Tutorial on Structural Causal Model

- - **Purdue University**
 - yonghanjung.me

Yonghan Jung

2022.07.11

University of Seoul 2022

Overview of Lecture Series

This lecture series composes of the following topics:

- 1. Tutorial on Structural Causal Model (SCM) 2. Causal Effect Estimation on Any Identifiable Causal
- Functional.
- 3. Application to Interpretable Machine Learning

Outline for Lecture Series

Introduction and Motivation

Practical Causal Query is Expressible as "What-If"

Many practical queries on causality are encoded as a "What-If" question.

Practical Causal Query is Expressible as "What-If"

Many practical queries on causality are encoded as a "What-If" question.

 Example 1. (Randomized Controlled Trials had taken an aspirin?

• Example 1. (Randomized Controlled Trials): What would have been Alice's headache if she

Practical Causal Query is Expressible as "What-If"

Many practical queries on causality are encoded as a "What-If" question.

- had taken an aspirin?
- ad's click rate if the design A has been chosen?

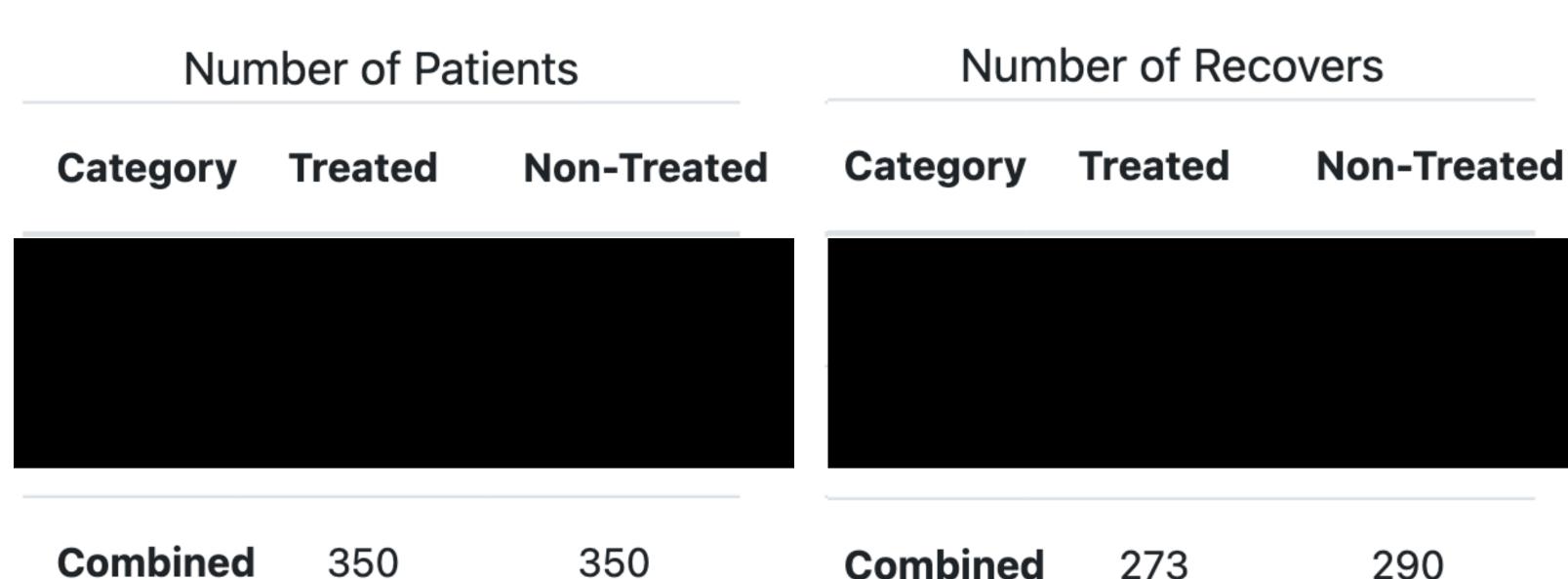
• Example 1. (Randomized Controlled Trials): What would have been Alice's headache if she

• Example 2. (A/B Test) Among two designs {A,B} for an online ad, what would have been the

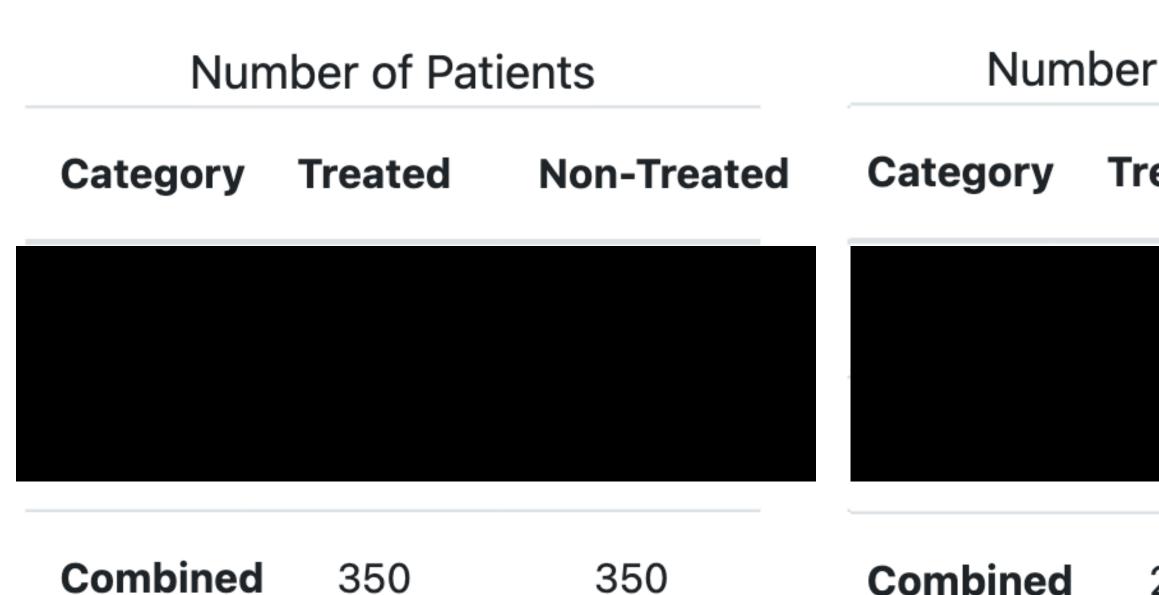
Number of Patients

Category Treated Non-Treated

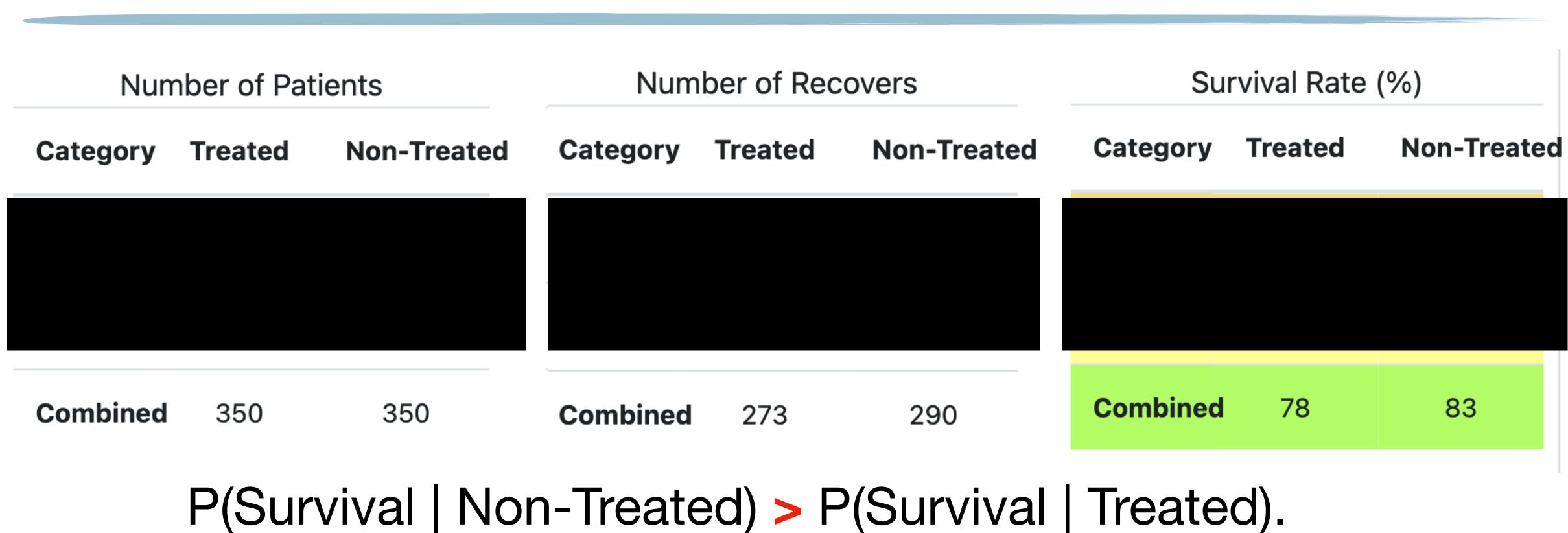
Combined 350 350

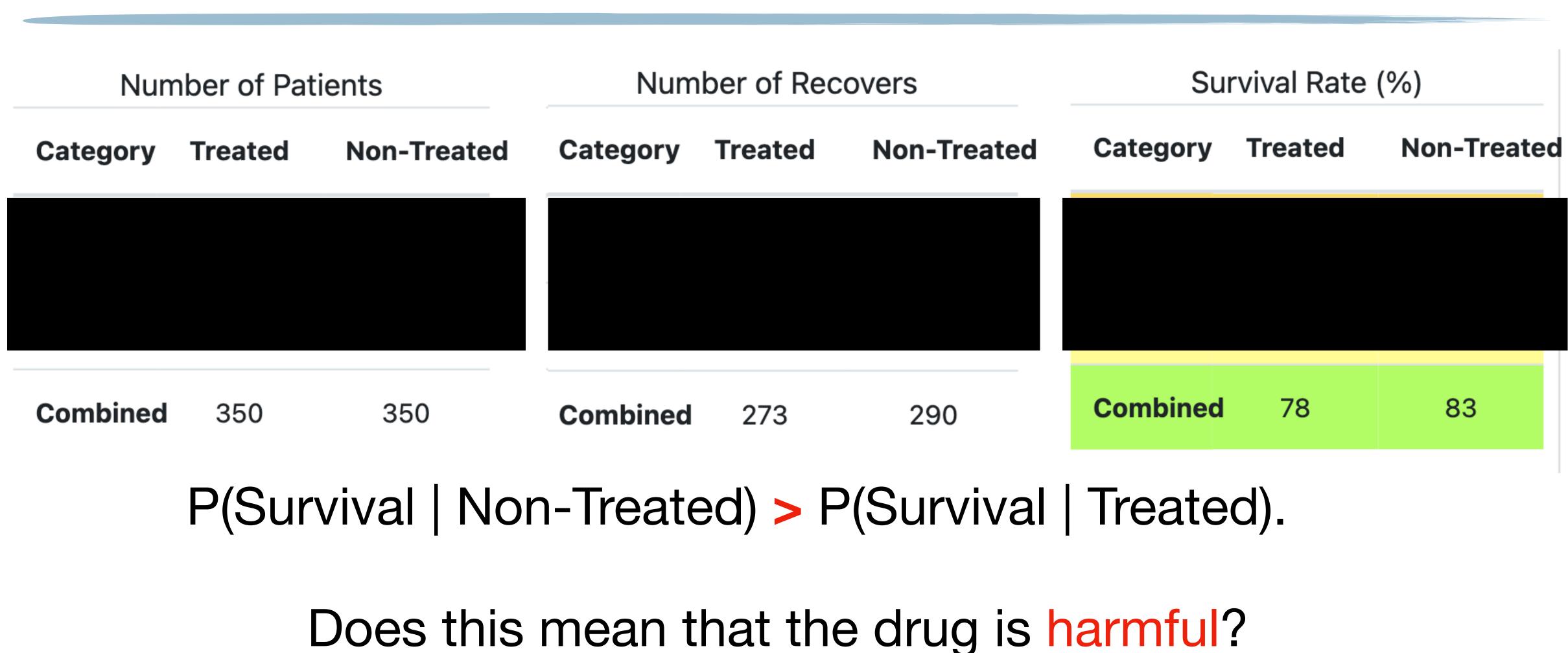


Non-Treated



r of Recovers		Su	rvival Rate	(%)
reated	Non-Treated	Category	Treated	Non-Treat
273	290	Combined	78	83





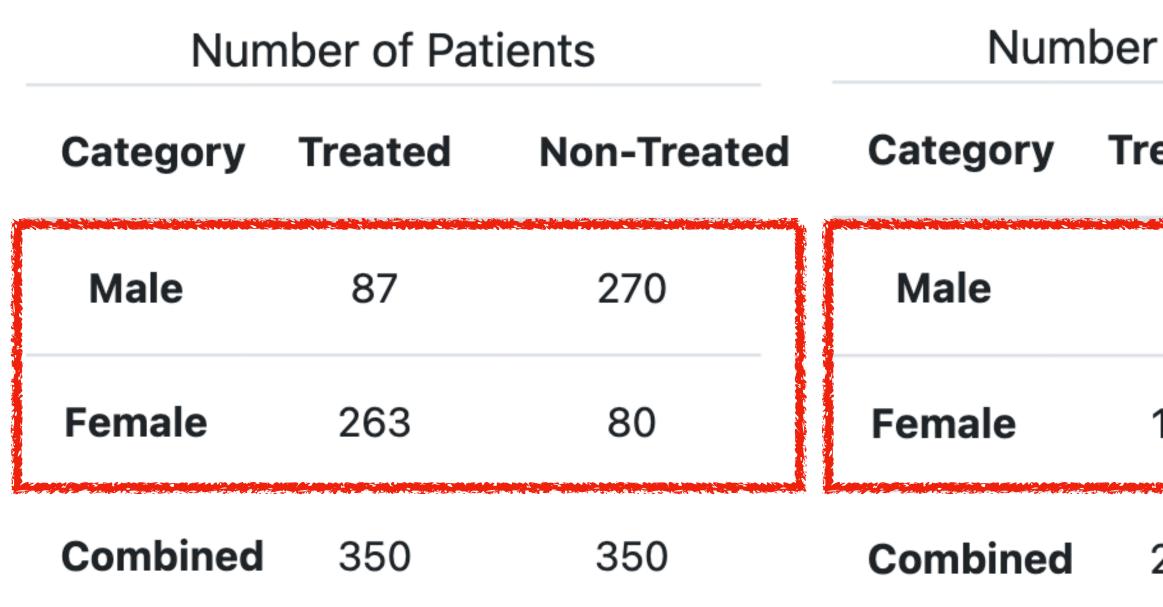
Number of Patients

Category	Treated	Non-Treated
Male	87	270
Female	263	80
Combined	350	350

- Number of Recovers
 - Treated Non-Treated
 - 81 235
 192 55
 273 290



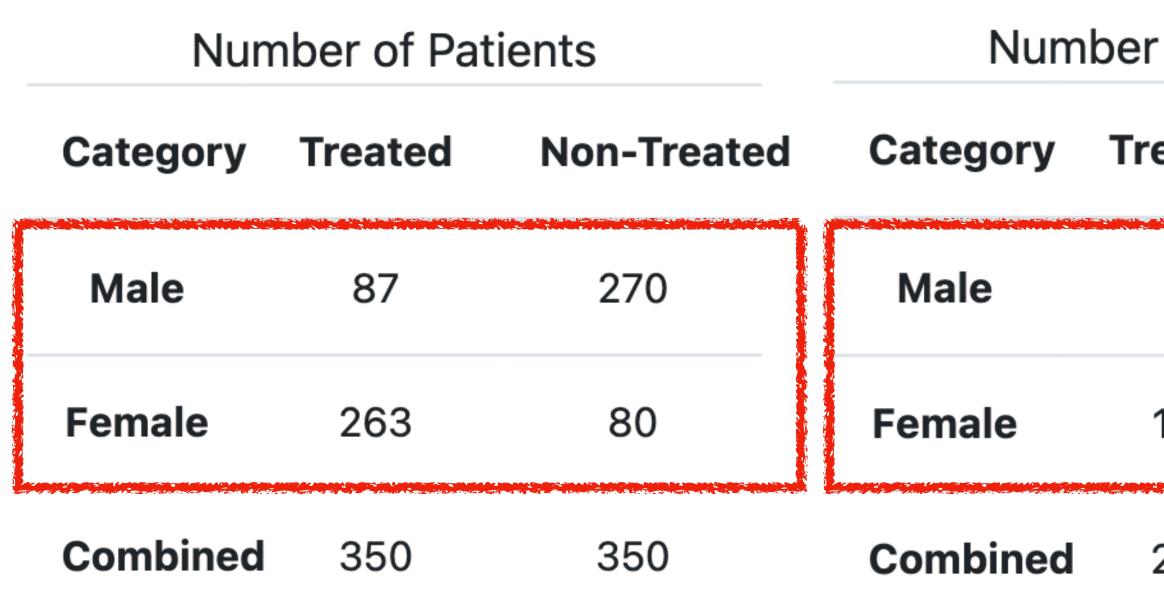
r of Recovers		Survival Rate (%)		
eated	Non-Treated	Category	Treated	Non-Treat
81	235	Male	93	87
192	55	Female	73	69
273	290	Combined	78	83



P(Survival | Non-Treated, Male) < P(Survival | Treated, Male).

r of Recovers		Survival Rate (%)		
eated	Non-Treated	Category	Treated	Non-Treat
81	235	Male	93	87
192	55	Female	73	69
273	290	Combined	78	83

• P(Survival | Non-Treated, Female) < P(Survival | Treated, Female).



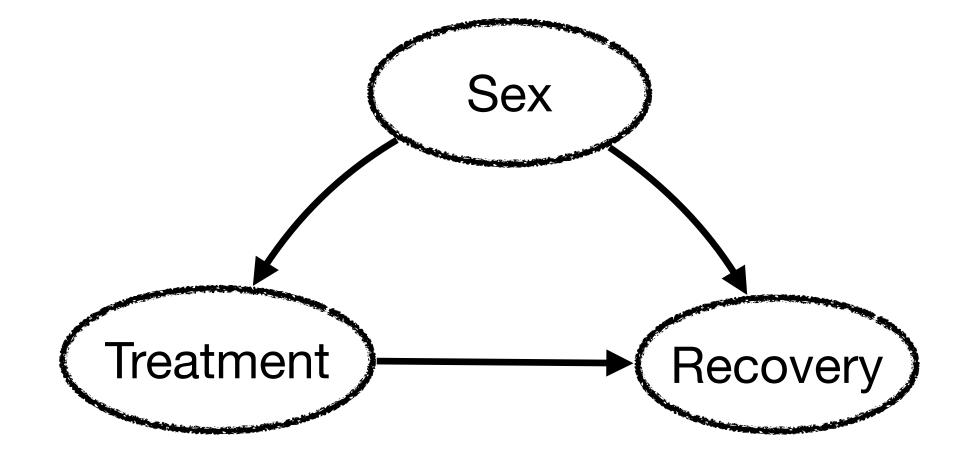
- P(Survival | Non-Treated, Male) < P(Survival | Treated, Male).

Does this mean that the drug is beneficial?

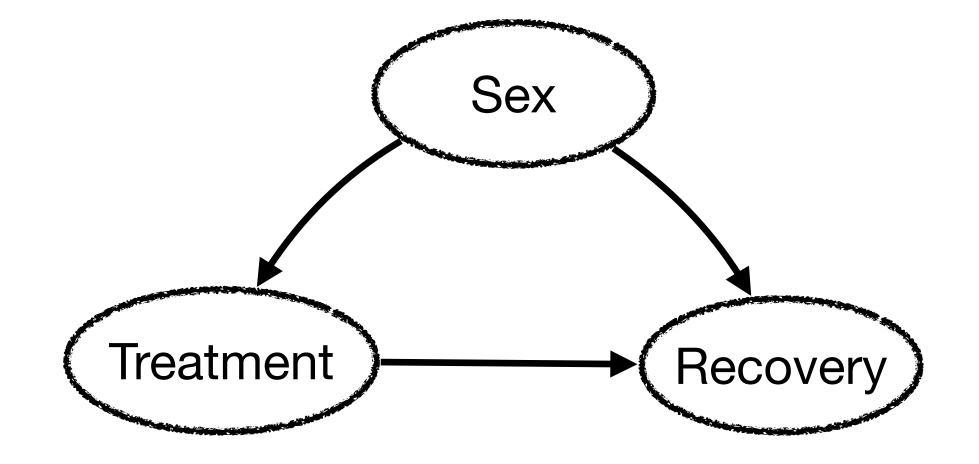
r of Recovers		Survival Rate (%)		
eated	Non-Treated	Category	Treated	Non-Treat
81	235	Male	93	87
192	55	Female	73	69
273	290	Combined	78	83

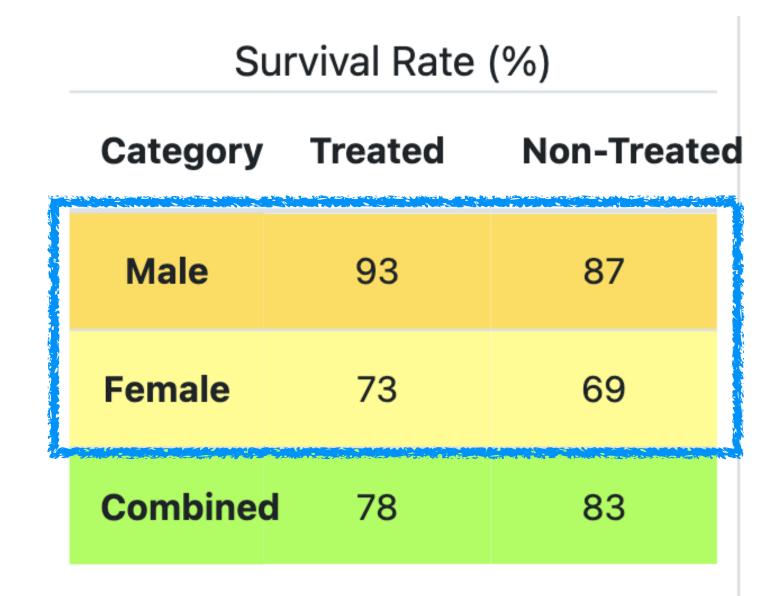
• P(Survival | Non-Treated, Female) < P(Survival | Treated, Female).

	Survival Rate (%)					
0-5430	Category Treated Non-Treat					
	Male	93	87			
	Female	73	69			
црэр Т	Combined	78	83			

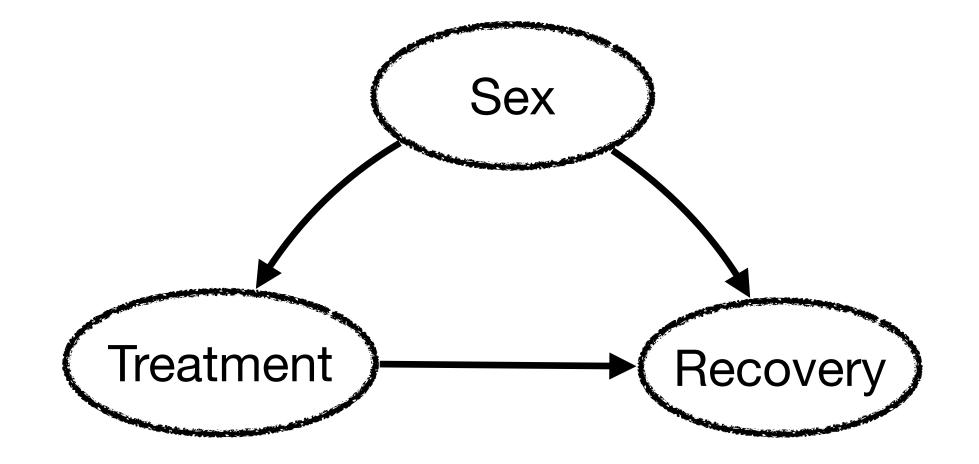


	Survival Rate (%)					
0-5430	Category Treated Non-Treat					
	Male	93	87			
	Female	73	69			
црэр Т	Combined	78	83			



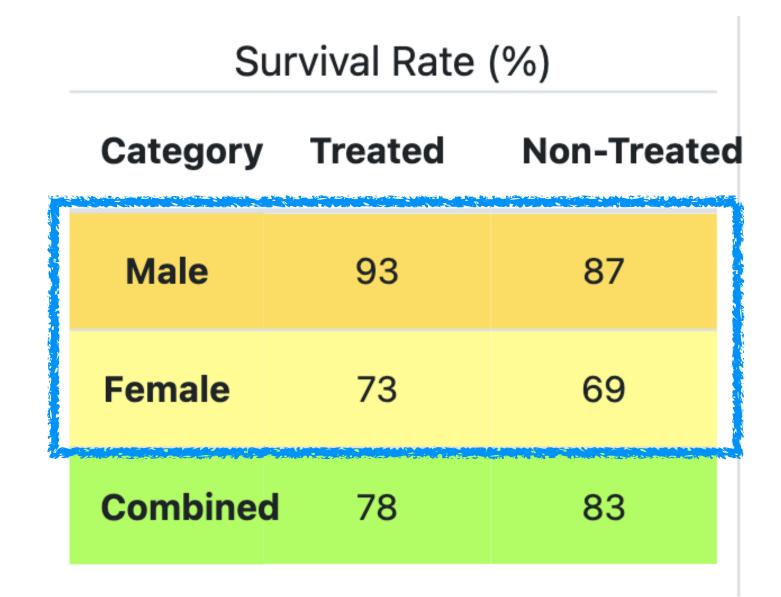


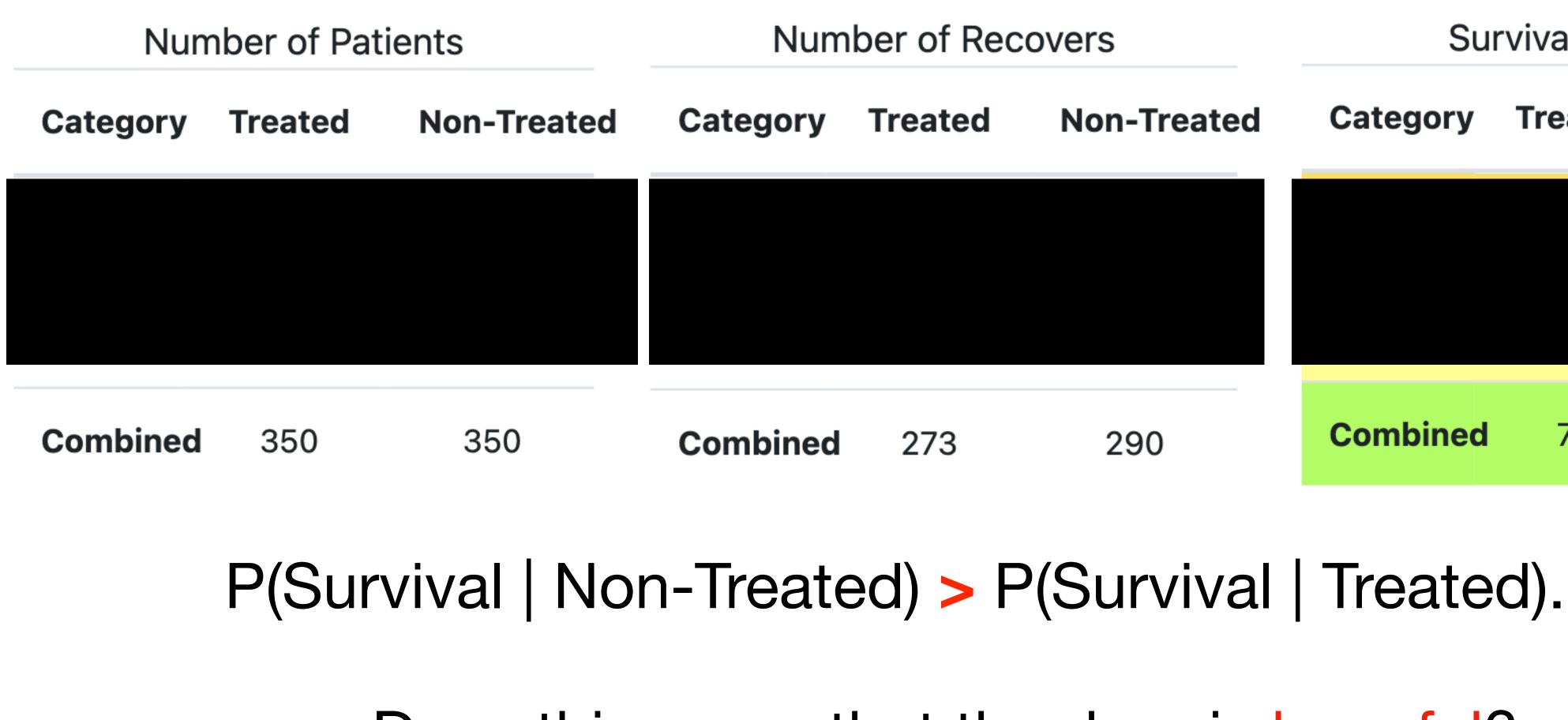
If the data generating process is given as a causal diagram,



If the data generating process is given as a causal diagram,

=> The treatment is beneficial.





Does this mean that the drug is harmful?

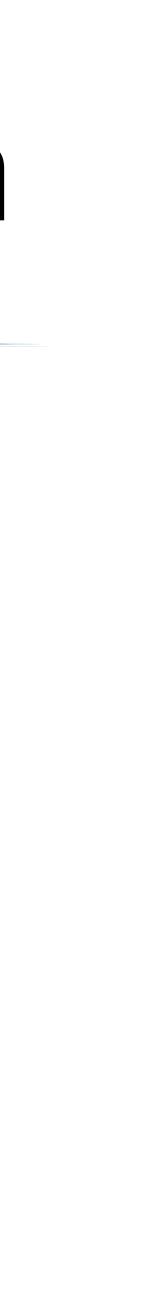
r of Recovers		Survival Rate (%)		
reated	Non-Treated	Category	Treated	Non-Treat
273	290	Combined	78	83

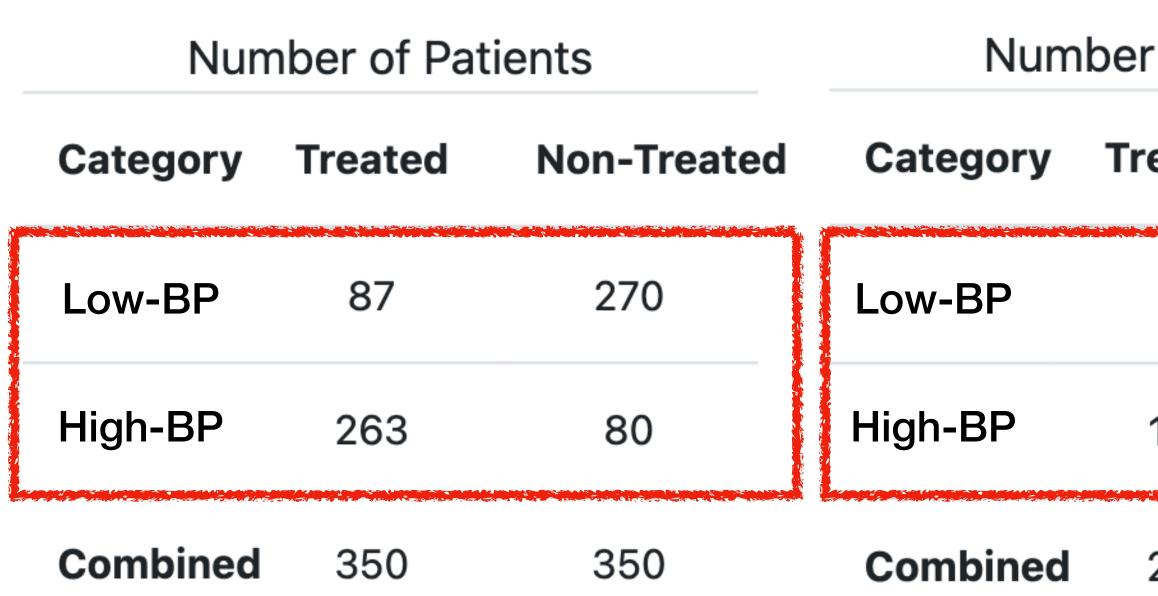
Number of Patients

Category	Treated	Non-Treated
Low-BP	87	270
High-BP	263	80
Combined	350	350

Number of Recovers

eated	Non-Treated
81	235
192	55
273	290



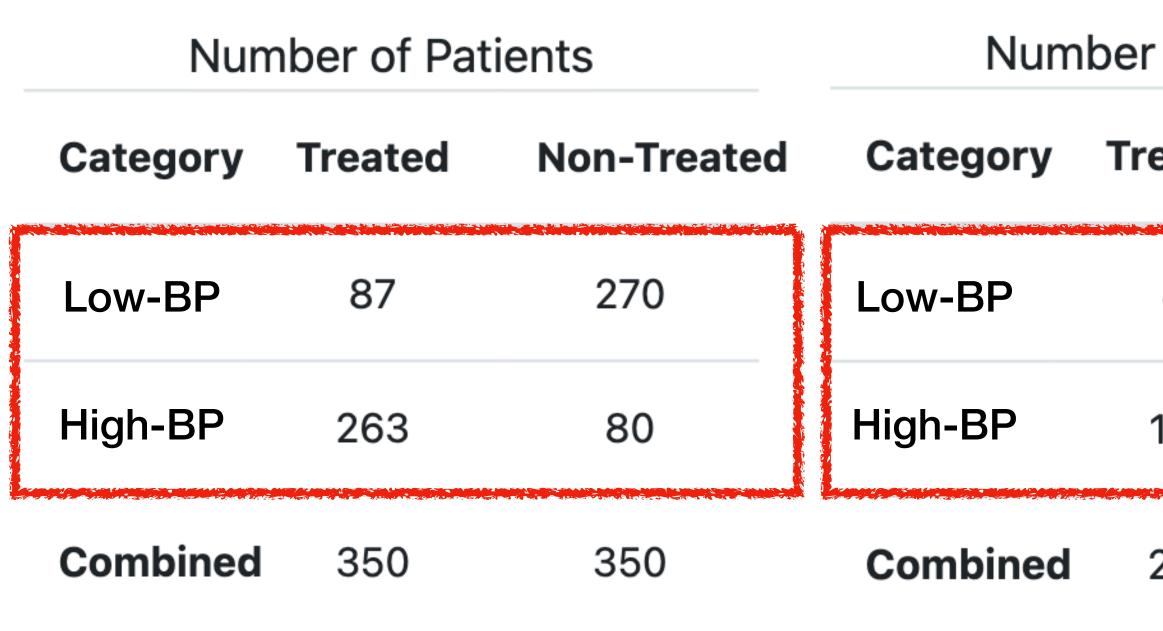


r of Recovers		Survival Rate (%)		
eated	Non-Treated	Category	Treated	Non-Treat
81	235	Low-BP	93	87
192	55	High-BP	73	69
273	290	Combined	78	83

P(Survival | Non-Treated, Low) < P(Survival | Treated, Low).

r of Recovers		Survival Rate (%)		
eated	Non-Treated	Category	Treated	Non-Treat
81	235	Low-BP	93	87
192	55	High-BP	73	69
273	290	Combined	78	83

• P(Survival | Non-Treated, High) < P(Survival | Treated, Female).



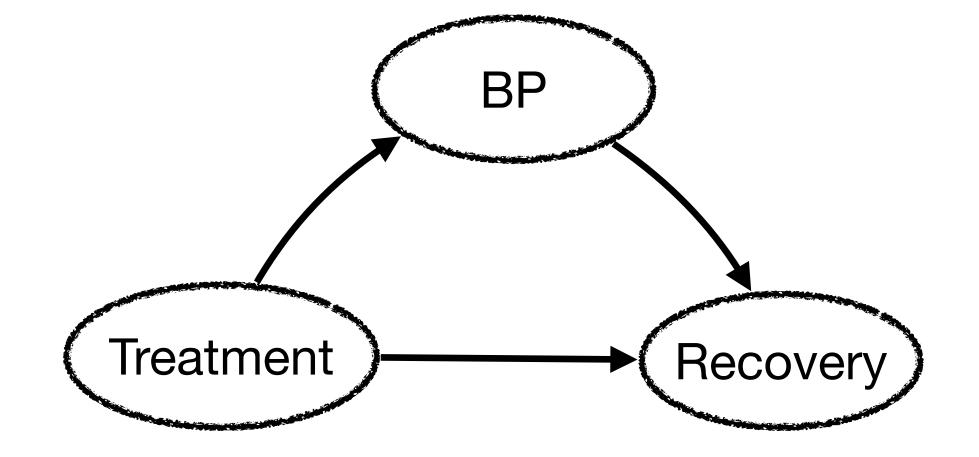
- P(Survival | Non-Treated, Low) < P(Survival | Treated, Low).

Does this mean that the drug is beneficial?

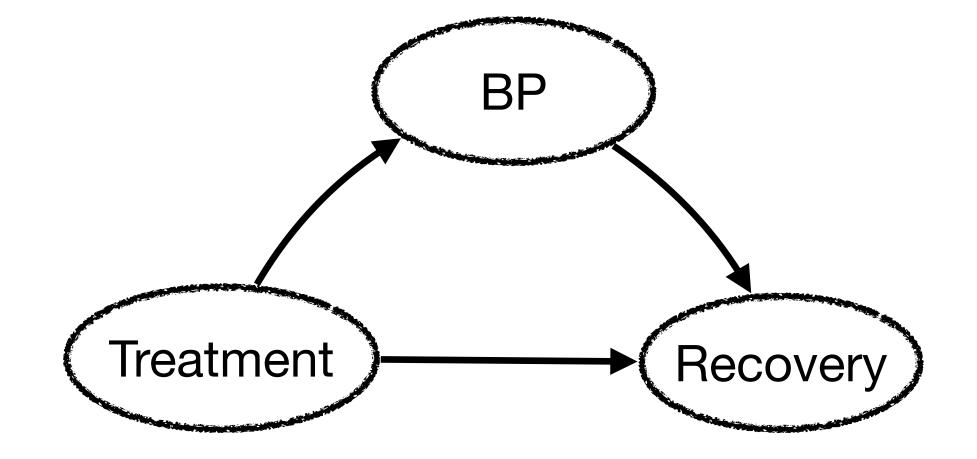
r of Recovers		Survival Rate (%)			
eated	Non-Treated	Category	Treated	Non-Treat	
81	235	Low-BP	93	87	
192	55	High-BP	73	69	
273	290	Combined	78	83	

• P(Survival | Non-Treated, High) < P(Survival | Treated, Female).

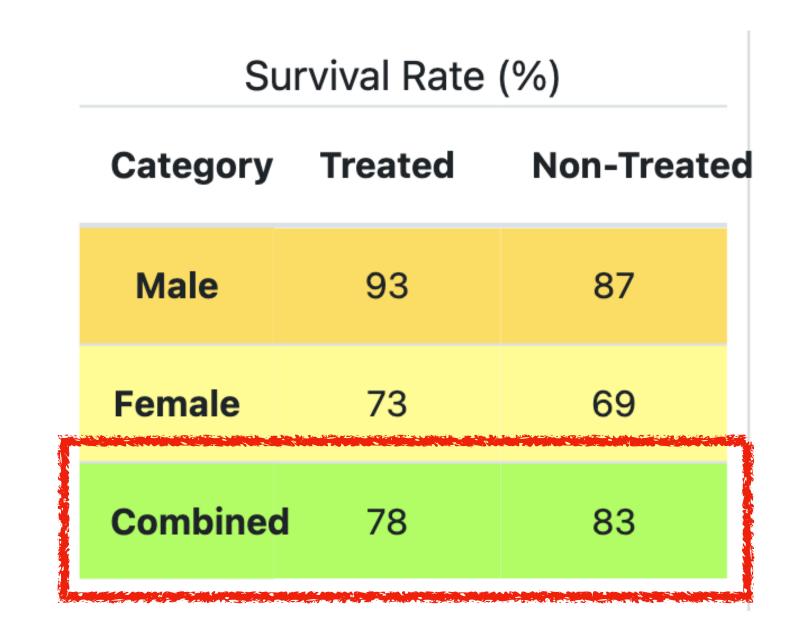
	Survival Rate (%)						
Cat	egory	Treated	Non-Treated				
Ma	ale	93	87				
Fen	nale	73	69				
Con	nbined	78	83				

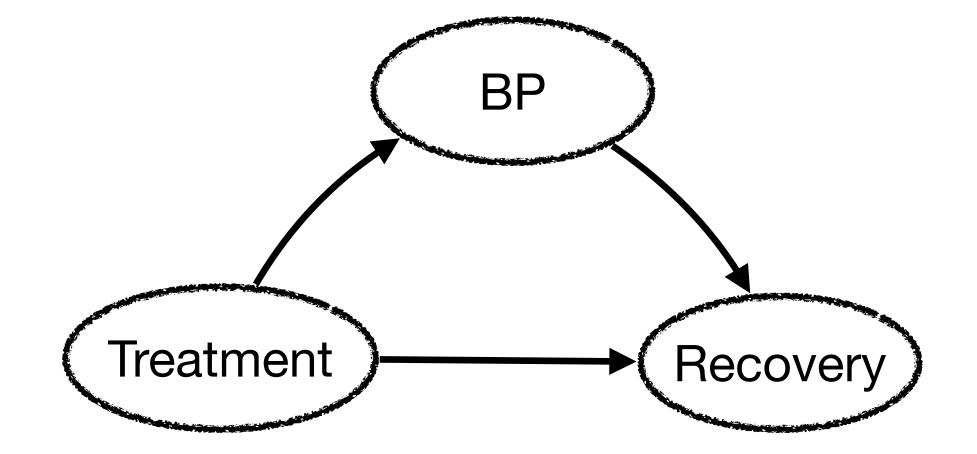


	Survival Rate (%)						
Cat	egory	Treated	Non-Treated				
Ma	ale	93	87				
Fen	nale	73	69				
Con	nbined	78	83				



If the data generating process is given as a causal diagram,





=> The treatment is harmful.



If the data generating process is given as a causal diagram,

For Causal Inference, Understanding the DGP is Crucial

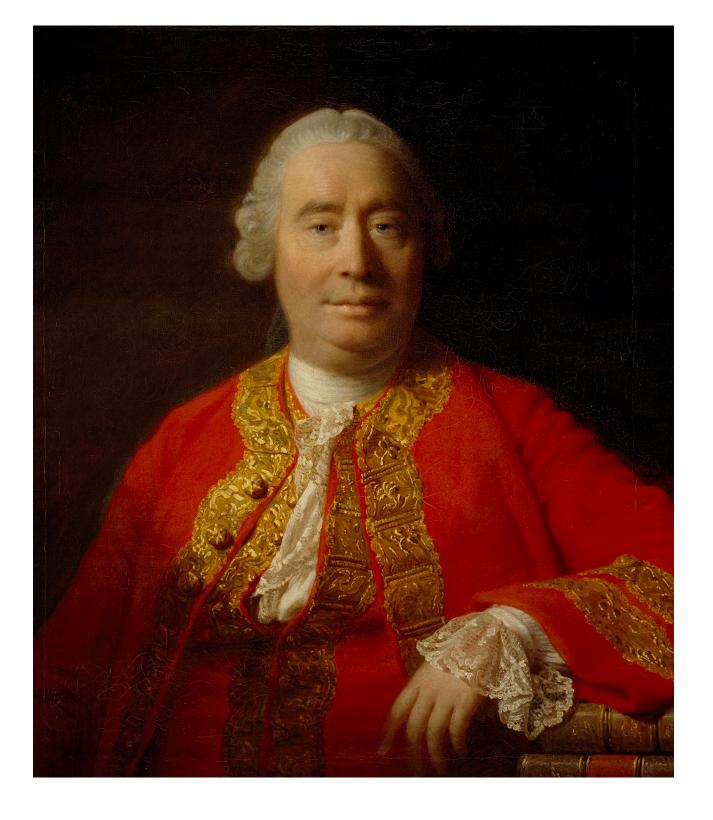
For Causal Inference, Understanding the DGP is Crucial

Two different DGPs have the same correlation structure but different causality structures.

For Causal Inference, Understanding the DGP is Crucial

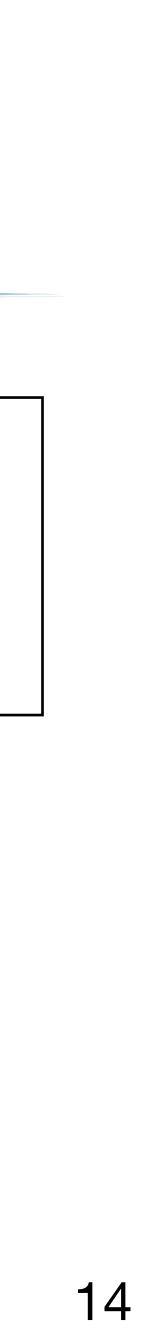
Two different DGPs have the same correlation structure but different causality structures. => For causal inference, understanding the DGP is crucial.

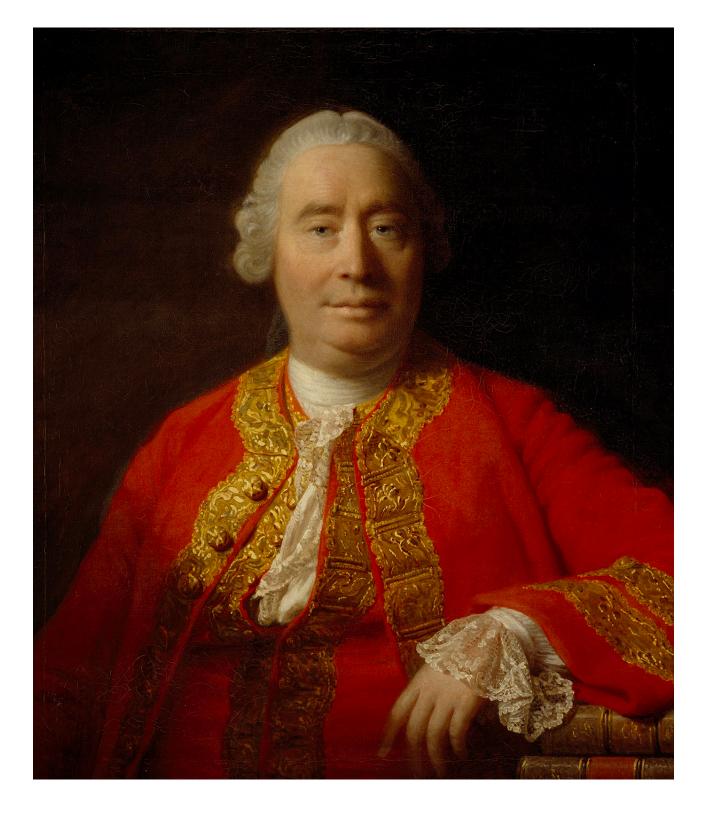
What is Causality? Chronicles of Causality



"We may define a *cause* to be an object, followed by another, and where all the objects similar to the first are followed by objects similar to the second" (1752, Hume)

David Hume

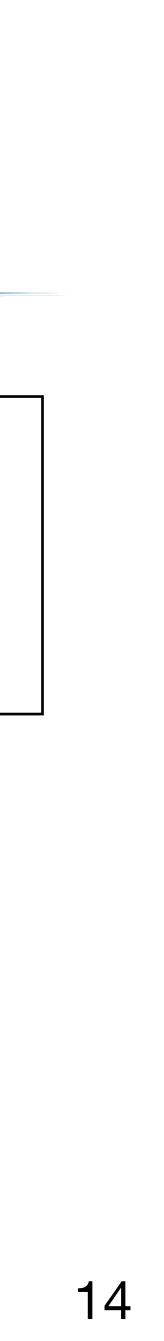


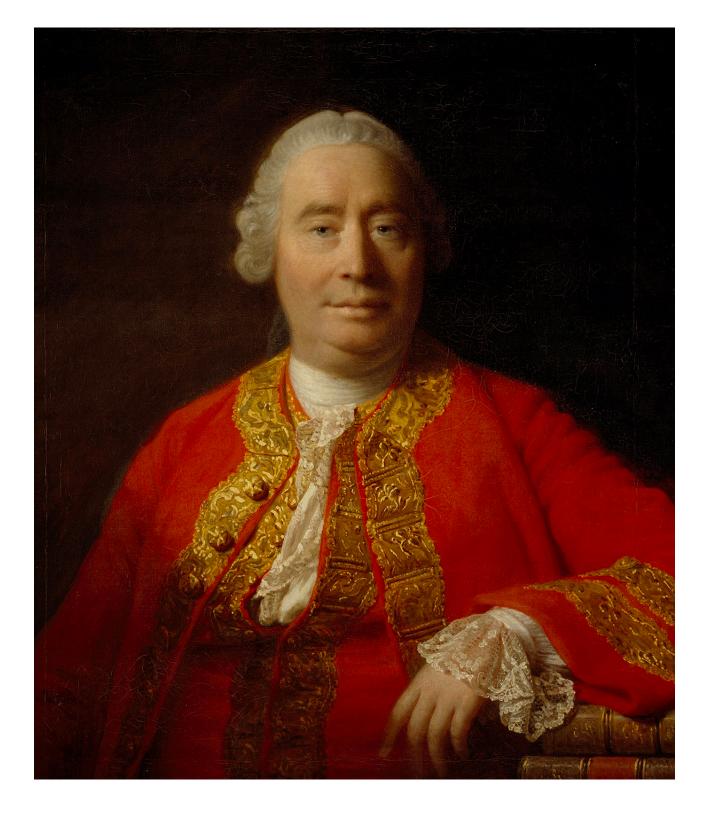


David Hume

"We may define a *cause* to be an object, followed by another, and where all the objects similar to the first are followed by objects similar to the second" (1752, Hume)

=> X is a cause of Y, if X happens and then Y happens.



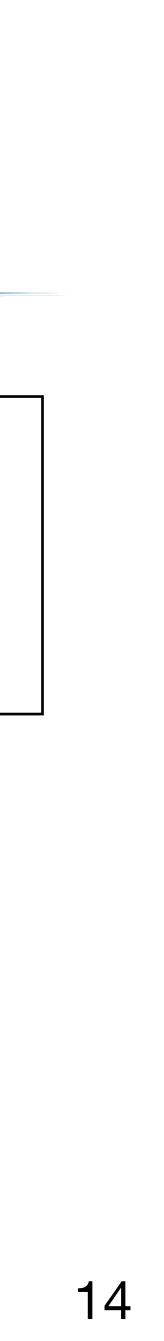


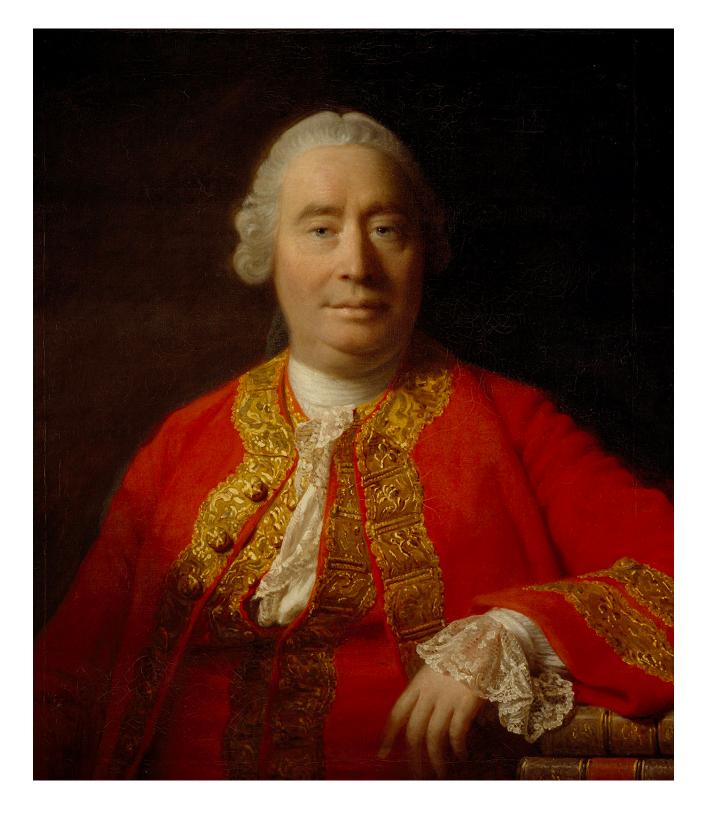
David Hume

"We may define a *cause* to be an object, followed by another, and where all the objects similar to the first are followed by objects similar to the second" (1752, Hume)

=> X is a cause of Y, if X happens and then Y happens.

=> X is a cause of Y, if X and Y has correlation.





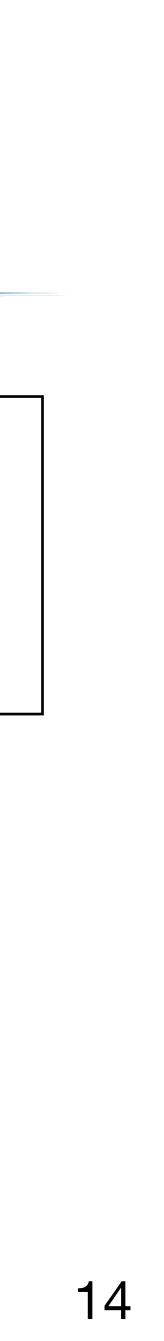
David Hume

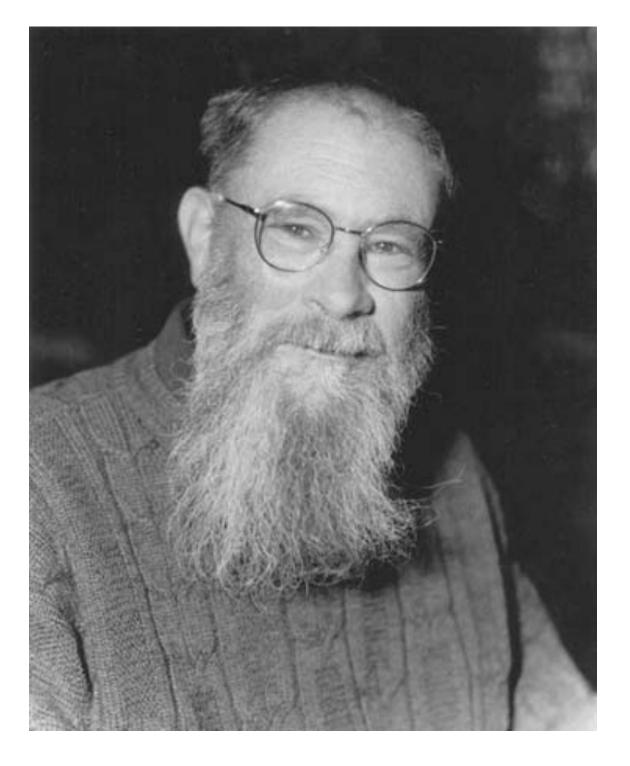
"We may define a *cause* to be an object, followed by another, and where all the objects similar to the first are followed by objects similar to the second" (1752, Hume)

=> X is a cause of Y, if X happens and then Y happens.

=> X is a cause of Y, if X and Y has correlation.

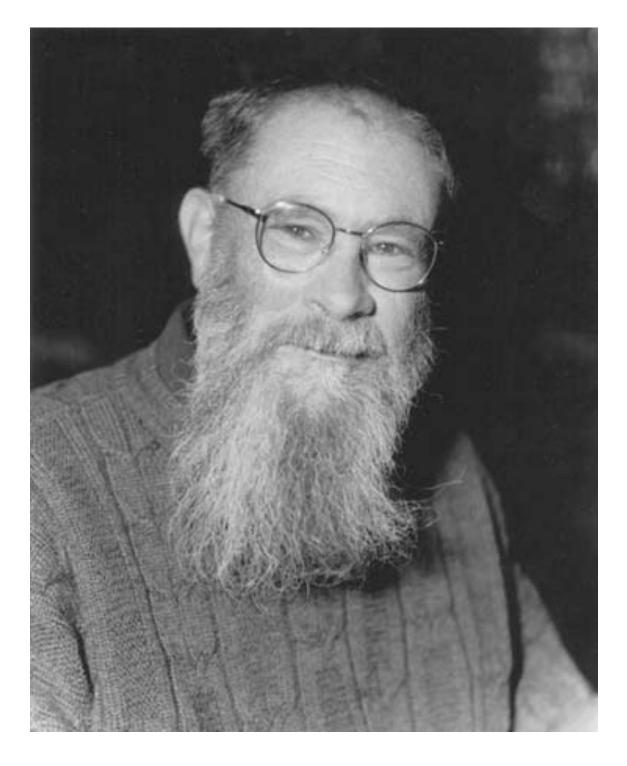
Correlation \neq Causation.





"We may define a *cause* as something that makes a difference, and the difference wouldn't happened without the cause" (Lewis, 1973).

David Lewis



David Lewis

"We may define a *cause* as something that makes a difference, and the difference wouldn't happened without the **cause**" (Lewis, 1973).

- X is a cause of Y, if
- Y would happened if X had been happened.
- Y wouldn't happened if X hadn't been happened.

X is a cause of Y, if

- Y would happened if X had been happened.
- Y wouldn't happened if X hadn't been happened.

- \bullet taken the drug (X = 1).
- X is a cause of Y, if $Y(X = 1) \neq Y(X = 0)$.

Example: Y(X = 1) is the recovery status (Y) if all patients in the population had

X is a cause of Y, if

- Y would happened if X had been happened.
- Y wouldn't happened if X hadn't been happened.

their DGP (or population).

- **Example:** Y(X = 1) is the recovery status (Y) if all patients in the population had lacksquaretaken the drug (X = 1).
- X is a cause of Y, if $Y(X = 1) \neq Y(X = 0)$.

Counterfactual (Potential-Outcome): Y(X = x) is Y when values of X is set to x in

Counterfactual / Potential-Outcome: Example

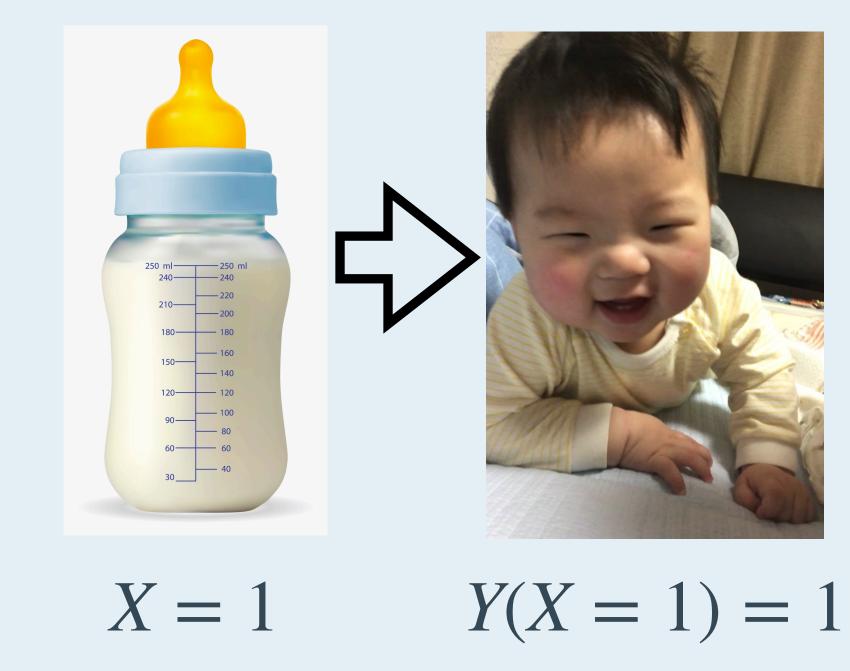
X is a cause of Y, if

- Y would happened if X had been happened • Y wouldn't happened if X hadn't been happened

Counterfactual / Potential-Outcome: Example

X is a cause of Y, if

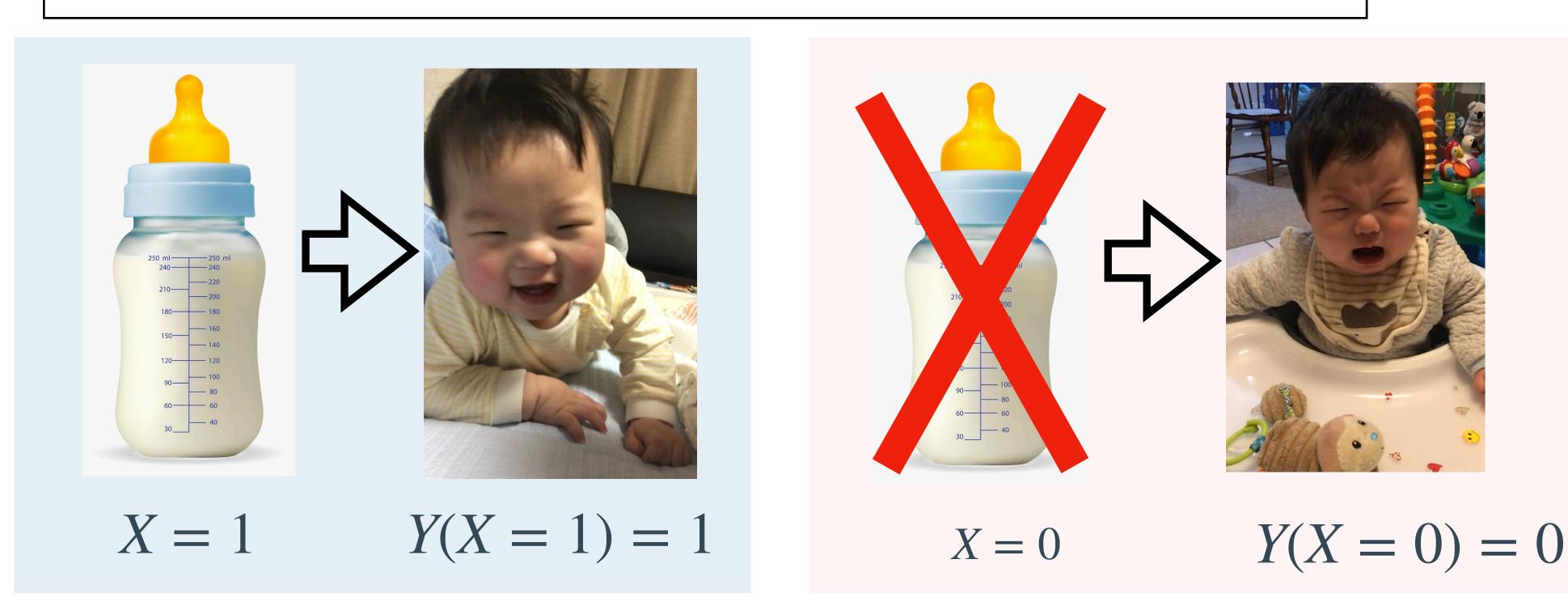
- Y would happened if X had been happened • Y wouldn't happened if X hadn't been happened

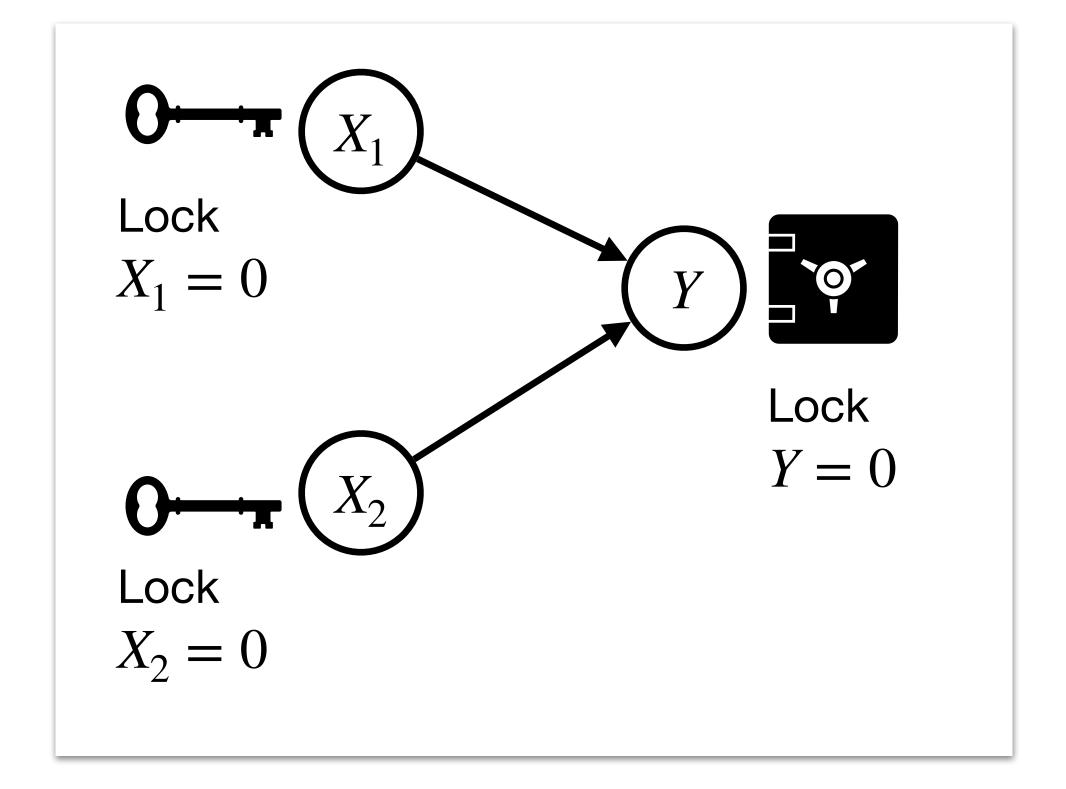


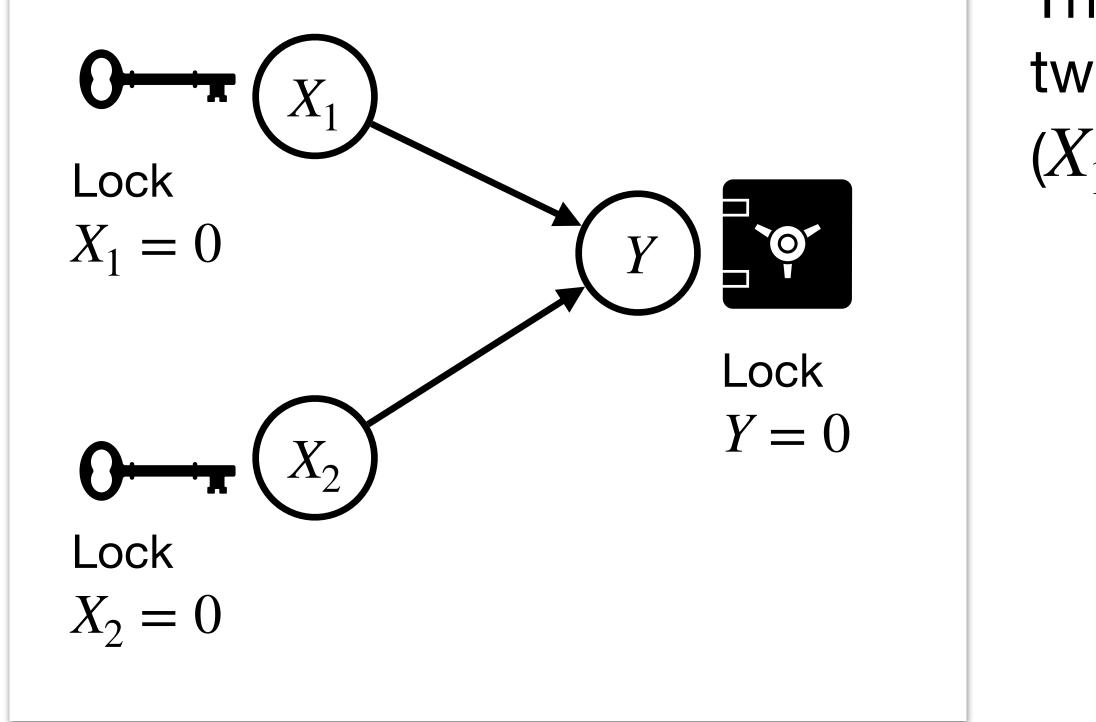
Counterfactual / Potential-Outcome: Example

X is a cause of Y, if

- Y would happened if X had been happened • Y wouldn't happened if X hadn't been happened

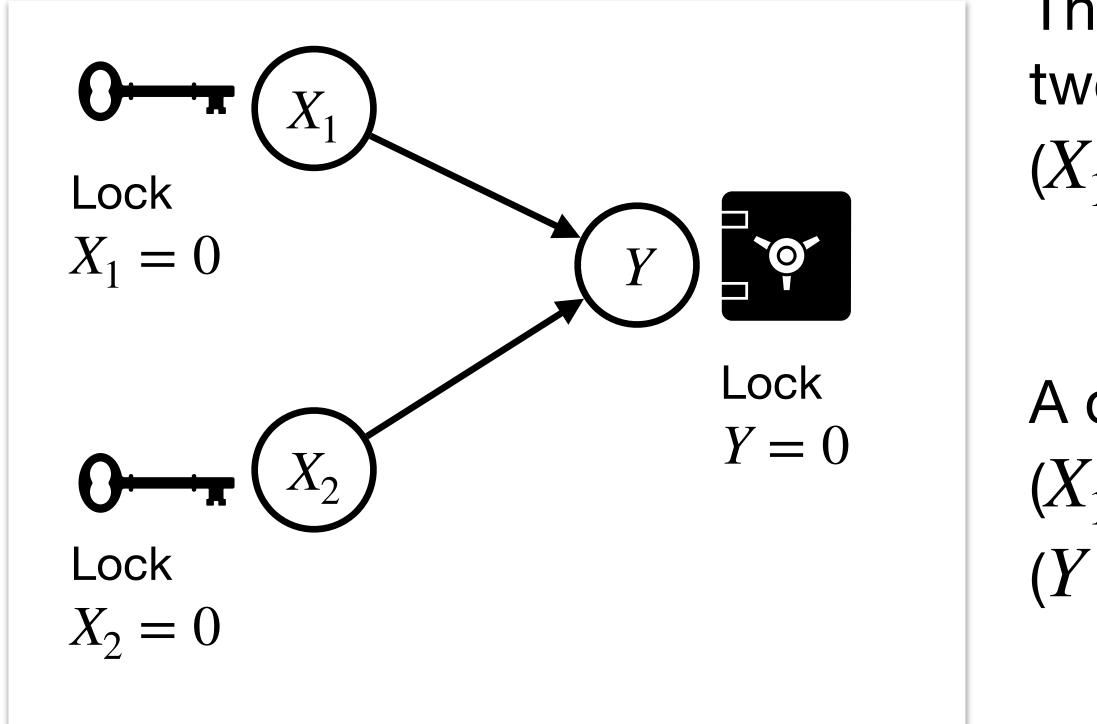






The door becomes unlocked (Y = 1) only when two locks are simultaneously unlocked

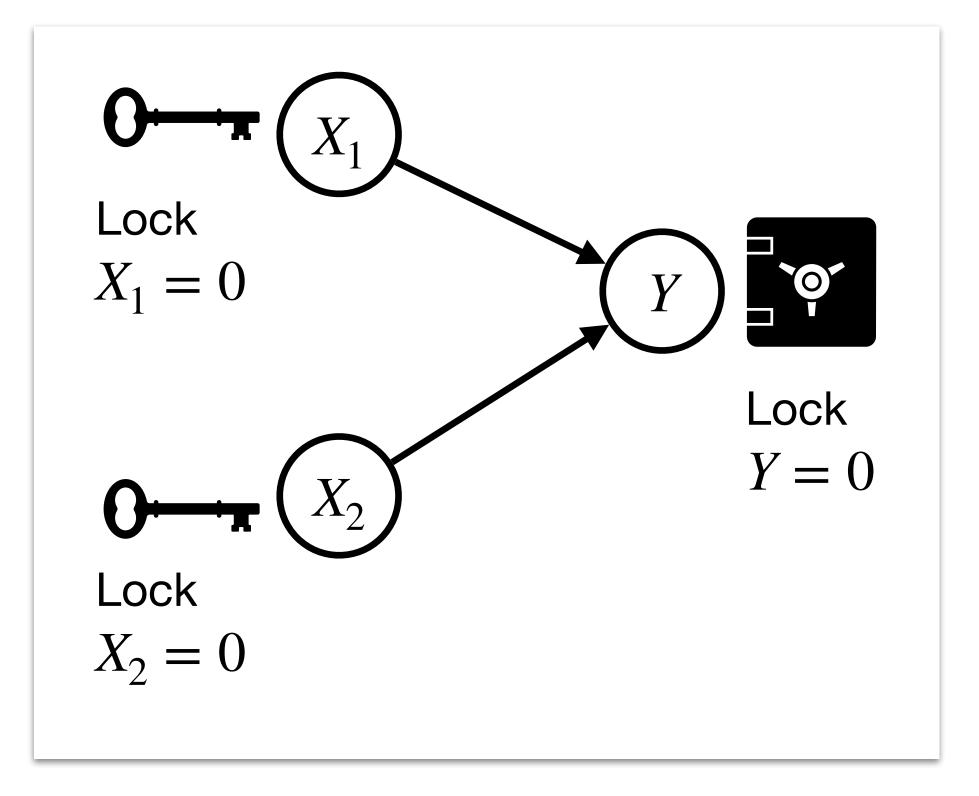
$$X_1 = X_2 = 1$$
); i.e., $Y(X_1 = 1, X_2 = 1) = 1$.

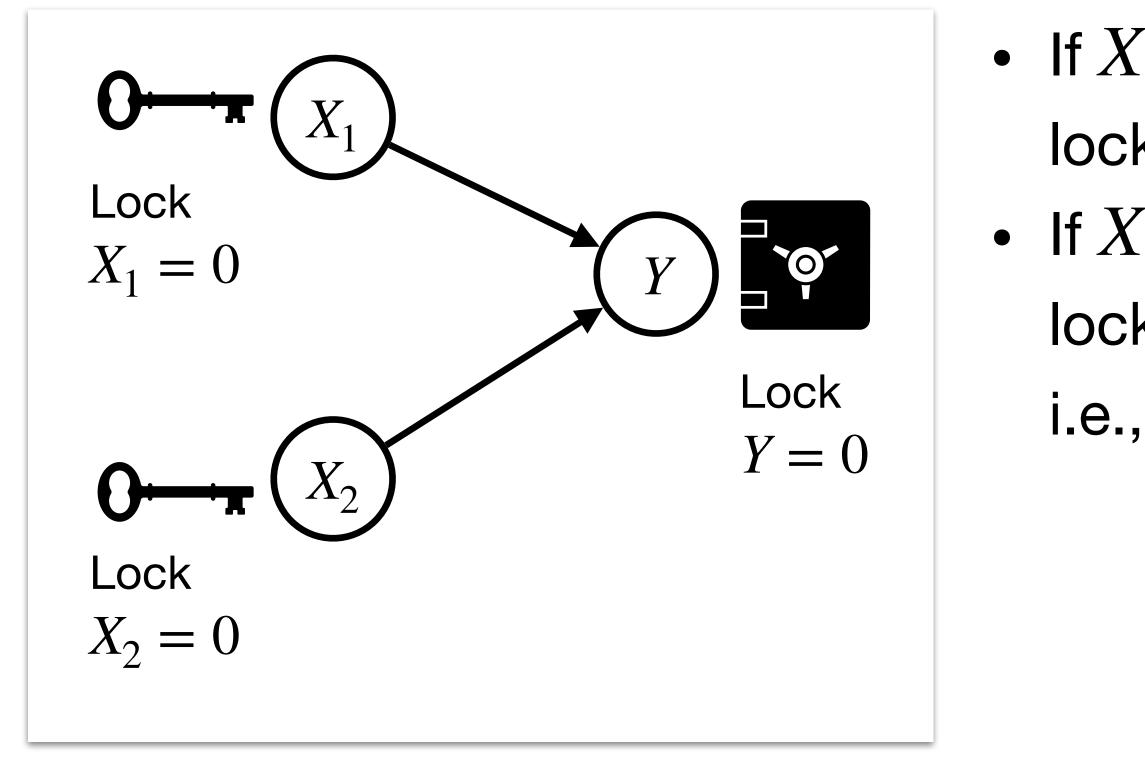


The door becomes unlocked (Y = 1) only when two locks are simultaneously unlocked (Y = Y = 1), i.e., V(Y = 1, Y = 1) = 1

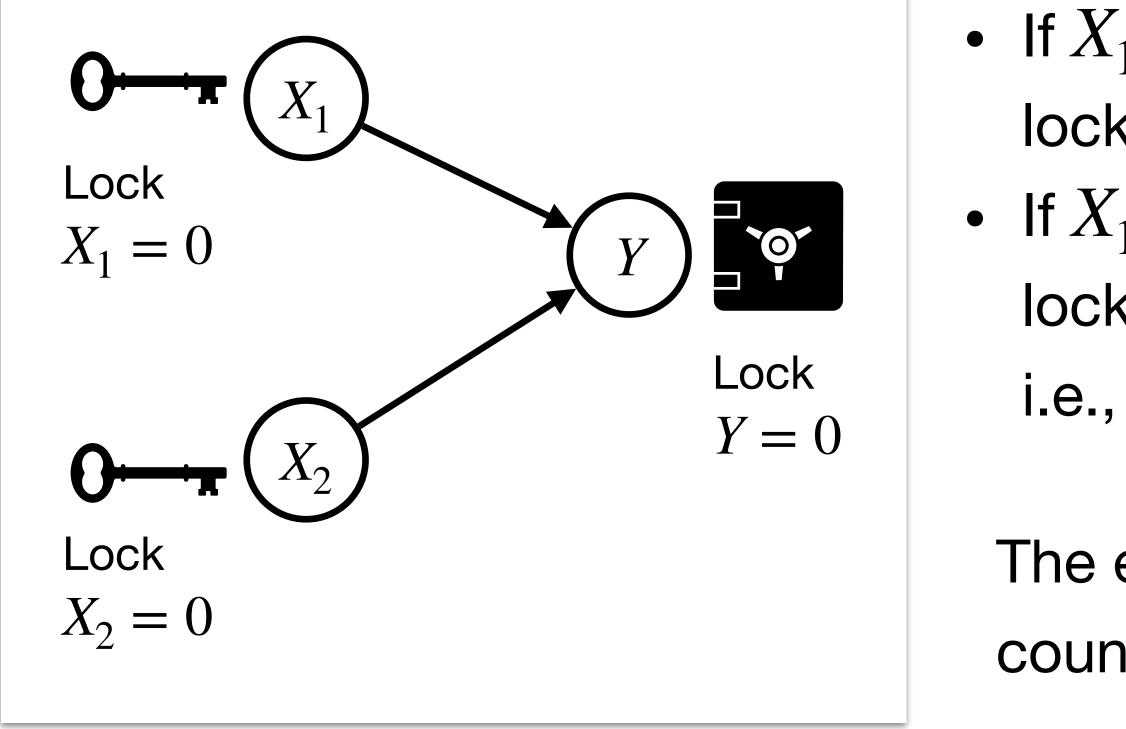
$$X_1 = X_2 = 1$$
); i.e., $Y(X_1 = 1, X_2 = 1) = 1$.

A default state is that two locks are locked $(X_1 = X_2 = 0)$, and the door is also locked (Y = 0) as a result.



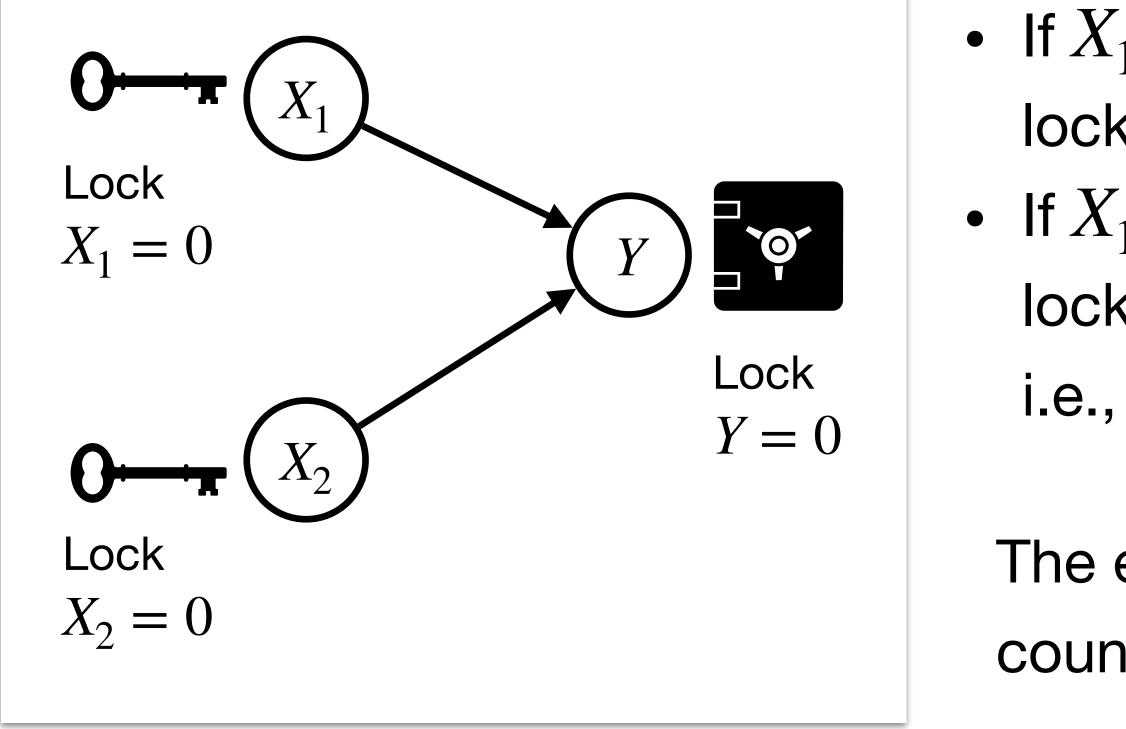


If X₁ had been locked (X₁ = 0), then Y would be locked (Y = 0); Y(X₁ = 0, X₂ = 0) = 0
If X₁ had been unlocked (X₁ = 1), Y would be still locked (Y = 0), because X₂ is set to be locked; i.e., Y(X₁ = 1, X₂ = 0) = 0



If X₁ had been locked (X₁ = 0), then Y would be locked (Y = 0); Y(X₁ = 0, X₂ = 0) = 0
If X₁ had been unlocked (X₁ = 1), Y would be still locked (Y = 0), because X₂ is set to be locked; i.e., Y(X₁ = 1, X₂ = 0) = 0

The event X_1 doesn't make difference of the counterfactual (potential) outcome of Y.

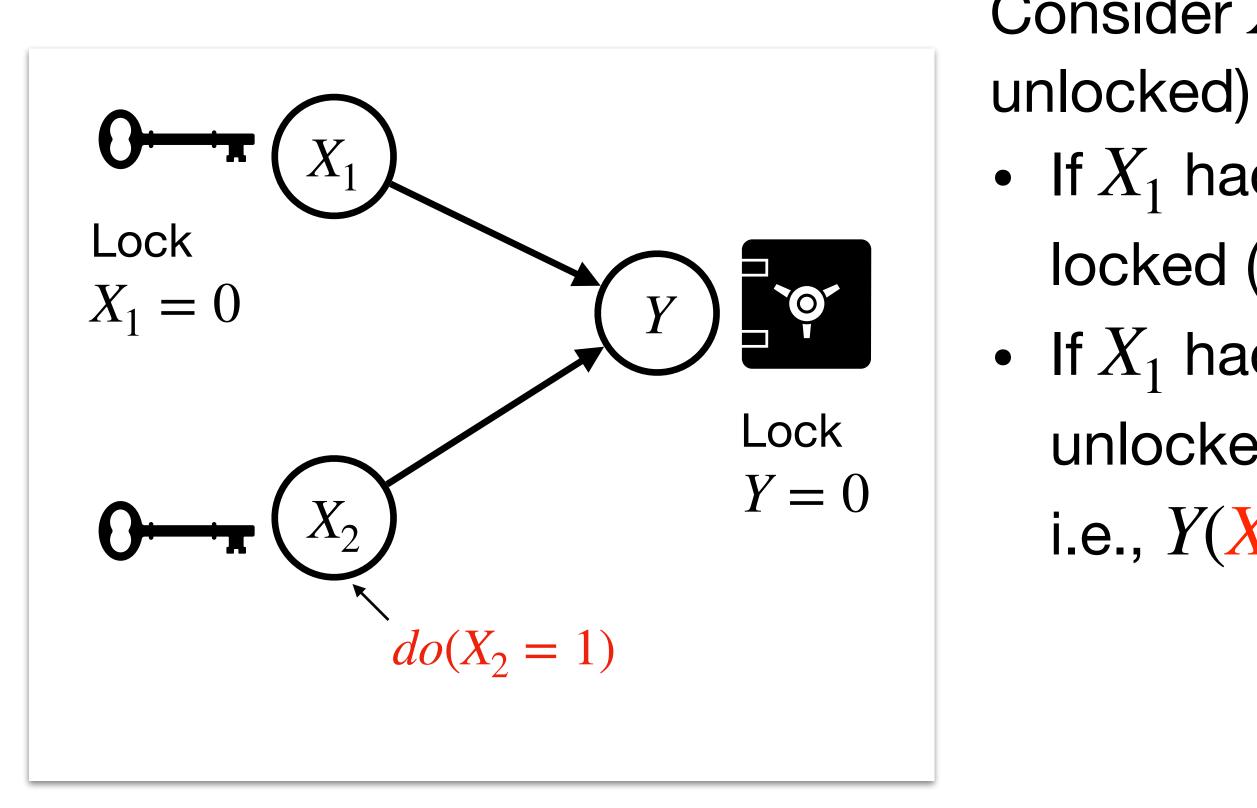


If X₁ had been locked (X₁ = 0), then Y would be locked (Y = 0); Y(X₁ = 0, X₂ = 0) = 0
If X₁ had been unlocked (X₁ = 1), Y would be still locked (Y = 0), because X₂ is set to be locked; i.e., Y(X₁ = 1, X₂ = 0) = 0

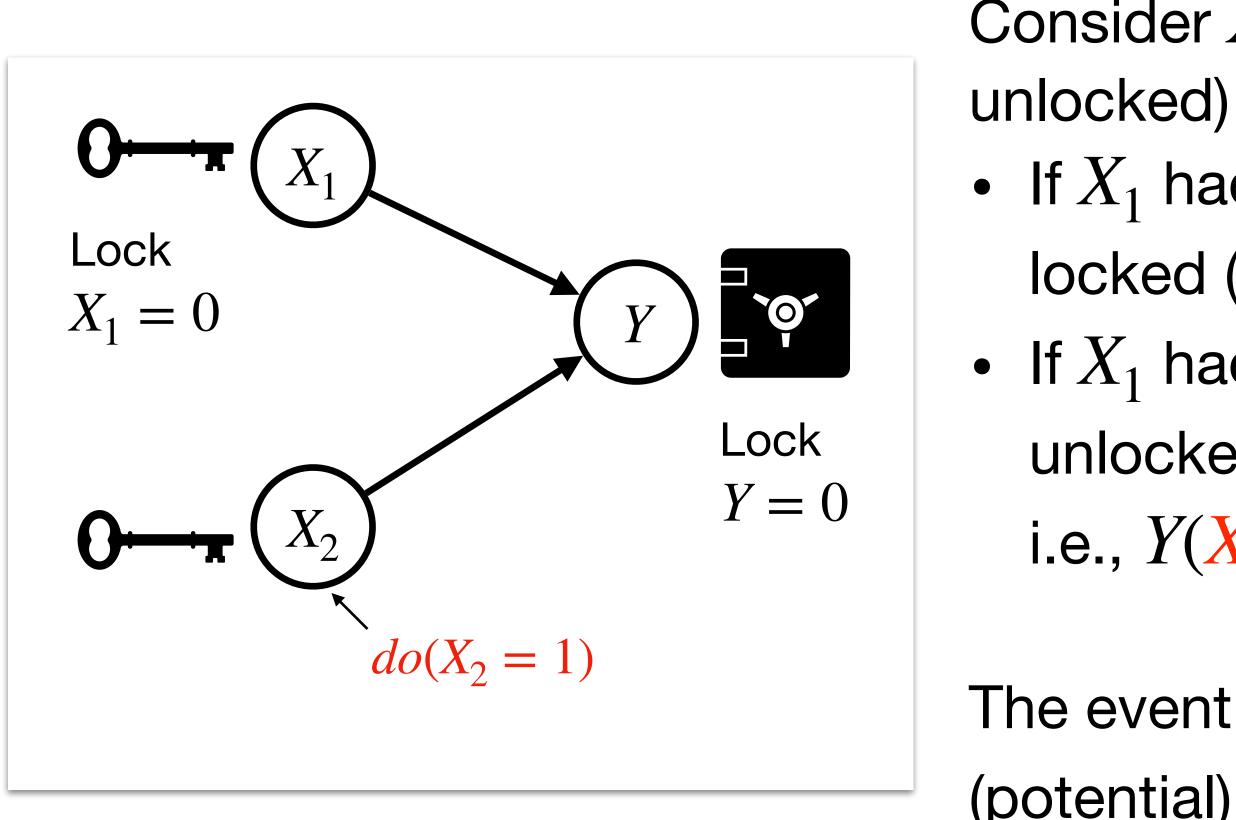
The event X_1 doesn't make difference of the counterfactual (potential) outcome of Y.

 $=>X_1$ is not a cause of *Y*??

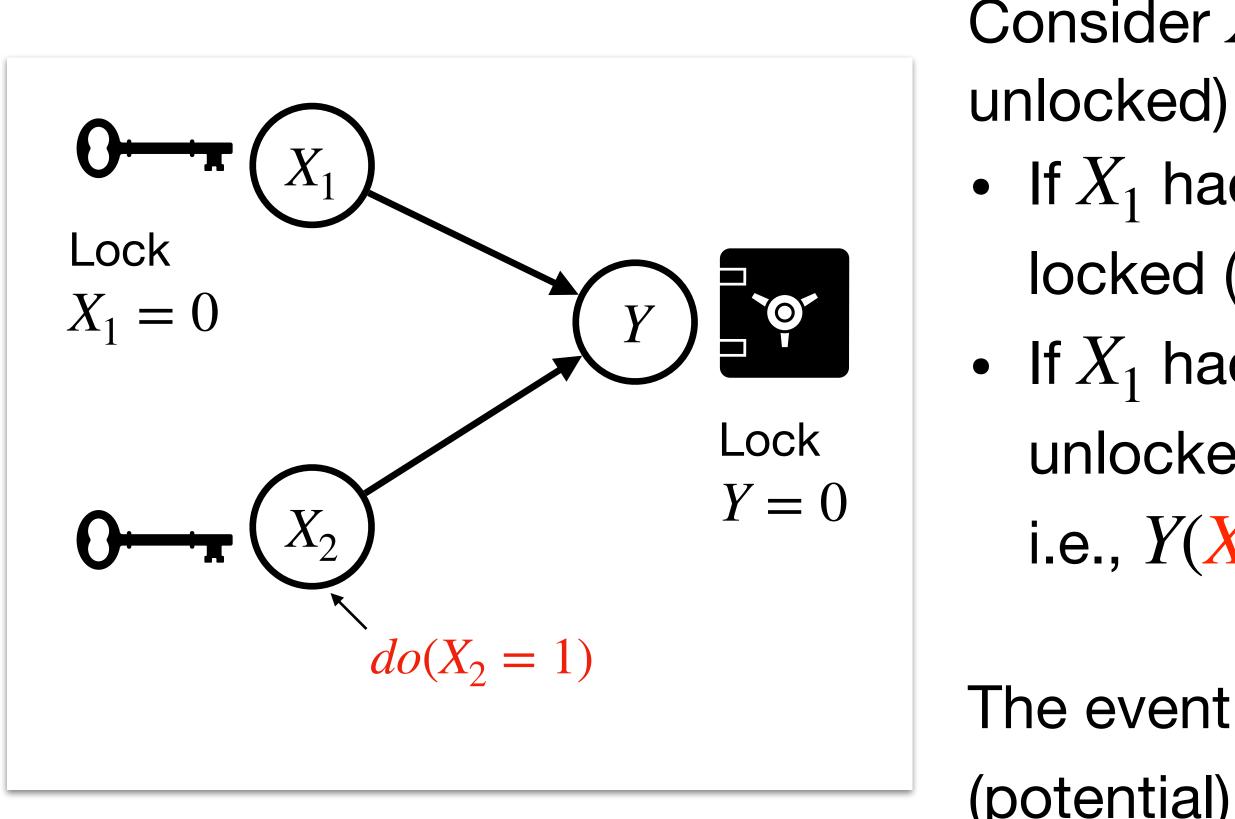
 $do(X_2 = 1)$



- Consider X_1 in which $X_2 = 1$ had been set (i.e., X_2 is
- If X_1 had been locked ($X_1 = 0$), then Y would be locked (Y = 0); $Y(X_1 = 0, X_2 = 1) = 0$
- If X_1 had been unlocked ($X_1 = 1$), Y would be unlocked (Y = 1), because X_2 is set to be unlocked;
 - i.e., $Y(X_1 = 1, X_2 = 1) = 1$



- Consider X_1 in which $X_2 = 1$ had been set (i.e., X_2 is
- If X_1 had been locked ($X_1 = 0$), then Y would be locked (Y = 0); $Y(X_1 = 0, X_2 = 1) = 0$
- If X_1 had been unlocked ($X_1 = 1$), Y would be unlocked (Y = 1), because X_2 is set to be unlocked;
 - i.e., $Y(X_1 = 1, X_2 = 1) = 1$
- The event X_1 makes difference of the counterfactual (potential) outcome of Y.



- Consider X_1 in which $X_2 = 1$ had been set (i.e., X_2 is
- If X_1 had been locked ($X_1 = 0$), then Y would be locked (Y = 0); $Y(X_1 = 0, X_2 = 1) = 0$
- If X_1 had been unlocked ($X_1 = 1$), Y would be unlocked (Y = 1), because X_2 is set to be unlocked;
 - i.e., $Y(X_1 = 1, X_2 = 1) = 1$
- The event X_1 makes difference of the counterfactual (potential) outcome of Y.

 $=>X_1$ is a cause of Y.

Counterfactual itself isn't enough: Takeaway

Counterfactual itself isn't enough: Takeaway

considering the corresponding DGP.

The counterfactual itself cannot reveal the causality without

Counterfactual itself isn't enough: Takeaway

- considering the corresponding DGP.
- The causality can be revealed by considering relations between variables in the DGP.

The counterfactual itself cannot reveal the causality without

DGP of the counterfactuals (i.e., DGPs taking account of causality).

The structural Causal Model (SCM) can represent the DGP considering the relation of variables.

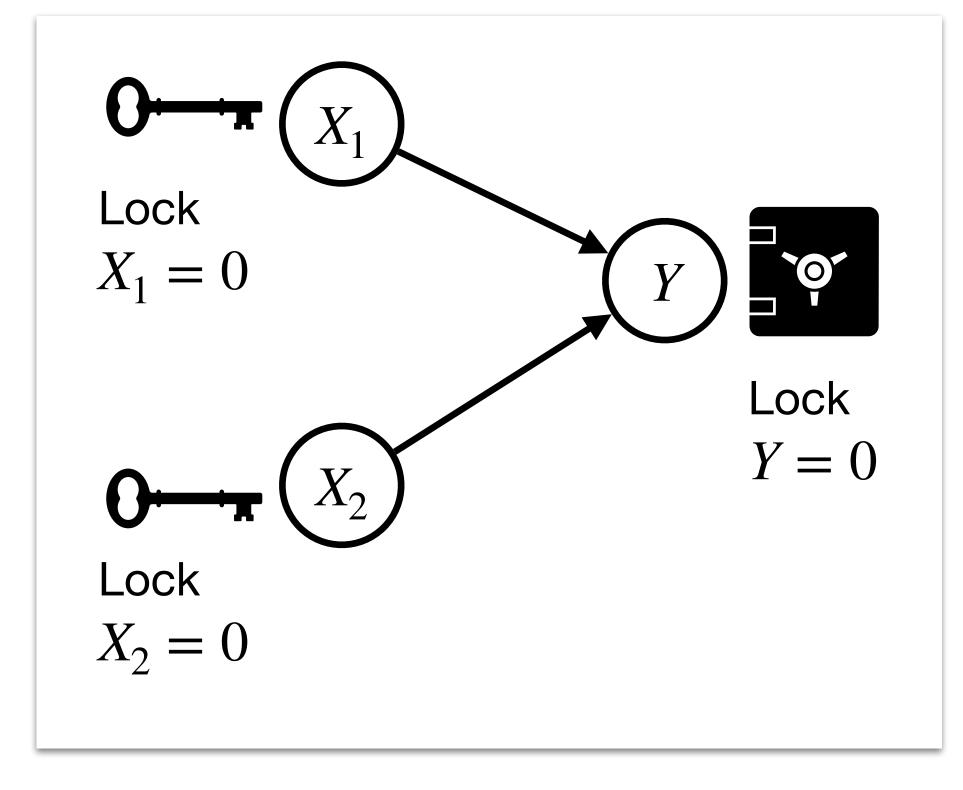
variables.

- V: A set of endogenous (observable) variables.
- U: A set of exogenous (latent) variables.
- **F**: A set of structural equations $\{f_{V_i}\}_{V_i \in \mathbf{V}}$ determining the value of $V_i \in \mathbf{V}$, where $V_i \leftarrow f_{v_i}(PA_{V_i}, U_{V_i})$ for some $PA_{V_i} \subseteq \mathbf{V}$ and $U_{V_i} \subseteq \mathbf{U}$.
- $P(\mathbf{u})$: A probability measure for U.

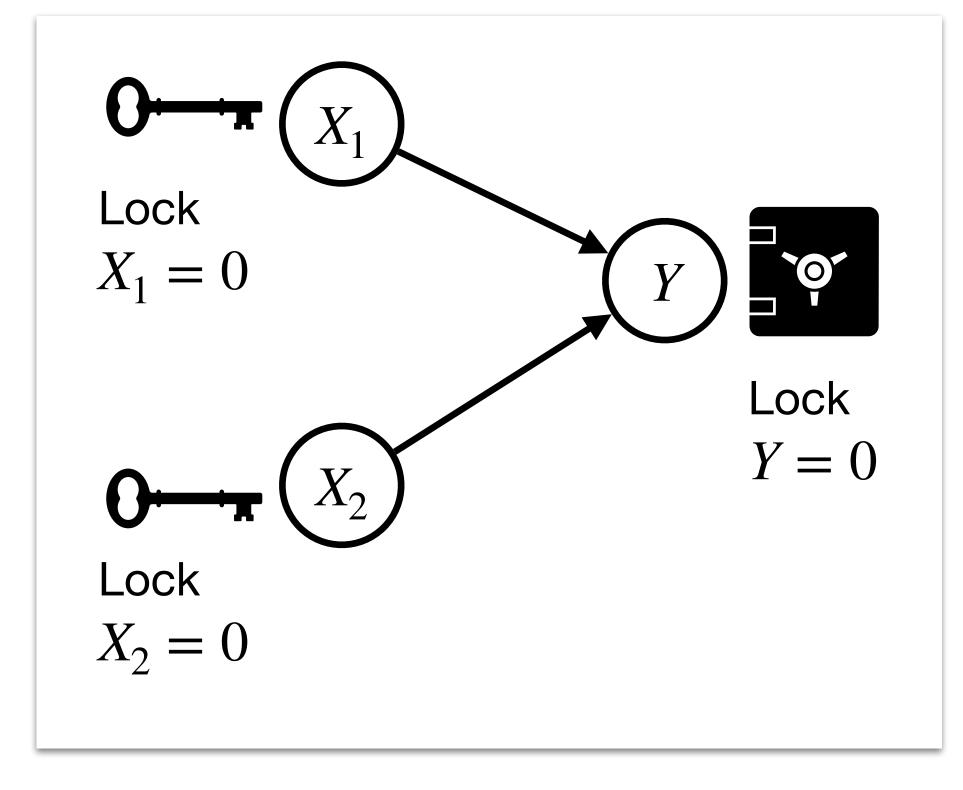
- The structural Causal Model (SCM) can represent the DGP considering the relation of
 - Structural Causal Model $M := \langle \mathbf{V}, \mathbf{U}, \mathbf{F}, P(\mathbf{u}) \rangle$

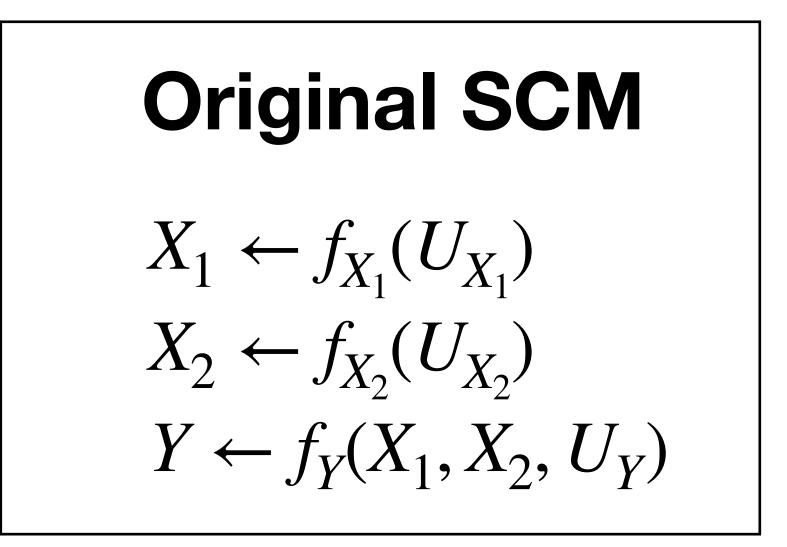
Example of the SCM: Encoding the DGP

Example of the SCM: Encoding the DGP

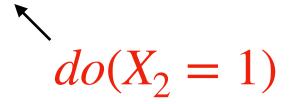


Example of the SCM: Encoding the DGP

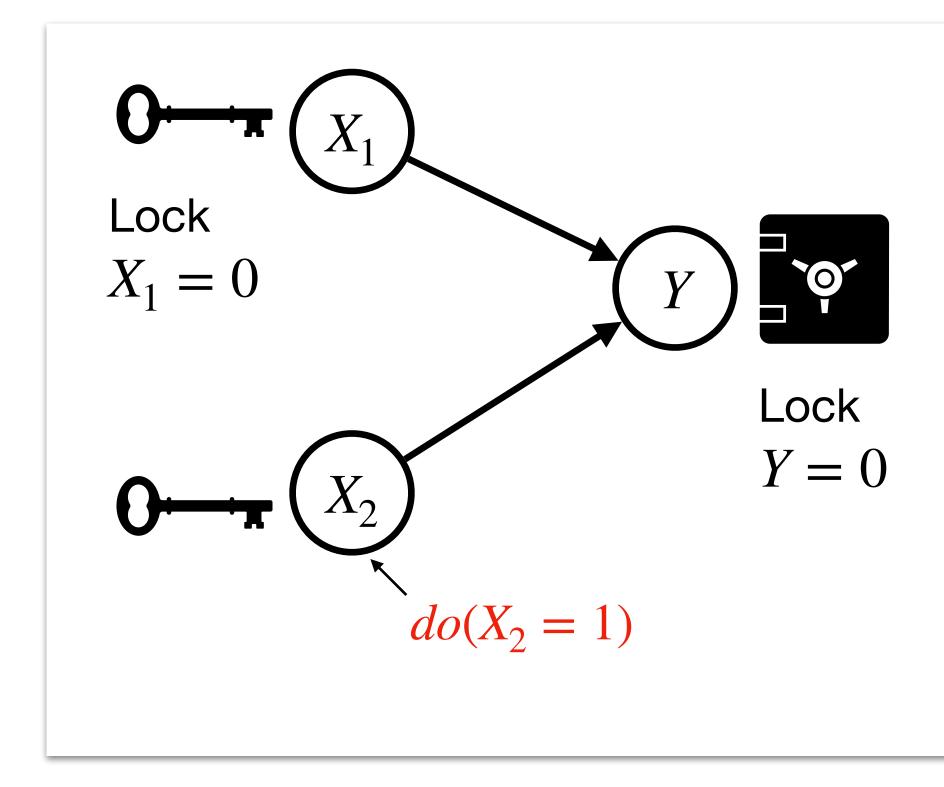




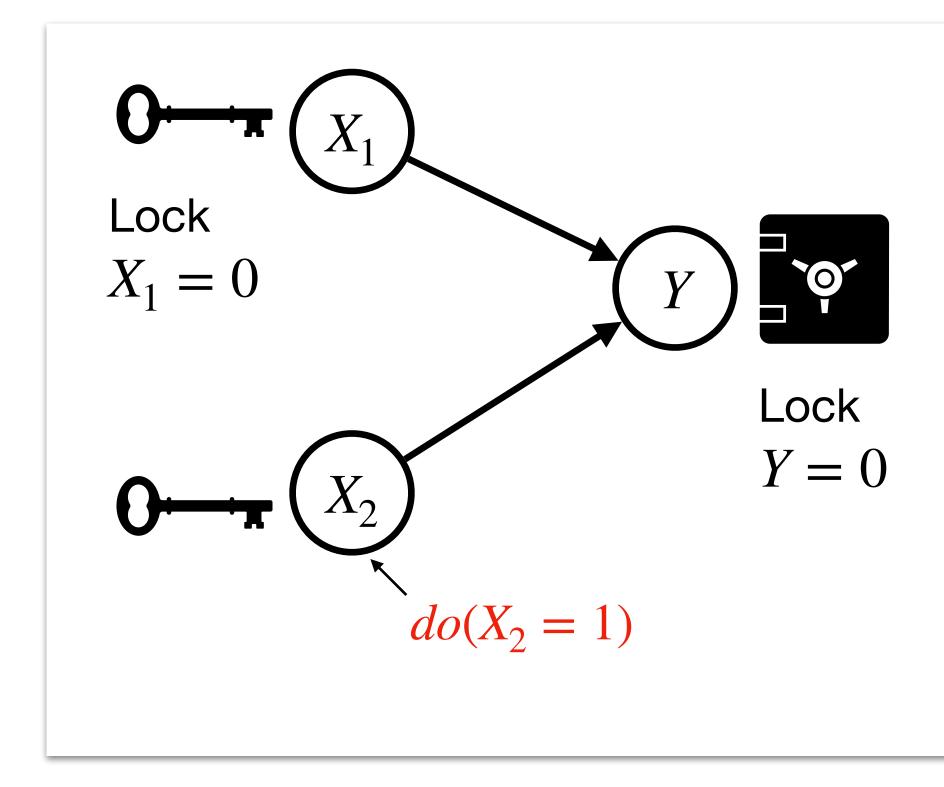
Example of the SCM: Encoding the "What-If X = x"

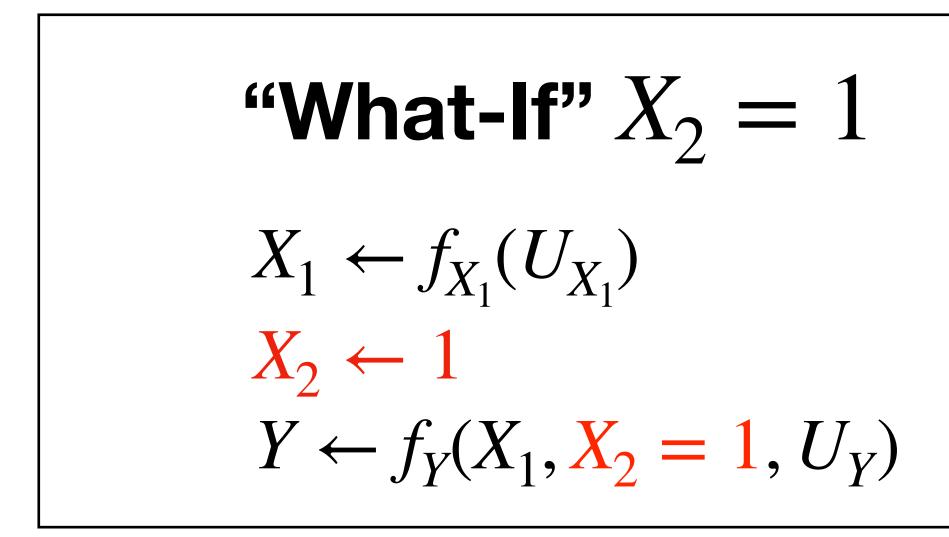


Example of the SCM: Encoding the "What-If X = x"



Example of the SCM: Encoding the "What-If X = x"





the function $X \leftarrow f_X(\cdot)$ to X = x.

For the original SCM M, "What if X had been fixed to x" can be encoded by replacing

the function $X \leftarrow f_X(\cdot)$ to X = x.

Submodel of the SCM: The SCM after fixing X = x is called the "submodel of the SCM" and denoted $M_{X=x}$.

For the original SCM M, "What if X had been fixed to x" can be encoded by replacing

the function $X \leftarrow f_X(\cdot)$ to X = x.

SCM" and denoted $M_{X=x}$.

Original SCM
$$M$$

 $X_1 \leftarrow f_{X_1}(U_{X_1})$
 $X_2 \leftarrow f_{X_2}(U_{X_2})$
 $Y \leftarrow f_Y(X_1, X_2, U_Y)$

For the original SCM M, "What if X had been fixed to x" can be encoded by replacing

Submodel of the SCM: The SCM after fixing X = x is called the "submodel of the

the function $X \leftarrow f_X(\cdot)$ to X = x.

Submodel of the SCM: The SCM after fixing X = x is called the "submodel of the SCM" and denoted $M_{X=x}$.

Original SCM
$$M$$

 $X_1 \leftarrow f_{X_1}(U_{X_1})$
 $X_2 \leftarrow f_{X_2}(U_{X_2})$
 $Y \leftarrow f_Y(X_1, X_2, U_Y)$

For the original SCM M, "What if X had been fixed to x" can be encoded by replacing

Submodel
$$M_{X_2=1}$$

 $X_1 \leftarrow f_{X_1}(U_{X_1})$
 $X_2 \leftarrow 1$
 $Y \leftarrow f_Y(X_1, X_2 = 1, U_Y)$

The counterfactual Y(X = x) can be generated by the submodel.

The counterfactual Y(X = x) can be generated by the submodel.

Counterfactual w.r.t SCM

The counterfactual Y(X = x) can be generated by the submodel.

Counterfactual w.r.t SCM

• Y(X = x) is Y when values of X is set to x in their DGP (or population).

The counterfactual Y(X = x) can be generated by the submodel.

Counterfactual w.r.t SCM • Y(X = x) is Y when values of X is set to x in their DGP (or population). • Y(X = x) is Y in the submodel $M_{X=x}$.

after fixing other variables $X_2 = 1$ in the DGP.

In the previous example, we showed that the true causality of X_1 on Y was identified

after fixing other variables $X_2 = 1$ in the DGP.

- In the previous example, we showed that the true causality of X_1 on Y was identified
- Indeed, the state-of-the-art notion of causality is a counterfactual with fixing other variables, i.e., the counterfactual theories taking account of the relation of variables.

after fixing other variables $X_2 = 1$ in the DGP.

W = w.

- In the previous example, we showed that the true causality of X_1 on Y was identified
- Indeed, the state-of-the-art notion of causality is a counterfactual with fixing other variables, i.e., the counterfactual theories taking account of the relation of variables.
- (Actual) Causality [Halpern and Pearl] X is a cause of Y, if, for some $W \subseteq V$, $Y(X = x) \neq Y(X = x')$ under some intervention

$W = w_{-}$

Actual Causality [Halpern and Pearl] X is a cause of Y, if, for some $W \subseteq V$, $Y(X = x) \neq Y(X = x')$ under some intervention

W = w.

The formal definition of the actual causality is written w.r.t. the SCM.

Actual Causality [Halpern and Pearl] X is a cause of Y, if, for some $W \subseteq V$, $Y(X = x) \neq Y(X = x')$ under some intervention

Actual Causality [Halpern and Pearl] X is a cause of Y, if, for some $W \subseteq V$, $Y(X = x) \neq Y(X = x')$ under some intervention W = w.

The formal definition of the actual causality is written w.r.t. the SCM.

=> The SCM is a formal language that can describe the counterfactuals taking account of the relation of variables.

We just stated that the SCM is a language that can express the counterfactuals and take account of the DGP.

We just stated that the SCM is a language that can express the counterfactuals and take account of the DGP.

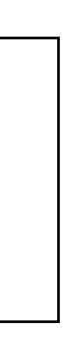
Indeed, the SCM is the **only** language that can express the counterfactuals and take account of the DGP.

We just stated that the SCM is a language that can express the counterfactuals and take account of the DGP.

Indeed, the SCM is the **only** language that can express the counterfactuals and take account of the DGP.

SCM.

Any DGP of counterfactuals such that fixing X = x (i.e., "what-if X = x") induces the counterfactual W(x) of W (where W is any variable), this DGP is equivalent to the



We just stated that the SCM is a language that can express the counterfactuals and take account of the DGP.

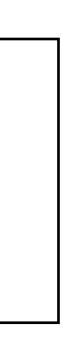
account of the DGP.

Any DGP of counterfactuals such that fixing X = x (i.e., "what-if X = x") induces the counterfactual W(x) of W (where W is any variable), this DGP is equivalent to the SCM.

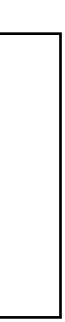
drug (X = 1). Suppose we measure patients' blood pressure (W). Then, in this population, W = W(X = 1).

Indeed, the SCM is the **only** language that can express the counterfactuals and take

Example: In the hypothetical population where all patients in the population took the

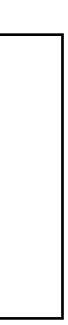


Any DGP of counterfactuals such that fixing X = x (i.e., "what-if X = x") induces the counterfactual W(x) of W (where W is any variable), this DGP is equivalent to the SCM.



Any DGP of counterfactuals such that fixing X = x (i.e., "what-if X = x") induces the counterfactual W(x) of W (where W is any variable), this DGP is equivalent to the SCM.

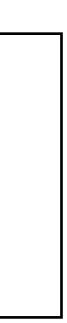
Many materials teach two types of causal inference frameworks: (1) SCM and (2) Potential Outcome (PO) Framework. We now know that



Any DGP of counterfactuals such that fixing X = x (i.e., "what-if X = x") induces the counterfactual W(x) of W (where W is any variable), this DGP is equivalent to the SCM.

Many materials teach two types of causal inference frameworks: (1) SCM and (2) Potential Outcome (PO) Framework. We now know that

1. Any causal inference theories taking account of the DGP are equivalent to the SCM.

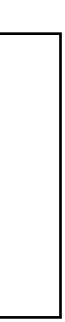


Any DGP of counterfactuals such that fixing X = x (i.e., "what-if X = x") induces the counterfactual W(x) of W (where W is any variable), this DGP is equivalent to the SCM.

Many materials teach two types of causal inference frameworks: (1) SCM and (2) Potential Outcome (PO) Framework. We now know that

1. Any causal inference theories taking account of the DGP are equivalent to the SCM.

2. Therefore, the SCM and the PO frameworks are equivalent.

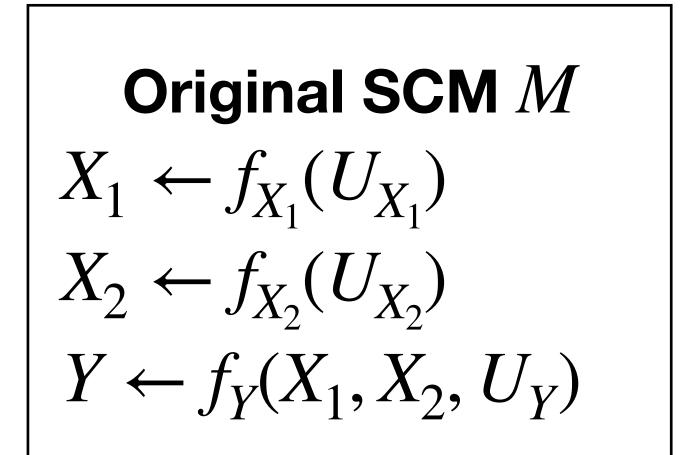


Hierarchical Layer	Quantity	Task	Question

Hierarchical Layer	Quantity	Task	Question
L1 (Association)	$P(y \mid x)$	 Classification Regression 	What does the symptom tells about my headache?

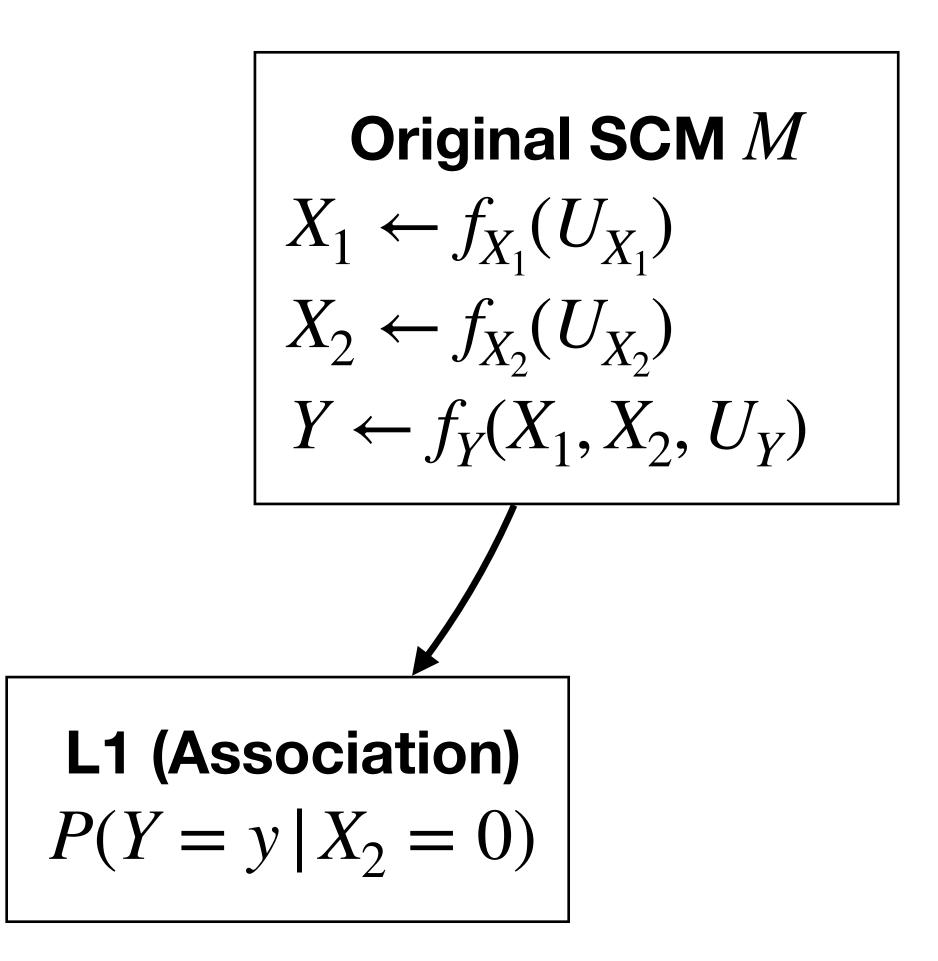
Hierarchical Layer	Quantity	Task	Question
L1 (Association)	$P(y \mid x)$	 Classification Regression 	What does the symptom tells about my headache?
L2 (Intervention)	P(Y(X = x) = y)	 Reinforcement Learning Randomized Trial 	What if I took the aspirin, will my headache be cured?

Hierarchical Layer	Quantity	Task	Question
L1 (Association)	$P(y \mid x)$	 Classification Regression 	What does the symptom tells about my headache?
L2 (Intervention)	P(Y(X = x) = y)	 Reinforcement Learning Randomized Trial 	What if I took the aspirin, will my headache be cured?
L3 (Counterfactual)	$P(Y(X = x) = y \mid x')$	 Counterfactual Thinking 	Given that I didn't take the aspirin and didn't get cured, what if I did?



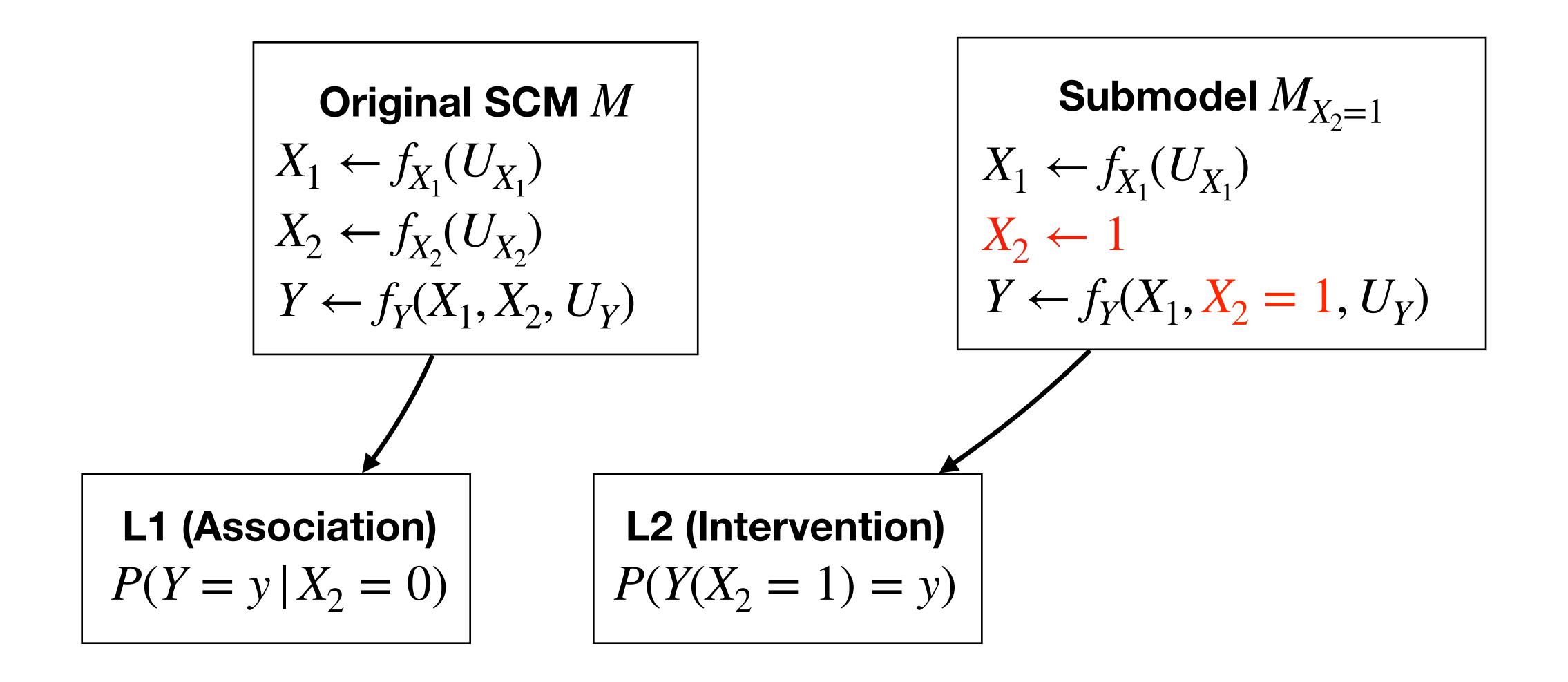
Submodel
$$M_{X_2=1}$$

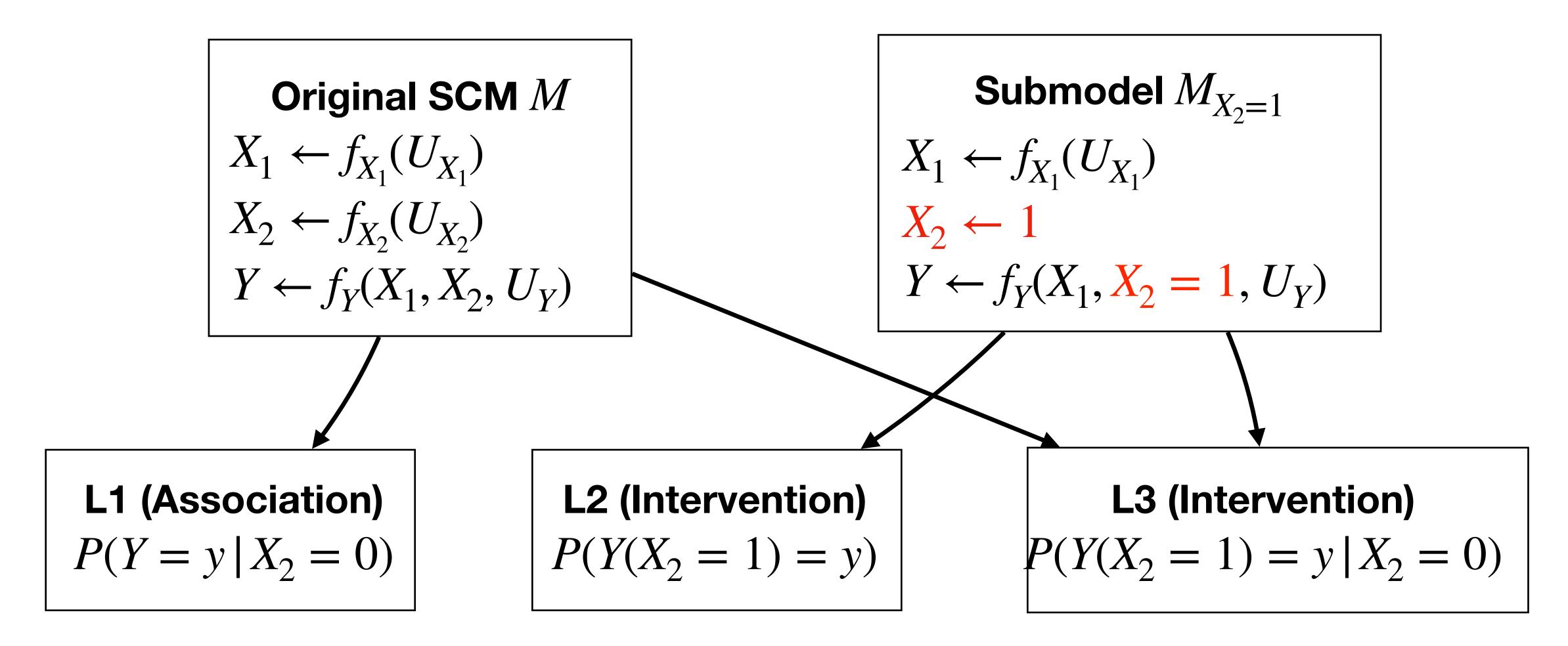
 $X_1 \leftarrow f_{X_1}(U_{X_1})$
 $X_2 \leftarrow 1$
 $Y \leftarrow f_Y(X_1, X_2 = 1, U_Y)$



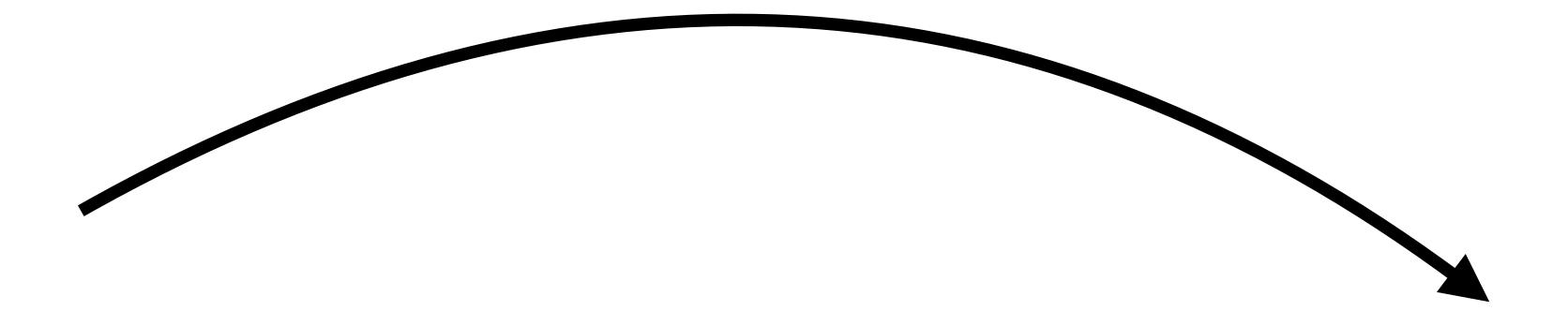
Submodel
$$M_{X_2=1}$$

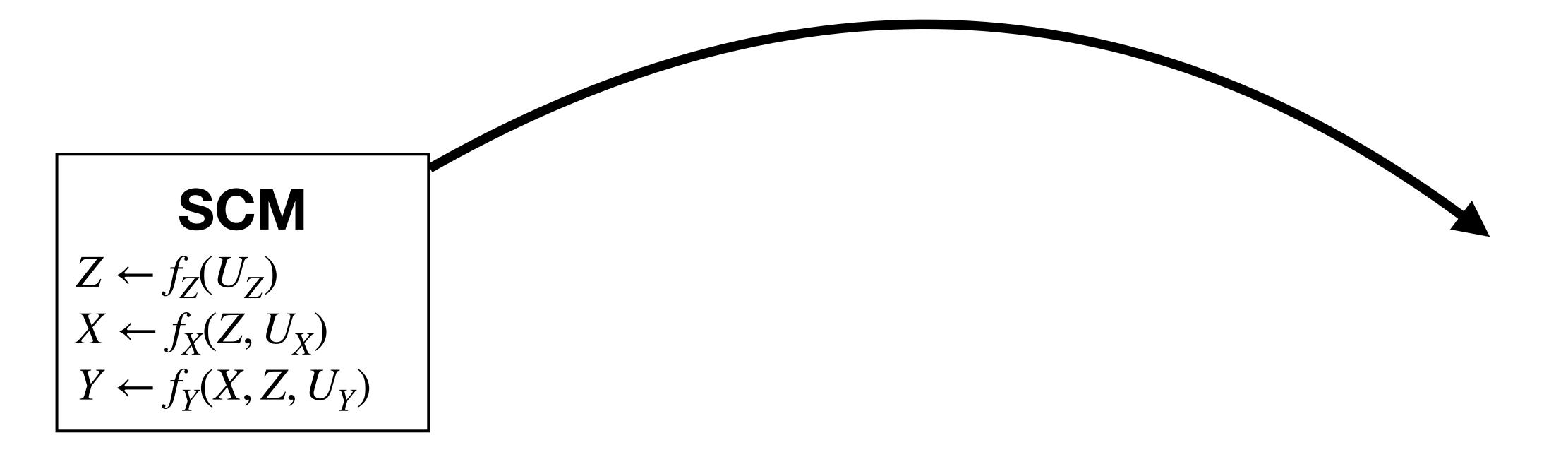
 $X_1 \leftarrow f_{X_1}(U_{X_1})$
 $X_2 \leftarrow 1$
 $Y \leftarrow f_Y(X_1, X_2 = 1, U_Y)$

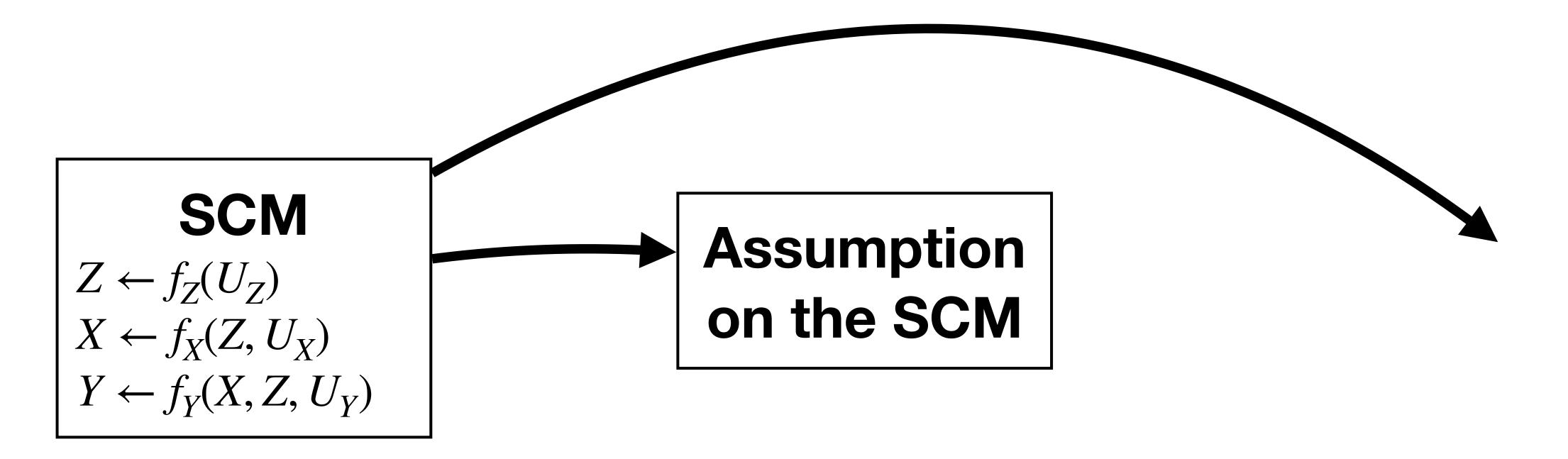


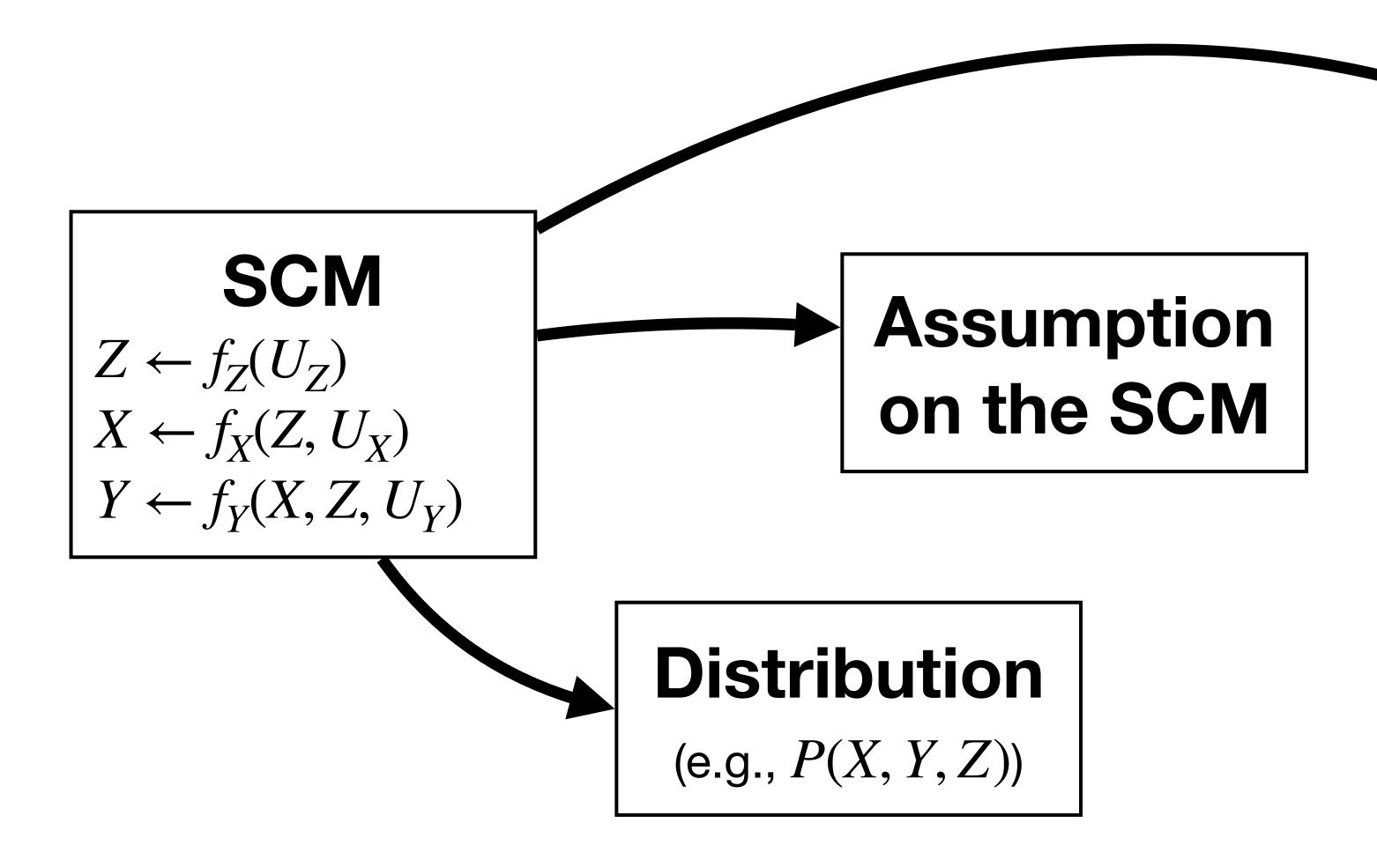


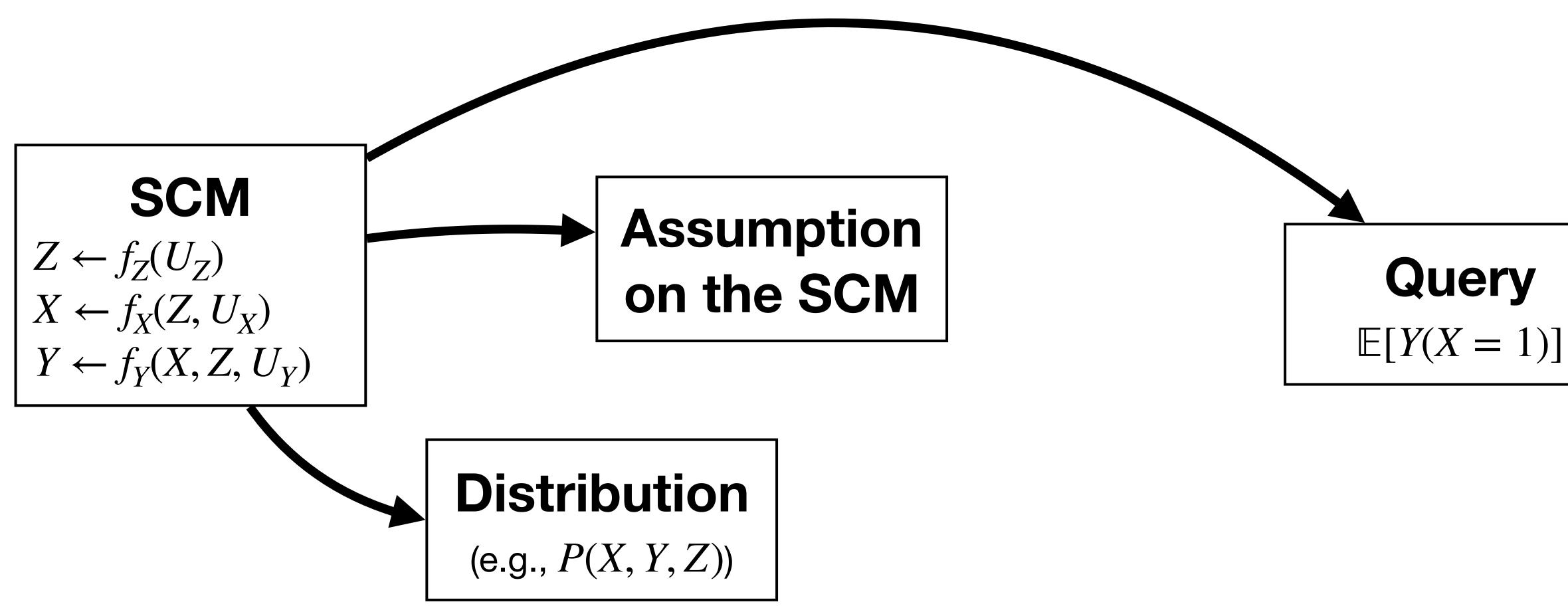
Big Picture in Causal Inference Important Problems in Causal Inference

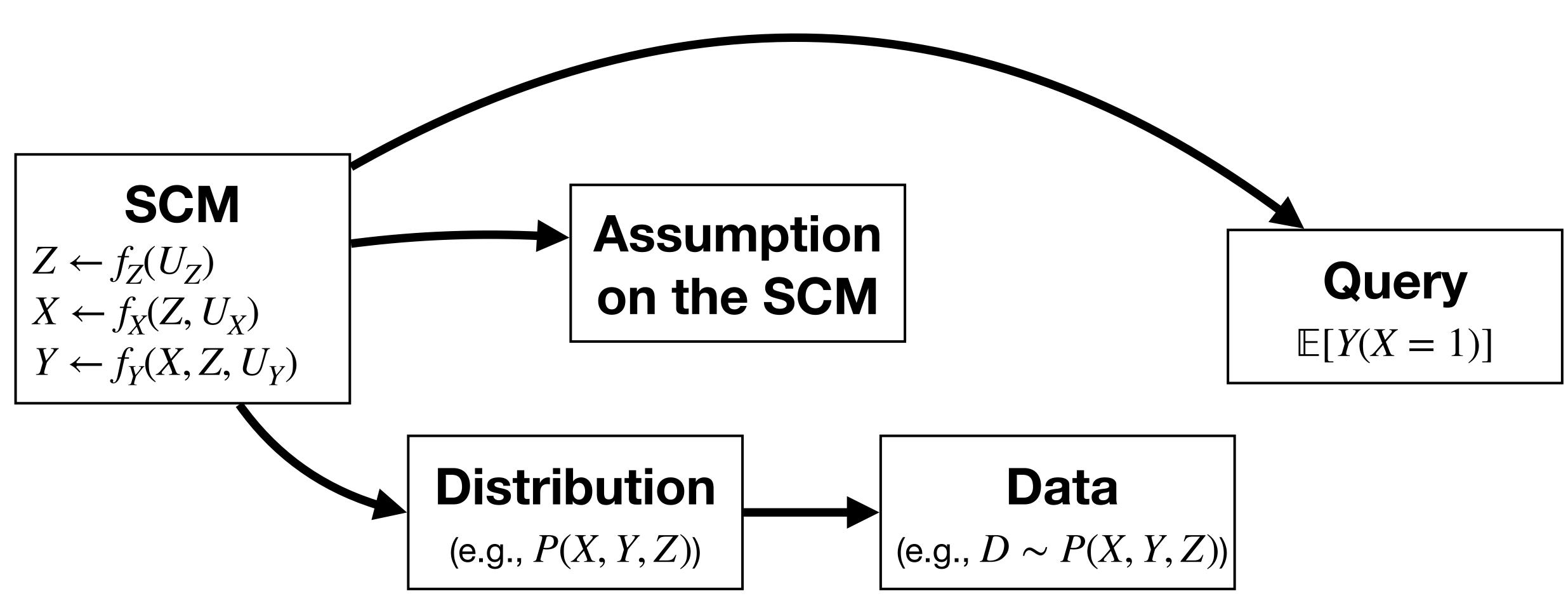


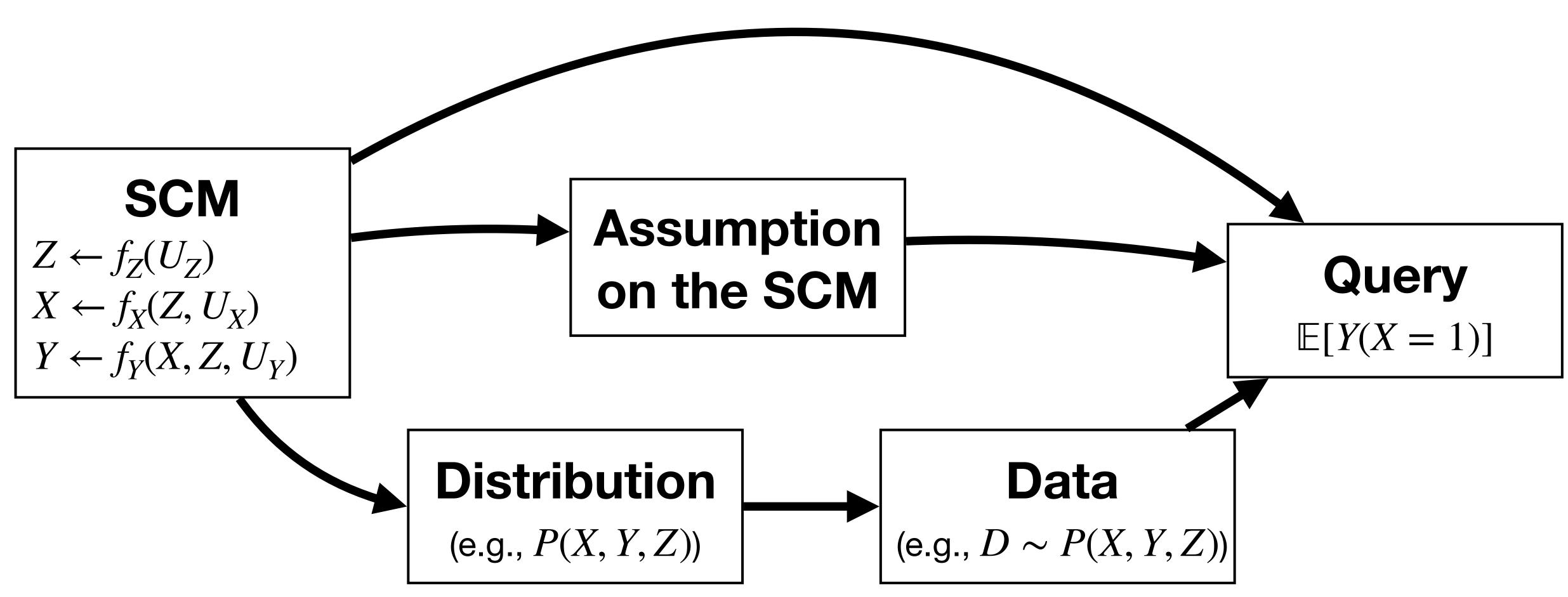




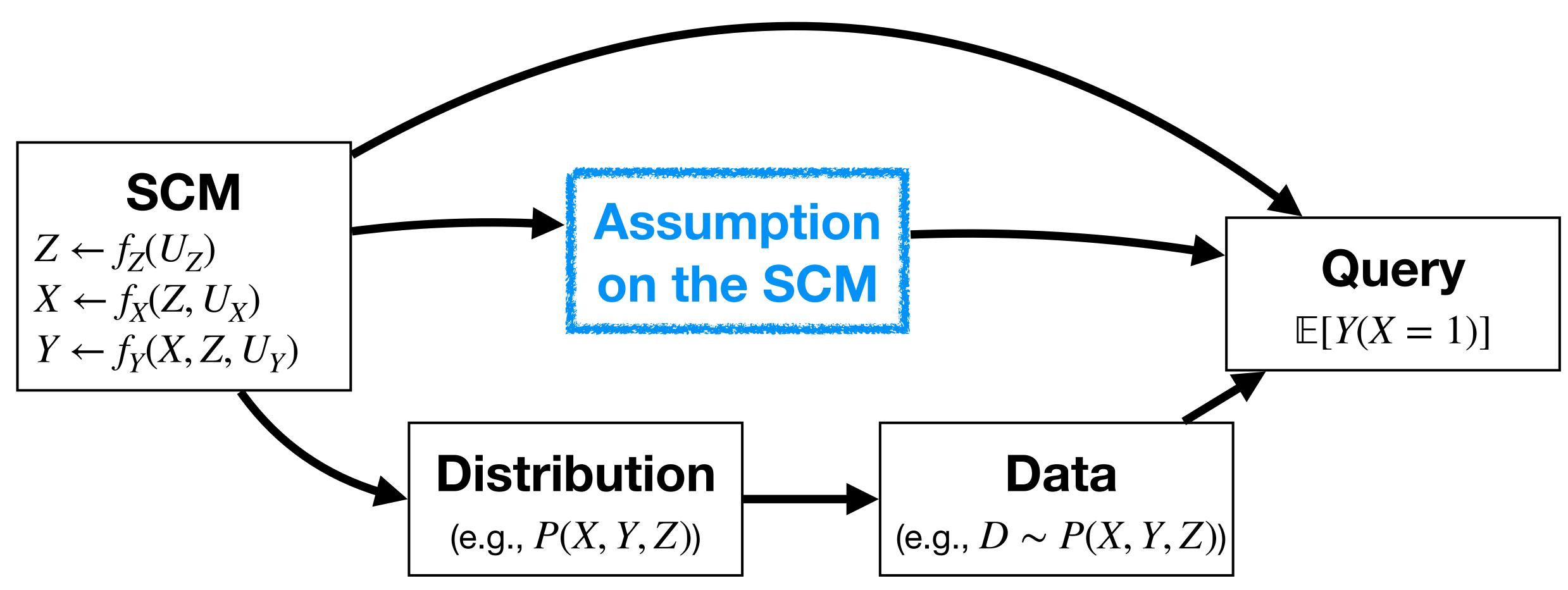








Importance of Assumptions



Why do we need assumptions on the SCM (or the DGP of counterfactuals) in the big picture?

Why do we need assumptions on the SCM (or the DGP of counterfactuals) in the big picture?

Pearl's Causal Hierarchy Theorem [Bareinboim et al., 2020]

Why do we need assumptions on the SCM (or the DGP of counterfactuals) in the big picture?

Pearl's Causal Hierarchy Theorem [Bareinboim et al., 2020]

the counterfactuals (i.e., the SCM).

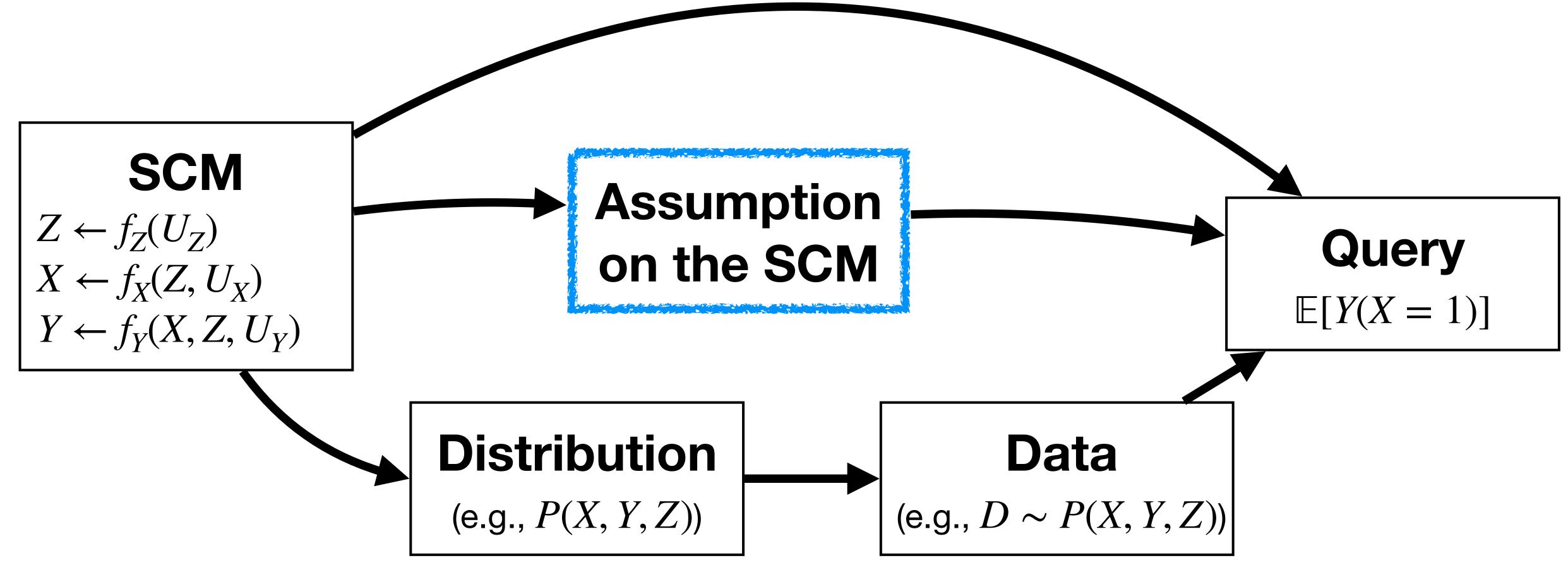
• Causal inference is impossible without making any assumptions on the DGP of

Why do we need assumptions on the SCM (or the DGP of counterfactuals) in the big picture?

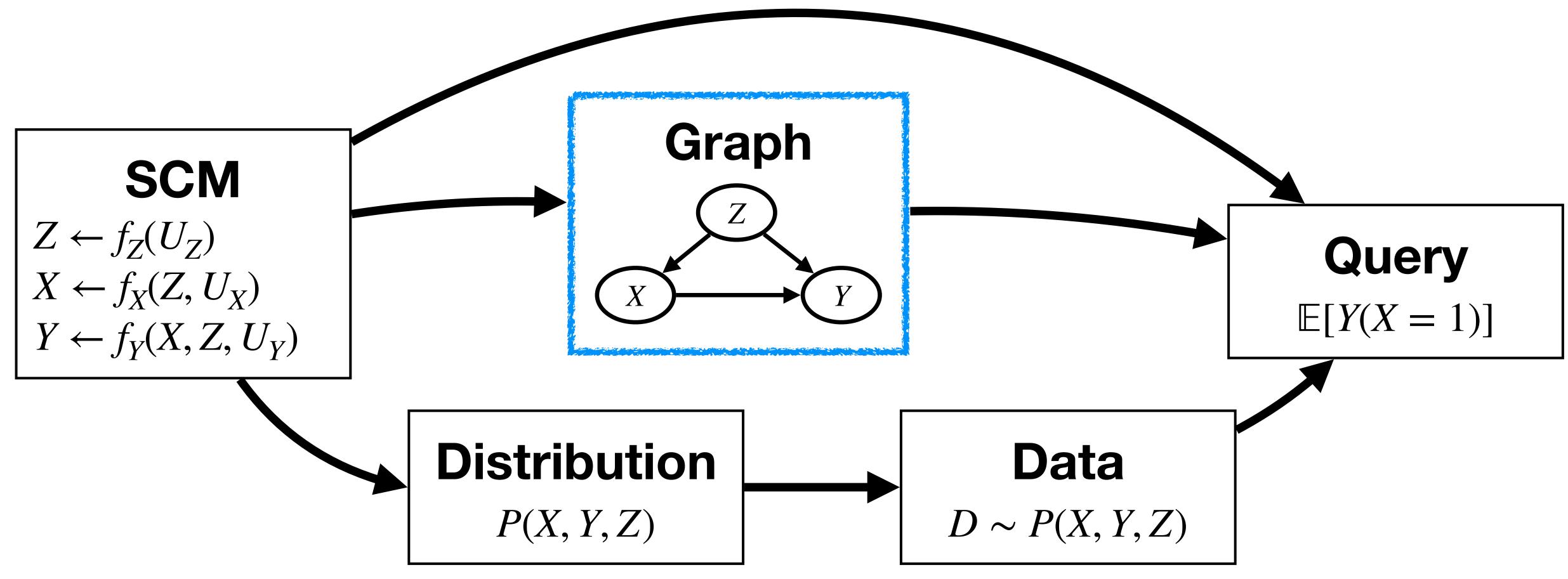
Pearl's Causal Hierarchy Theorem [Bareinboim et al., 2020] • Causal inference is impossible without making any assumptions on the DGP of

- the counterfactuals (i.e., the SCM).
- any assumptions.

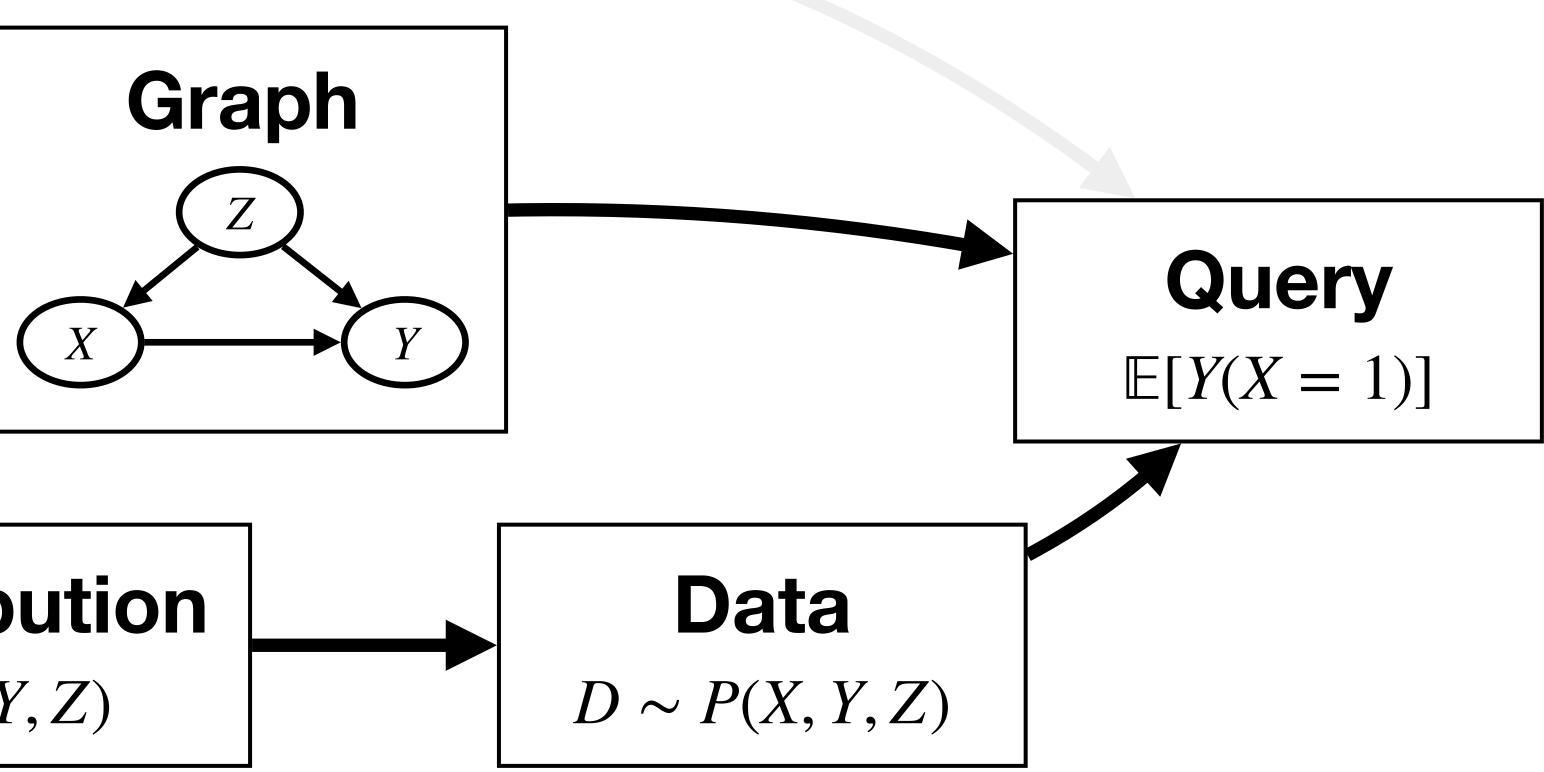
• Equivalently, given L_i 's information (e.g., associational information L_1), the higher layer information (e.g., the causal information L_2) is not inferable without making



Big Picture for Causal Inference: Encoding Assumptions Thr. Graphs



Big Picture for Causal Inference: Inaccessibility to SCMs



Distribution P(X, Y, Z)

We studied the SCM, the unified causal inference framework.

We studied the SCM, the unified causal inference framework.

• SCM is a unique framework that can represent the DGP of counterfactuals.

We studied the SCM, the unified causal inference framework.

• SCM is a unique framework that can represent the DGP of counterfactuals.

We overviewed important data science problems in the SCM.

We studied the SCM, the unified causal inference framework.

SCM is a unique framework that can represent the DGP of counterfactuals.

We overviewed important data science problems in the SCM.

We overviewed important causal inference problems under the rubric of the SCM. lacksquare

We studied the SCM, the unified causal inference framework.

SCM is a unique framework that can represent the DGP of counterfactuals.

We overviewed important data science problems in the SCM.

- We overviewed important causal inference problems under the rubric of the SCM.
- can be reduced to the causal inference problem.

• We studied that practical data science problems where the DGP can be expressed as a SCM

