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Challenges of interpretation in ML

Adversarial Noise

Interpreting behaviors of ML
result Is important!
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What is interpretability?

Even if there are no technical definitions due to the perceived subjectivity, common
consensus is the following:

Interpretabillity is the degree to which a human can

1. consistently predict the model's result [Kim et al., 2016]

2. understand the cause of a prediction [Miller, 2019]}

This leads “Feature attribution task”™
taking account of Causality!
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Task of Interpretable Machine Learning

Feature attribution given (v, f(Vv))

» Input: A pair of (v, f(v)), where f(v) is a black-box machine learning model
prediction for some input v = {v;, v,, -=-, v} (where x; means the ith feature).

+ Output: A vector attr(f,v) = {¢, , -+, ¢, } where ¢; is an importance of v; on f(Vv).

This task is called local (or ‘unit’) explanation since it only consider an individual
°  input-output pair (v, f(v)).
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Attribution task in a coalition game - 1

 Coalition game — The prediction result with n features (called coalition function

v(|n])) made by those n players, how do we attribute the payoff to each individual
players?
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v({1,5}) = 600

v(S) for S C [n] = {1,---,n} is a “coalition
function”, a payoff of a coalition S.

How do we attribute the total payoff (e.g., v({1,2,3.4,5}) to individual players,
taking account of interaction between players?
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Attribution task In a coalition game - 2

» Let v(|n]) denote the total payoff made by [n] := {1,2,---, n} players.

e Let v(S) for S C [n] denote the payoff made by a set of players S.

« Shapley value: The contribution of the player 1 is given by the average of the
marginal contribution of the player i

=%y ("_1)_1{ (SU {i}) = v(S)]
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Marginal contribution of Xx; given X
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. Efficiency: 2:;1 ¢. = v([n]) — v(DB) = v([n]);

The Shapley value perfectly assigned the contribution v(|n]).

o Dummy: If v(SU {i}) —v(S) =0forall § C [n]\{i}, then ¢, = O.

If the marginal contribution of the player i in the team S, v(S U {i}) — v(S), is zero for all team S, then
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e Symmetry: Ifv(SU {i}) =v(SU {j})forall§ C [n|\{i,j}, then ¢, = gbj.

If the marginal contribution of the player i, j in the team S are the same for all team, then ¢; = ¢,

» Linearity : ¢, is a linear function of v($) V§ C [n].
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Application of Shapley to ML

 Set the ML output f(v) as v([n]). Then the problem is to assign the contribution of
individual features vy, -+, v, for explaining f(Vv).

* [Lundberg & Lee, 2017] proposed to use the Shapley value to explain the ML output
f(v) —“SHAP” or “Conditional Shapley”. For Y := f(V),

1 n—1\"
cbvi:;ZSgn]\{i}( . ) (ELY|v5] - ELY| v, 5]}

Marginal contribution of v;

* The conditional Shapley measures the importance by its association / predictive
power for the output (V).


https://arxiv.org/abs/1705.07874

Limitation of Conditional Shapley - (1)
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Limitation of Conditional Shapley - (1)

Scenario: Predict customers’ retention rate.

The data-generating process is here:

We measure the feature importance
of “Discount” to explain Retention.

- [Rentention | Discount, V]
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Limitation of Conditional Shapley - (2)

The results state that providing more discount leads to less retention.
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Limitation of Conditional Shapley - (3)

Lundberg, who developed SHAP, diagnosed this model fails due to the lack of
considering causality.

“Interpreting a normal predictive model as causal are often unrealistic.”

Sales calls
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Limitation of Conditional Shapley - (3)

Lundberg, who developed SHAP, diagnosed this model fails due to the lack of
considering causality.

“Interpn

Feature attribution method must

take account of causality!
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Structural Causal Model

Structural Causal Model Z = (V,U, F, P(u))

 V: A set of endogenous (observable) variables.

» U: A set of exogenous (latent) variables.

» F: A set of structural equations {fy } <y determining the value of V; € V,
where V. ‘_fvl-(PAV,-’ UVi) for some PAV,- C V and Uy © U.

« P(u): A probability measure for U.

An SCM induced a qualitative description in the form of a “causal graph”

© G=GU).
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Task — Interpretability task w.r.t. SCM

Input: A causal graph G; an input-output (v, f(v)); and a dataset for G. Note G is
induced by the SCM.

1. Acausalgraph Gison V, Y for Y := f(V).

2. A pair of an individual input-output: (v, f(V)),
3. Adataset D of {V,Y;=f(V)}L, .

Output: A vector attr(f,v) = {¢,, =+, @, | where ¢, is an importance of a node v;.

16



Interpretability Tasks w.r.t. SCM

17

What properties a desirable causally
Interpretable feature attribution method
should satisfy?




Task: Application to ML Interpretation

Causal Graph
G = G(V)

Samples
D ~ P(V)

When the outcome is a ML model output
Y := f(V), the target is reduced to
O = f(v) = E[Y|do(V)], and the problem

reduces to measuring the importance of
INnputs.

Output of the ML
model f( - )

Q = f(v)

; Contribution of
Feature | .
— Inputs v, € V10

Attribution |
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P(y|do(v,)) = P(y) Vy,v,forV.€ V.

« Causal Symmetry: If v, Vi €V have the same causal explanatory power to Y, then
¢Vi — ¢Vj. P(y|do(v;),do(w)) = P(y|do(v;),do(w)) Yy and W C V\{V,, V;}.

+ Linearity : ¢, must be a linear function of E[ Y| do(vy)]
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Thm. 1. Axiomatic characterization of do-Shapley

A following attribution method attr(f, v) = {gbvi} named do-Shapley, is uniquely

satisfying the Causal IML Axioms.
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vs. Conditional Shapley

- -
s &

V. V5 Y

V. is causally irrelevant to Y (i.e., P(y|do(v,)) = P(y)).

e by () = 0, because ({1} — vg({}) = v ({1,2}) — g ({2}) = 0,

» However, it’s possible that ¢y, (v,,,,4) 7 0

Q Causal Irrelevance axiom does not hold in Conditional Shapley.

20
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We develop causally interpretable feature attribution method.

1. We axiomatize and characterize a causally interpretable feature attribution method,
and propose do-Shapley values.

2. We provide identifiability condition where the do-Shapley values can be inferred
from the observational data.

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al.,
2018] based do-Shapley estimator for practical settings.

21


https://academic.oup.com/ectj/article/21/1/C1/5056401
https://academic.oup.com/ectj/article/21/1/C1/5056401

Outline

2. We provide identifiability condition where the do-Shapley values can be inferred
from the observational data.
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do-Shapley ldentifiability -
Challenge

| n—1\"
¢, :=; Z ( S ) {—[Y\do(VS,vl-)] — —[Y\dO(VS)]}

SCln]

» We have to determine the identifiably of E[Y | do(v¢)] forall V¢ C V.

* This might take exponential computational time.
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do-Shapley ldentifiability -
Challenge

Identification of do-Shapley

Assume Y is not connected by bidirected paths. If any variables are not connected to
its children by bidirected paths (i.e., V; and Ch(V;) are not in the same C-component),

then the do-Shapley is identifiable (i.e., E[ Y| do(v¢)] for all V¢ C V is identifiable).
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Challenge

Identification of do-Shapley

Assume Y is not connected by bidirected paths. If any variables are not connected to
its children by bidirected paths (i.e., V; and Ch(V;) are not in the same C-component),
then the do-Shapley is identifiable (i.e., E[ Y| do(v¢)] for all V¢ C V is identifiable).

Specifically,
=[Y]do(vg)] = -[Y \V]— P(v, | pre(vy))
’ ZV? HV ccvoy P alpre(vg »H%} ngs,g ’ ’

where §, is some partition of V.
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do-Shapley ldentifiability: Examples
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]E[Y\v] if S ={1,2,3}.
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Outline

We develop causally interpretable feature attribution method.

1. We axiomatize and characterize a causally interpretable feature attribution method,
and propose do-Shapley values.

2. We provide identifiability condition where the do-Shapley values can be inferred
from the observational data.

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al.,
2018] based do-Shapley estimator for practical settings.

27


https://academic.oup.com/ectj/article/21/1/C1/5056401
https://academic.oup.com/ectj/article/21/1/C1/5056401

Outline

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al.,

2018] based do-Shapley estimator for practical settings.
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Outline

3. We construct a double/debiased machine learning (DML) [Chernozhukov et al.,

2018] based do-Shapley estimator for practical settings.
DAG (No latent confounders, in this talk!)
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Two components in do-Shapley estimation

1. Exploring all possible subsets in [n]\{i};

Random Permutation based approximation
»
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Monte-Carlo approximation for do-Shapley (1)

| n—1\" |
¢i=;ZSgn]\{i}( " ) (S U L)) = w(S)).

1

— {I/(Vi’ pre (Vi)) — I/(pre (Vl))} [Strumbelj and Kononenko, 2014]
n| 4= z(V)eperm(v) " "
Predecessor of V; given the fixed
all possible permutation of V.= {V;}'_,  permutation z(V).

= vy [V pre(v) — v(pre (v)]

The expectation is over the probability for each permutation order 7(V), where P(x) = —
n!
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¢; = = 2(V) [V(Vi» preﬂ(Vi)) — V(preﬂ(vi))]-

S
hi=57 2 (v, pre, (2)) = vlpre,, () |

» For M number of randomly generated permutations of V (where each permutations
are denoted ﬂ(m)),

. Compute v(v,, preﬂ(m)(vl-)) — I/(preﬂ(m)(vi)) and take an average.
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Random permutation-based algorithm

1. Initiate ¢y, = Oforall V; € V.

2. Generate M randomly generated permutations of V. The permuted variables are
V.= 1Vo1,» V), where V., is the ith variable in the permutation 7.

3. Foreachi = 1,2,---, n, compute

¢Vi < ¢Vi T {DdO(Vn,h preﬂ'(vﬂ',i)) - VdO(preﬂ(Vﬂ,i))}

4. Foreachi = 1,2,---,n, ¢, < (1/M) - ¢y,
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Monte-Carlo approximation for do-
Shapley (1)

Let v(S) := E[Y|do(vg)], where Vo C V

:lz (n—1>_1{ SUii})—v©S)]
LT A SCI\i) S| Y l Vio)g
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Let v(S) := E[Y|do(vg)], where Vo C V

1

LY (”_1)_{ (SU (i}) - v(S))
' o Asciniy \ | S Y l Vi)

1

— T, v(v., pre (v:.)) — v(pre (v;
n' n(V)eperm(V){ ( > P ”( l)) (P ﬂ( l)) j

all possible permutation of V = {V;}I_,
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Monte-Carlo approximation for do-
Shapley (1)

Let v(S) := E[Y|do(vg)], where Vo C V

1

:lz (n_ >_{(SU{'})— (3)}
LT e SN} | S | ' | o

B |

N g r(V)epermcv) {U(Vi’ preﬂ(vi)) o U(preﬂ(vi)) }

all possible permutation of V = {V;}I_,

= vy [V, pre,(v) — v(pre (v)]
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Monte-Carlo approximation for do-
Shapley (1)

Let v(S) := E[Y|do(vg)], where Vo C V

=y ("_1)_1{ (S U {i}) = v(S))
' o Asciniy \ | S Y l Vo)

1

- v(v., pre (v;)) — v(pre (v:
7 Livepermey L0 Pre0) — v(pre, (7))

Predecessor of V., given the fixed
all possible permutation of V.= {V;}'" | permutation (V).

The expectation is over the probability for each

—~7(V) [U(Vi’ preﬂ(vi)) B D(pren(vi))] permutation order 7(V), where P(x) = L

n!
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¢; = = 2(V) [IJ(VZ-, preﬂ(vl‘)) — V(preﬂ(‘/i))]-

P
Bi=— Y {vpre, () = vlpre, () }

=1
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Monte-Carlo approximation for do-
Shapley (2)

¢; = E v [y(vl-, pre_(v;)) — y(preﬂ(vl-))].

1 M

¢ = - Z {y(vl-, preﬂ(m)(vl-)) — U(pre

m=1

) }

T(m)

» For M number of randomly generated permutations of V (where each permutations
are denoted Jz(m)),
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Recall the random permutation based Shapley approximation is

N M

1
by =~ Y | TOypre, (2) = T(ore, () |

m=1
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Empirical Study: D