explanatory power to , then 
. 

vi, vj ∈ v Y
ϕvi

= ϕvj

• Linearity :  must be a linear function of ϕvi
𝔼[Y |do(vS)]

  and . P(y |do(vi), do(w)) = P(y |do(vj), do(w)) ∀y W ⊆ V\{Vi, Vj}

  for .P(y |do(vi)) = P(y) ∀y, vi Vi ∈ V
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do-Shapley as a desirable causal IML method

Thm. 1. Axiomatic characterization of do-Shapley 

,ϕvi
= (1/n)∑S⊆[n]\{i} (n − 1

|S | )
−1

𝔼[Y |do(vS, vi)] − 𝔼[Y |do(vS)]}

A following attribution method , named do-Shapley, is uniquely 
satisfying the Causal IML Axioms. 

attr( f, v) = {ϕvi
}vi∈v
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 is causally irrelevant to  (i.e., ).V1 Y P(y |do(v1)) = P(y)

vs. Conditional Shapley 

V1 V2 Y

• , because , ϕV1
(νdo) = 0 νdo({1}) − νdo({}) = νdo({1,2}) − νdo({2}) = 0

• However, it’s possible that ϕV1
(νcond) ≠ 0

 Causal Irrelevance axiom does not hold in Conditional Shapley. 
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Outline 
We develop causally interpretable feature attribution method. 

1. We axiomatize and characterize a causally interpretable feature attribution method, 
and propose do-Shapley values.

2. We provide identifiability condition where the do-Shapley values can be inferred 
from the observational data. 

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al., 
2018] based do-Shapley estimator for practical settings. 

https://academic.oup.com/ectj/article/21/1/C1/5056401
https://academic.oup.com/ectj/article/21/1/C1/5056401
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do-Shapley Identifiability  - 
Challenge

• We have to determine the identifiably of  for all . 𝔼[Y |do(vS)] VS ⊆ V

• This might take exponential computational time. 

ϕvi
:=

1
n ∑

S⊆[n]
(n − 1

|S | )
−1

{𝔼[Y |do(vS, vi)] − 𝔼[Y |do(vS)]}
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do-Shapley Identifiability  - 
Challenge

Identification of do-Shapley
Assume  is not connected by bidirected paths. If any variables are not connected to 
its children by bidirected paths (i.e.,  and  are not in the same C-component), 
then the -Shapley is identifiable (i.e.,  for all  is identifiable). 

Y
Vi Ch(Vi)

do 𝔼[Y |do(vS)] VS ⊆ V

Specifically, 





where  is some partition of . 

𝔼[Y |do(vS)] = ∑vS
𝔼[Y |v]

P(v)
∏Va∈C(VS) P(va |pre(va))

c

∏
k=1

∑
sk

∏
Vb∈C(Sk)

P(vb |pre(vb))

Sk VS
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do-Shapley Identifiability: Examples
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1. We axiomatize and characterize a causally interpretable feature attribution method, 
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2. We provide identifiability condition where the do-Shapley values can be inferred 
from the observational data. 

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al., 
2018] based do-Shapley estimator for practical settings. 
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We develop causally interpretable feature attribution method. 

1. We axiomatize and characterize a causally interpretable feature attribution method, 
and propose do-Shapley values.

2. We provide identifiability condition where the do-Shapley values can be inferred 
from the observational data. 

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al., 
2018] based do-Shapley estimator for practical settings. 

DAG (No latent confounders, in this talk!)

https://academic.oup.com/ectj/article/21/1/C1/5056401
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Monte-Carlo approximation for do-Shapley (1)

.ϕi ≡
1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{v(S ∪ {i}) − v(S)}

=
1
n! ∑π(V)∈perm(V)

{ν(vi, preπ(vi)) − ν(preπ(vi))}

all possible permutation of V = {Vi}n
i=1

Predecessor of  given the fixed 
permutation . 

Vi
π(V)

= 𝔼π(V) [ν(vi, preπ(vi)) − ν(preπ(vi))]
The expectation is over the probability for each permutation order , where . π(V) P(π) =

1
n!

[Štrumbelj and Kononenko, 2014]
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Monte-Carlo approximation for do-Shapley (2)

.ϕi = 𝔼π(V) [ν(vi, preπ(vi)) − ν(preπ(vi))]

ϕ̃i =
1
M

M

∑
m=1

{ν(vi, preπ(m)
(vi)) − ν(preπ(m)

(vi))}
• For  number of randomly generated permutations of  (where each permutations 

are denoted ), 
M V

π(m)

• Compute  and take an average. ν(vi, preπ(m)
(vi)) − ν(preπ(m)

(vi))
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2. Generate  randomly generated permutations of . The permuted variables are 
, where  is the th variable in the permutation  .

M V
Vπ = {Vπ,1, ⋯, Vπ,n} Vπ,i i π

3. For each , computei = 1,2,⋯, n

1. Initiate  for all . ϕVi
= 0 Vi ∈ V

ϕVi
← ϕVi

+ {νdo(Vπ,i, preπ(Vπ,i)) − νdo(preπ(Vπ,i))}
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Random permutation-based algorithm

2. Generate  randomly generated permutations of . The permuted variables are 
, where  is the th variable in the permutation  .

M V
Vπ = {Vπ,1, ⋯, Vπ,n} Vπ,i i π

3. For each , computei = 1,2,⋯, n

1. Initiate  for all . ϕVi
= 0 Vi ∈ V

ϕVi
← ϕVi

+ {νdo(Vπ,i, preπ(Vπ,i)) − νdo(preπ(Vπ,i))}

4. For each , .i = 1,2,⋯, n ϕVi
← (1/M) ⋅ ϕVi
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do-DML-Shapley

ϕ̃i =
1
M

M

∑
m=1

{ν(vi, preπ(m)
(vi)) − ν(preπ(m)

(vi))}
Recall the random permutation based Shapley approximation is 
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do-DML-Shapley

ϕ̃i =
1
M

M

∑
m=1

{ν(vi, preπ(m)
(vi)) − ν(preπ(m)

(vi))}
Recall the random permutation based Shapley approximation is 

do-DML-Shapley 
Recall the random permutation based Shapley approximation is 

̂ϕ Vi
(T) =

1
M

M

∑
m=1

{T(vi, preπ(m)
(vi)) − T(preπ(m)

(vi))}



Simulation 

36



37

Empirical Study: DML Property 



37

Empirical Study: DML Property 
We compared the DML-based do-Shapley estimator with other existing estimators 
when the  is given as mSBD adjustment: 𝔼[Y |do(vS)]



37

Empirical Study: DML Property 
We compared the DML-based do-Shapley estimator with other existing estimators 
when the  is given as mSBD adjustment: 𝔼[Y |do(vS)]



37

Empirical Study: DML Property 
We compared the DML-based do-Shapley estimator with other existing estimators 
when the  is given as mSBD adjustment: 𝔼[Y |do(vS)]

The DML estimator converges faster than competing estimators. 



38

Empirical Study: DML Property 



38

Empirical Study: DML Property 

When nuisances corresponding to the IPW, REG estimators are misspecified, 
the DML estimator converges fast. 
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A simulation result

We designed the DGP s.t. the importances 
are ordered as . V1 > V3 > V2

Y = 3V1 + 0.4V2 + V3 + UY

V1 V3

V2

V1

We compared the DML-based do-Shapley 
based method with the conditional-Shapley. 

The DML-based do-Shapley ranks  
, while the conditional Shapley 

ranks  as the most important one, in our 
scenario. 

V1 > V3 > V2
V2
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and propose do-Shapley values.

2. We provide identifiability condition where the do-Shapley values can be inferred 
from the observational data. 

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al., 
2018] based do-Shapley estimator for practical settings. 

https://academic.oup.com/ectj/article/21/1/C1/5056401
https://academic.oup.com/ectj/article/21/1/C1/5056401


Kyungwoo Song 
University of Seoul

Sanghyuk Chun
NAVER AI Lab

Shortcut Learning in Machine Learning: 
Challenges, Analysis, Solutions

Yonghan Jung 
Purdue University

https://mlai.uos.ac.kr/https://sanghyukchun.github.io/home/ http://yonghanjung.me/

https://sites.google.com/view/facct22-shortcut-learning/home 



Introduction to Shortcut Learning

2

Sanghyuk Chun
NAVER AI Lab

https://sanghyukchun.github.io/home/ 



Machine Learning (ML) opens a new stage of automation.

In-the-wild examples from https://google.github.io/mediapipe/ 3

Pose estimation Object detection Face recognition



Machine Learning (ML) opens a new stage of automation.

https://towardsdatascience.com/some-experiments-using-github-copilot-with-python-90f8065fb72e 



Machine Learning (ML) opens a new stage of automation.

5

https://github.com/commaai/research 
https://studentsxstudents.com/using-semantic-segmentation-to-give-a-self-driving-car-the-ability-to-see-6c97425ec562 

Line tracing for self-driving cars Semantic segmentation for self-driving cars


● An object detection model is easily fooled by a semantically meaningless patch 
image (failed to detect “person” if the patch is near the person)

However, AI often cannot understand the problem itself.

Video from: https://youtu.be/MIbFvK2S9g8?t=54 

Thys, et al. “Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detection”, CVPR 2019 6



● A self-driving car thinks “Burger King sign 🍔” is a “stop sign 🛑”

However, AI often cannot understand the problem itself.

https://www.youtube.com/watch?v=jheBCOpE9ws 
7

Both signs are 
“Stop sign 🛑”



ML models often rely on “easy-to-learn shortcuts” without an 
understanding of the problem itself.

Cadene, et al. “RUBi: Reducing Unimodal Biases for Visual Question Answering”, NeurIPS 2019
8



● When a model does not make a decision based on “desired” features (considering 
both question and image – color in this case), but “undesired” features (ignoring 
image), there exists a shortcut learning problem.

“Shortcut learning” problem?

9
Cadene, et al. “RUBi: Reducing Unimodal Biases for Visual Question Answering”, NeurIPS 2019



● When the actress acts the same script and the same action but with different 
appearance (with glasses or with headscarf), the predictions vary significantly!

Shortcut learning in human-related applications.

10
Objective or Biased https://interaktiv.br.de/ki-bewerbung/en/ 



Shortcut learning in human-related applications.

11

● Similarly, the predictions vary significantly with the same script and the same 
action but with different backgrounds (with picture, with bookshelf).

Objective or Biased https://interaktiv.br.de/ki-bewerbung/en/ 



Shortcut learning in human-related applications.

12

● Even for different brightness settings!

Objective or Biased https://interaktiv.br.de/ki-bewerbung/en/ 


Summary of Part 1

● The shortcut learning problem happens when the model makes a decision based 
on “undesired” feature, not “desired” feature.

● There exist a lot of examples of shortcut learning in machine learning algorithms.
● Naive learning strategy will lead to shortcut learning if we do not consider what is 

the desired feature for the given task.

13
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Understanding Shortcut Learning through 
the Lens of Causality & Invariance

15

Yonghan Jung
Purdue University 

http://yonghanjung.me/

Tech report for this part is 
available in our tutorial 
website!

Light Talk! 



Motivational Example for Shortcut Learning - 1
Consider the task of classifying images of “boat” and “car”.

Train

I am learning a decision rule 
for classifying “boat” and “car”! 

16

Data Classification

This is a “boat”!



Motivational Example for Shortcut Learning - 2
Modern ML models oftentimes make a mistake… 

This is a “car”!

What’s going on…? 

17



Motivational Example for Shortcut Learning - 3
The mistakes happened when ML models used unintended / undesired features (e.g., background) 
as a decision rule.

There is a road 
background! 

18

Data Train

[water] background  
means “boat”!

[road] background 
means “car”!

… and it works pretty well 
for the training data!  

For a new data 

This is a “car”!



Definition of Shortcut Learning

Shortcut Learning [Geirhos et al., 2020]

A shortcut learning is a phenomenon in which ML models fail to generalize for a new 
sample due to taking unintended / undesired features called shortcuts (e.g., background 
objects) in establishing decision rules. 

19

This phenomenon has been named “shortcut learning.”



Overview of This Part 

1. We will provide a formal understanding of shortcut learning through causality.

2. We will propose two approaches for preventing shortcut learning, which both suggest 
using causal features (a set of features that directly causes true labels).

3. We will provide a principle for identifying causal features by leveraging the causal 
invariance property.

20

i. Approach 1. Avoid causally irrelevant features to the true label as much as possible.

ii. Approach 2. Find an ML model that works best for all heterogeneous data generating processes.



Overview

1. We will provide a formal understanding of shortcut learning through causality.

2. We will propose two approaches for preventing shortcut learning, which both suggest 
using causal features (a set of features that directly causes true labels).

3. We will provide a principle for identifying causal features by leveraging the causal 
invariance property.

21

i. Approach 1. Avoid causally irrelevant features to the true label as much as possible.

ii. Approach 2. Find an ML model that works best for all heterogeneous data generating processes.


Expressing Data Generating Process with Multiple Functions 

22

[Label] ←fY(UY, T), where T is a 
[boat] object. (generating function for the 
label)

“Boat”

[boat] ←fT(UT), where UB is some 
unknown variable. (generating function 
for the target)

“Boat”

Data and Label

[water] ←fB(UB), where UW is some 
unknown variable. (generating function 
for the background)

Data Generating Process



Structural Causal Model as a Data Generating Process 

Structural Causal Models (SCM) [Pearl, 2000]

23

A structural causal model is a tuple 

○ V is a set of observed variables: V = {V1, …, Vn} 

○ U is a set of latent variables 

○ F is a set of functions {Fvi} determining the value of Vi; i.e., Vi = Fvi(PAi, Ui) 

where PAi ⊆ V and Ui ⊆ U. 

○ P(U) is a distribution over U. 

This view of the data generating process is formalized as a Structural Causal Model (SCM). 



Example: SCM as a Data Generating Process 

24

B←fB(UB) (Background like [water])

T←fT(UT) (Target like [boat])

Y←fY(B, UY) (Label)

SCM

P(B,T,Y) from the functions and P(U)

Data 

● Instead of access to the SCM, we have a 
graph, as a qualitative description. 

● SCM generates the data. 

B T

Y

U

Graph 



Encoding Intervention on DGP in SCM

25

● Graphically, the intervention is expressed as 
cutting all incoming edges. 

● Intervened SCM (with do-operator) 
generates the data. 

Data 

T←fT(UT) (Target like [boat])

Y←fY(B, UY) (Label)

Intervention in SCM

P(B,T,Y) from the functions and P(U)

B 👈 [Road] Formally, do(B = [Road]) 
(Pearl, 2000)

B T

Y

U

Graph 
[Road]

Intervene to force the 
background to be “Road”



Submodel: Encoding Intervention through SCM

Submodels of the SCM [Pearl, 2000]

Given SCM M := <V, U, F, P(U)>, the submodel MVi  is the SCM induced by replacing 
a function Vi ←Fvi as a fixed constant Vi←vi (i.e., operating do(Vi = vi)).

26

The SCM (Data generating process) induced by intervention is called a submodel of the SCM. 



Environments: A set of submodels of SCMs. 

27

Environments [Peters et al., 2016]

Environments E is a set of an SCM M and its submodels MW.  We will call individual 
SCM in E as an environment. 

An original image ([boat in the water]) and its perturbed example ([boat in the road]) can be 
viewed as objects generated by an SCM M and its submodels MVi. 

Assumption: Environments E  are data generating processes of given samples. 



Problem Setup 

28

Our task
Construct the ML model working well for all environment in E .

Environments Samples

ML modelsM

MV1

MVk

…

D

DV1

DVk

…
f(V) that works well for all 

environments.



Overview

1. We will provide a formal understanding of shortcut learning through causality.

2. We will propose two approaches for preventing shortcut learning, which both suggest 
using causal features (a set of features that directly causes true labels).

3. We will provide a principle for identifying causal features by leveraging the causal 
invariance property.

29

i. Approach 1. Avoid causally irrelevant features to the true label as much as possible.

ii. Approach 2. Find an ML model that works best for all heterogeneous data generating processes.



Overview
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3. We will provide a principle for identifying causal features by leveraging the causal 
invariance property.
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i. Approach 1. Avoid causally irrelevant features to the true label as much as possible.

ii. Approach 2. Find an ML model that works best for all heterogeneous data generating processes.



How do Humans Classify (How are True Labels Generated)?

31

“boat!”

[boat] [water] 

“boat!”

[boat] [road] 

Humans don’t use background (unintended/undesired) objects ([water], [road]).



ML Models Contaminated by Shortcut Learning

32

[boat] [water] [boat] [road] 

“boat!” “car!”

ML models use background features causally irrelevant to the humans’ label for their 
decision rules.

Causally irrelevant 
to human’s labels

Causally irrelevant to 
human’s labels



Shortcut Learning and Causally Irrelevant Features

Shortcut Learning: ML models fail due to the usage of unintended/undesired features 
(backgrounds) for their decision rule.

(Rewritten) Shortcut Learning: ML models fail due to the usage of causally irrelevant features 
(to the label)  (features that aren’t causing humans’ true label) for their decision rule. 

33


Approach 1. Avoid Causally Irrelevant Features 

Approach 1. Avoid Causally Irrelevant Features

Construct the ML models avoiding causally irrelevant features as much as possible. 

(Rewritten) Shortcut Learning: ML models fail due usage of causally irrelevant features 
(features that aren’t causing humans’ true label) for their decision rule. 

34



Definition of Causal Irrelevance - 1

Causal Irrelevance (Pearl, 2000) 
A set of variables X is said to be causally irrelevant to Y given W if, 

P(Y=y | do(X=x), do(W=w)) = P(Y=y | do(X=x`), do(W=w))

for any realizations (y, x, w, x’) s.t. x ≠ x’. 

A set of variables X is said to be causally irrelevant to Y (given other intervention W) if 
intervening on X (do(X)) doesn’t affect Y, given do(W). 

35



Definition of Causal Irrelevance - 2

Causal Irrelevance Set  
A set of variables X is said to be causally irrelevant set to Y if, 

P(Y=y | do(X=x), do(V\X=v\x)) = P(Y=y | do(X=x`), do(V\X=v\x))

for any realizations (y, x, v\x, x’) s.t. x ≠ x’. 

A set of variables X is said to be causally irrelevant to Y if intervening on X (do(X)) doesn’t 
affect Y given the intervention on the rest of variables.

36



Graphical Interpretation of Causal Irrelevant Set 

Graphical Interpretation of Causal Irrelevance Set  

X is said to be causally irrelevant set to Y if X doesn’t contain any causal features. 

Causal Features (of the true label Y): PAY ⊆V is called causal features of Y if it is a parental 
set of Y (direct cause) in the graph induced by the SCM.

37



Humans don’t Use Causally Irrelevant Features

[boat] [water] 

“boat!”

[boat] [road] 

“boat!”

Causally 
irrelevant set Causally 

irrelevant set 

Causal Feature Causal Feature

38



Formal Interpretation of Approach 1 

(Formal) Approach 1 [Theorem 1]

● The largest causal irrelevant set is V\PAY, all variables except causal features PAY.  

(Informal) Approach 1
Avoid causally irrelevant features as much as possible. 

● Therefore, to prevent the shortcut learning, construct the models using causal 
features PAY.  

39



Overview

1. We will provide a formal understanding of shortcut learning through causality.

2. We will propose two approaches for preventing shortcut learning, which both suggest 
using causal features that directly cause true labels.

3. We will provide a principle for identifying causal features by leveraging the causal 
invariance property.

40

i. Approach 1. Avoid causally irrelevant features to the true label as much as possible.

ii. Approach 2. Find an ML model that works best for all heterogeneous data generating processes.



(Recap) Problem Setup - Task

41

Our task
Construct the ML model working well for all environment in E .

Environments Samples

ML modelsM

MV1

MVk

…

D

DV1

DVk

…
f(V) that works well for 
samples from all environments.



Approach 2. Model working well for all environments

42

Approach 2

Find the performant ML model that works well for all environments, even in the 
worst environment (e.g., [boat in the road]). 



Formalization of Approach 2

43

Model that working best in the worst case. 

● L(f(V), Y) is a prediction error of the model f(V) to Y 

● EP[L(f(V), Y)] is an expected error w.r.t. a distribution P. 

● P(E) is a set of distributions induced by submodels in an environment E.

● F   is a class of the ML model f.

argmin f ∈ F   maxP ∈ P(E) EP[L(f(V), Y)]

The task is to minimize the expected error of the ML model even in the worst 
environment that maximizes the expected error. 



Model with Causal Features is Performant. 

44

Model with causal features works well in the worst case. 

● If L(f(V), Y)=E[(f(V)-Y)2] (Regression), the solution is E[Y | PAY] (Rojas-Callura et al. 2018)

● If L(f(V), Y)=E[𝟙(f(V)≠Y)] (Classification), the solution is argmax y P(Y=y | PAY)

argmin f   maxP ∈ P(E) EP[L(f(V), Y)]

Takeaway: A ML model working well even in the worst environment can be found by 
constructing the model for the relation b/w the true label and  its causal features. 



Interpretation of Approach 2 

Approach 2
Find the performant ML model that works well for all environments, even in the worst 
environment (e.g., [boat in the road])

Implication of  Approach 2 [Theorems (2,3)]

To prevent the shortcut learning, construct the models using causal features! 

45



Approaches (1,2) imply ML models with Causal Features 

Approach 1

Avoid causally irrelevant 
features as much as possible. 

Approach 2

Find the model working well in 
the worst environment.

Causal Features

Construct the model using 
causal features PAY

46



Overview

1. We will provide a formal understanding of shortcut learning through causality.

2. We will propose two approaches for preventing shortcut learning, which both suggest 
using causal features (a set of features that directly causes true labels).

3. We will provide a principle for identifying causal features by leveraging the causal 
invariance property.

47

i. Approach 1. Avoid causally irrelevant features to the true label as much as possible.

ii. Approach 2. Find an ML model that works best for all heterogeneous data generating processes.



Identification of Causal Features is Difficult in Practice 

48

● We discussed that ML models should be constructed using causal features PAY.

● When causal graphs are unknown, PAY (parental nodes of Y), is hardly identifiable. 

Environments Samples

Identification 
of PAY

M

MV1

MVk

…

D

DV1

DVk

… ❓
How can we identify causal features?



Property of Causal Feature: Causal Invariance

49

[boat] [water] 

“boat!” “boat!”

[boat] [road] 

The relation (Y, PAY) (the true label and its causal feature) is preserved on 
different environments (e.g., [boat in the water], [boat in road]) generating 
perturbed examples. 



Causal Invariance: Property of Causal Feature

50

Causal Invariance 

Suppose Y is not connected by bidirected paths (Equivalently, UY, the hidden/noise variable 
affecting Y, is independent of all other variables). Then, for any environments M1, M2, 

PM1(Y | PAY ) = PM2(Y | PAY )

(Informal) Causal Invariance: The probabilistic relation b/w the label and causal features 
(Y, PAY) is invariant over all environments. 



Test Function: Deriving Causal Features from Invariance 
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Test Function

TE(X,Y)=1 if the relation b/w (X,Y) is invariant for all given environments in E. 

Observation: Finding the set X invariant to Y is easier than finding PAY. 

● Example 1: X invariant to Y if PM1(Y | X) = PM2(Y | X) for all environments M1, M2  in E. 
[Peters et al., 2016]

● Example 2: X invariant to Y if (Y, V\X) are independent conditioned on X (i.e., PM(Y | V) = 
PM(Y | X) ) for all environments M  in E. [Heinze-Deml et al., 2018]



Identification of Causal Features

52

Identifying Causal Features in high probability [Theorem 4]

Suppose TE(X,Y) can capture the invariant set in high probability. Then, the smallest set 
passing the test; i.e., ⋂X ⊆ V{X s.t.  TE(X,Y)= 1}, is the causal feature in high probability! 

captures the causal feature PAY in high probability. 
Takeaway: If we have a test that captures the invariant set in high probability, causal 
features can also be captured in high probability! 

Remark: The causal feature X = PAY is the smallest set satisfying TE(X,Y)= 1 (i.e., the 
causal feature is the smallest invariance set). 



Take-Home Message
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Approach 1

Avoid causally irrelevant 
features as much as possible. 

Approach 2
Find the model working well in 
the worst environment.

Causal Features

Construct the model using 
causal features PAY

Invariant Features

The smallest invariant set 
is the causal feature.

Take-home message: (1) Take the smallest invariant set for all environments, and (2) 
Build the model based on this set b/c they are causal features (in high prob.) 



Summary of Part 2
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● We formalize the problem of learning the ML model robust to the shortcut learning w.r.t. 
Structural Causal Models. 

● We proposed two approaches – (1) Avoid causally irrelevant features, and (2) Find the 
most performant models in the worst environment. These two approaches lead to the 
same conclusion – Construct the model using causal features. 

● Identifying causal features is hard when the graph is absent. To circumvent this challenge, 
we propose to use the smallest invariant feature since it captures the causal feature.



Q&A for Part 2
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