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Outline of the talk 

1. [Estimating Identifiable Causal Effects through Double Machine Learning] Y.Jung, J. Tian, E. 
Bareinboim. AAAI-21.


2. [Estimating Identifiable Causal Effects on Markov Equivalence Class through Double 
Machine Learning] Y.Jung, J. Tian, E. Bareinboim. ICML-21.

In this talk, I will give a rough idea to explain what we have done in these two papers: 

Also, (If time allowed), I will give an example how our task (“Estimating identifiable causal 
effects”) is applied in the trustworthy-AI domain. 

[On Measuring Causal Contribution via do-intervention] Y. Jung, S. Kasiviswanathan, J. Tian, D. 
Janzing, P. Blöbaum, E. Bareinboim. ICML-22



Two Tasks in Causal Inference
Causal Effect Identification and Estimation
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Big Picture for Causal Inference

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z)

Data 
D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]
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Big Picture for Causal Inference
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Task 1. Causal Effect Identification

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z)

Data 
D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]
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Task 1. Causal Effect Identification

Graph (G)
Z

X Y

Distribution (P) 
(e.g., )P(Z, X, Y)

Query (Q) 
(e.g., ) 𝔼[Y(x)]

Causal Effect 
Identification (ID)

Solution
YES: A function  
s.t. . 

g(P)
g(P) = Q

No: If no such 
functions exist.
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Task 2. Causal Effect Estimation: 

Big Picture

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z)

Data 
D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]



9

Task 2. Causal Effect Estimation

Graph (G)
Z

X Y

Data (D)

ID expression 
of Query (g(P))

Causal Effect 
Estimation Estimators
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Causal Effect Estimation: 

Current Status

↳ Causal effect estimators have been developed only for the “Back-door 
adjustment” (also known as “ignorability”, “no unmeasured confounders” 
assumption). 

For a small portion of the identification, the causal effect 
estimation problem has been solved. 
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Causal Effect Estimation: 

Back-door Adjustment

Graph
Z

X Y

Back-door Adjustment
↳ If there exists  s.t. (1)  is non-descendent of  and (2) , then Z Z {X, Y} (Y ⊥⊥ X |Z)X

. 𝔼[Y(x)] = ∑z
𝔼[Y |x, z]P(z)
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Causal Effect Estimation: 

Example of a BD estimator

. 𝔼[Y(x)] = g(P) = ∑z
𝔼[Y |x, z]P(z)

Double/Debiased Machine Learning Estimator  for . T ̂g(P)

T := 𝔼D [ Ix(X)
̂P(X |Z) (Y − 𝔼̂[Y |X, Z]) + 𝔼̂[Y |x, Z]]

↳  converges fast even when either  or  is correct; or 
 and  converge slowly. 

T 𝔼̂[Y |X, Z] ̂P(X |Z)
𝔼̂[Y |X, Z] ̂P(X |Z)
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Causal Effect Estimation: 

Limitation

↳ For example, when the graph satisfies the “front-door criteria”, the expression is 
not a BD adjustment, so the existing estimators are not applicable. 

When the identification expression is beyond the back-door 
adjustment, virtually no estimators are available. 

Front-door

ZX Y

U 𝔼[Y(x)] = ∑z
P(z |x)∑x′￼

𝔼[Y |x′￼, z]P(x′￼)
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Causal Effect Estimation: 

Our Tasks

My research interest centers around developing estimators for 
any identifiable causal effects. 

[Estimating Identifiable Causal Effects on Markov Equivalence Class through Double 
Machine Learning] Y.Jung, J. Tian, E. Bareinboim. ICML-21.

[Estimating Identifiable Causal Effects through Double Machine Learning] Y.Jung, J. 
Tian, E. Bareinboim. AAAI-21.



DML Estimator for Any 
Identifiable Causal Effects
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Back-door adjustment and 
Double/Debiased ML (DML)
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Goal of This Section 

We assume the followings in the lecture. 

•  a binary treatment variable. 

•  for any . 

•  is 1-dimensional variable (continuous/discrete);  can be multivariate 

(continuous/discrete)

X ∈ {0,1}
P(v) > 0 v
Y Z

We will understand the mechanism of the DML estimator by 
constructing the estimator for

. g(P) = ∑z
𝔼[Y |x, z]P(z)
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Amenable Expression of 

the BD Adjustment 

= 𝔼 [ Ix(X)
P(X |Z) {Y − 𝔼[Y |X, Z]} + 𝔼[Y |x, Z]]

. g(P) = ∑z
𝔼[Y |x, z]P(z)
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Amenable Expression of 

the BD Adjustment: Proof (1)

∑z
𝔼[Y |x, z]P(z) = 𝔼 [ Ix(X)

P(X |Z) {Y − 𝔼[Y |X, Z]} + 𝔼[Y |x, Z]]
This holds because (1) 

𝔼 [ Ix(X)
P(X |Z) {Y − 𝔼[Y |X, Z]}] = 𝔼 [ Ix(X)

P(X |Z) {𝔼[Y |X, Z] − 𝔼[Y |X, Z]}] = 0
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Amenable Expression of 

the BD Adjustment: Proof (2) 

∑z
𝔼[Y |x, z]P(z) = 𝔼 [ Ix(X)

P(X |Z) {Y − 𝔼[Y |X, Z]} + 𝔼[Y |x, Z]]
This holds because (2) 

. 𝔼 [𝔼[Y |x, Z]] = ∑z
𝔼[Y |x, z]P(z)
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Double/Debiased Machine Learning  
(DML) Estimator for the BD Adjustment

T := 𝔼D [ Ix(X)
̂P(X |Z) {Y − 𝔼̂[Y |X, Z]} + 𝔼̂[Y |x, Z]]

∑z
𝔼[Y |x, z]P(z) = 𝔼 [ Ix(X)

P(X |Z) {Y − 𝔼[Y |X, Z]} + 𝔼[Y |x, Z]]
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Robustness Property of 

the DML Estimator

T := 𝔼D [ Ix(X)
̂P(X |Z) {Y − 𝔼̂[Y |X, Z]} + 𝔼̂[Y |x, Z]]

error

:= 𝔼[T] − 𝔼 [ Ix(X)
P(X |Z) {Y − 𝔼[Y |X, Z]} + 𝔼[Y |x, Z]]

= OP (∥ 𝔼[Y |X, Z] − 𝔼̂[Y |X, Z] ∥∥ P(X |Z) − ̂P(X |Z) ∥)
where . OP(∥ f(X) ∥) := 𝔼[ f2(X)]
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Properties of DML Estimators: 

Derivation 

𝔼[T] − 𝔼 [ Ix(X)
P(X |Z) {Y − 𝔼[Y |X, Z]} + 𝔼[Y |x, Z]]

= 𝔼 [ Ix(X)
̂P(X |Z) {Y − 𝔼̂[Y |X, Z]} + 𝔼̂[Y |x, Z] − 𝔼[Y |x, Z]]

= 𝔼 [ 1
̂P(X |Z) {P(X |Z) − ̂P(X |Z)} {𝔼̂[Y |X, Z] − 𝔼[Y |X, Z]}]

= OP (∥ 𝔼[Y |X, Z] − 𝔼̂[Y |X, Z] ∥∥ P(X |Z) − ̂P(X |Z) ∥)
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Properties of DML Estimators 

error = OP (∥ 𝔼[Y |X, Z] − 𝔼̂[Y |X, Z] ∥∥ P(X |Z) − ̂P(X |Z) ∥)
Doubly Robustness: The error is  (i.e.,  is unbiased) if ; 
or .

0 T 𝔼̂[Y |X, Z] = 𝔼[Y |X, Z]
̂P(X |Z) = P(X |Z)

Debiasedness: The error converges at  rate if  and  
converges to  and  at slower   rate. 

N−1/2 𝔼̂[Y |X, Z] ̂P(X |Z)
𝔼[Y |X, Z] P(X |Z) N−1/4
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Multi-outcome Sequential 
Back-door adjustment
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Multi-outcome sequential BD 
(mSBD)

X1

Z1

Y1

X1

Z1

Y1

i = 1

X2

Z2

Y2

i = 2

Multi-outcome sequential BD (mSBD): An extension of BD, 
where, at th round,  satisfies the BD criterion relative to 

 conditioned on previous variables .
i Zi

{Xi, Yi} {(Xj, Yj, Zj)}i−1
j=1
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Multi-outcome sequential BD 
(mSBD)

mSBD adjustment: If  satisfies the mSBD 
criterion relative to , 

Z = {Z1, ⋯, Zn}
(X, Y)

g(P):= P(y |do(x))

= ∑
z

∏
Yi∈Y

P(yi |x(i), z(i), y(i−1)) ∏
Zi∈Z

P(zi |x(i−1), z(i−1), y(i−1))
X(i) := {X1, ⋯, Xi}
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Amenable Representation for the 
mSBD Adjustment (1) 

g(P) = 𝔼 [H1
0(x1) +

n

∑
k=1

Wk
0{Hk+1

0 (xk+1) − Hk
0(Xk)}]

Hk
0(Xk) = 𝔼[Hk+1

0 (xk+1) |Xk, X(k−1), Y(k−1), Z(k)]

 and for all , Hn+1
0 (xn+1) := Iy(Y) k = n, n − 1,⋯,1

Hk
0(xk) = 𝔼[Hk+1

0 (xk+1) |xk, X(k−1), Y(k−1), Z(k)]
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Amenable Representation for the 
mSBD Adjustment (2) 

g(P) = 𝔼 [H1
0(x1) +

n

∑
k=1

Wk
0{Hk+1

0 (xk+1) − Hk
0(Xk)}]

, where 
Wk
0 =

k

∏
p=1

Ixp
(Xp)

πp
0(X(p−1), Z(p), Y(p−1))

πp
0 (X(p−1), Z(p), Y(p−1)) := P(Xp |X(p−1), Z(p), Y(p−1))
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DML Estimator for the mSBD 
adjustment

T := 𝔼D [Ĥ1
0(x1) +

n

∑
k=1

Ŵk
0{Ĥk+1

0 (xk+1) − Ĥk
0(Xk)}]

g(P) = 𝔼 [H1
0(x1) +

n

∑
k=1

Wk
0{Hk+1

0 (xk+1) − Hk
0(Xk)}]
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Robustness Property of 

the DML Estimator

error

:= 𝔼[T] − 𝔼 [H1
0(x1) +

n

∑
k=1

Wk
0{Hk+1

0 (xk+1) − Hk
0(Xk)}]

= OP (
n

∑
i=1

∥ Ĥi − Hi
0 ∥∥ ̂πi − πi

0 ∥)
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Robustness Property of 

the DML Estimator

error = OP (
n

∑
i=1

∥ Ĥi − Hi
0 ∥∥ ̂πi − πi

0 ∥)
Doubly Robustness: The error is  (i.e.,  is unbiased) if ; or  for all 

.
0 T Ĥi = Hi

0 ̂πi = πi
0

i = 1,2,⋯, n

Debiasedness: The error converges at  rate if  and  converges to  and 
 at slower   rate. 

N−1/2 Ĥi ̂πi Hi
0

πi
0 N−1/4
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DR Estimand for mSBD 

Example 1

X1

Z1

Y1 X2

Z2

Y2

g(P) = 𝔼 [H1
0(x1) + W1

0(H2
0(x2) − H1

0(X1)) + W2
0(Iy(Y) − H2

0(X2))]
H2

0(X2) = 𝔼[Iy(Y) |X(2), Y1, Z(2)]

H2
0(x2) = 𝔼[Iy(Y) |x2, X1, Y1, Z(2)]

H1
0(X1) = 𝔼[H2

0(x2) |X1, Z1]

H1
0(x1) = 𝔼[H2

0(x2) |x1, Z1]
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DR Estimand for mSBD 

Example 1

X1

Z1

Y1 X2

Z2

Y2

W2
0 =

Ix1
(X1)

π1
0(Z1)

Ix2
(X2)

π2
0(X1, Z(2), Y1)

W1
0 =

Ix1
(X1)

π1
0(Z1)

π1
0(Z1) = P(X1 |Z1) π2

0(X1, Z(2), Y1) = P(X2 |X1, Z(2), Y1)
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Recap: the Causal ID 
algorithm 
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C-component and C-factors

V1 V2 V3 V4 V5

U1 U2

U3

• A distribution can be factorized w.r.t. C-factors. 

P(v) = Q[V2, V4]Q[V1, V3, V5]

• C-component: A set of variables connected by bi-directed edges (e.g.,  and . {V1, V3, V5} {V2, V4}

• C-factor: Q[C] := P(c |do(v\c))
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C-factor Algebra - Summary

Q[W] = ∑
c∖w

Q[C] If W is ancestral in G(C)

3. Factorize into c-components

Q[H] = ∏
j

Q[Hj] Where , are the c-components in H1, …, Hk 𝒢[H]

We have three basic operations over c-factors

1. Identification of c-factor:

Q[C] = ∏Vi∈C
P(vi |v(i−1)) where  is a C-component in C G
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Recap: Complete ID algorithm 
ID( , )X, Y G

1. Let  be the C-components of .S1, S2, … G

2.  by the 1st algebra. Q[Si] = ∏Vk∈Si
P(vk |v(k−1))

3. Let  be C-components of  where .D1, D2, … G(D) D = An(Y)G(V\X)

4. Identify  from  by recursively applying 2nd and 3rd C-factor algebra Q[Dj] Q[S]

5.  if all  is defined, FAIL otherwise. Px(y) = ∑d∖y ∏j
Q[Dj] Q[Dj]
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Example of ID: Napkin

X Y

W

R

, .S1 = {W, X, Y} S2 = {R} •  is a descendent set in .{Y} G({X, Y})

 Q[Y] = ∑
x

Q[X, Y] = ∑
w

P(w)P(x |r, w)

• Q[Y] =
Q[X, Y]

Q[X]
=

∑w P(w)P(x, y |r, w)

∑w P(w)P(x |r, w)

•Q[S1] ≡ P(w, x, y |do(r)) = P(w)P(x, y |r, w)

•  is an ancestral set in ,{W} G(S1)

Q[X, Y] = ∑
w

Q[S1] = ∑
w

P(w)P(x, y |r, w)
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DML estimation for ID 
functional



41

Expressing C-factor as mSBD

Expressing C-factor as mSBD adjustment
Let  be a C-component in ,  denote the ancestral set of  (i.e., ) and . 
Then,  satisfies mSBD adjustment relative to , and 

C G W C W = An(W)G(C) R ≡ Pa(W)
Z = (C\W) ∩ An(R, W) (R, W)

Q[W] = M[w |r; z]

, where  is the i’th C-component in G, can be expressed as a mSBD adjustment. Q[Si] Si

mSBD adjustment where  is mSBD admissible w.r.t.  Z (R, W)
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ID algorithm
DML-ID( , )X, Y G

1. Let  be the c-components of .S1, S2, … G

2. Let .Q[Si] = M[si |Pa(si); ∅]

3. Let  be the c-components of  where .D1, D2, … G(D) D = An(Y)G(V\X)

5.  if all  have been defined, FAIL otherwise. P(y ∣ do(x)) = ∑d∖y ∏j
Aj({Mj

ℓ}) Aj({Mj
ℓ})

 is expressed as an algebraic 
operation ( ) of mSBD adjustments.
Q[Dj]

Aj4. .Q[Dj] = Aj({Mj
ℓ}) = Identify(Dj, Sj, Q[Sj])
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Example of DML-ID: Napkin

X Y

W

R

, .S1 = {W, X, Y} S2 = {R}

•  is an descendent set in .{Y} G({X, Y})

 Q[X] = ∑
y

M[(x, y) |r; w] = M[x |r; w]

•Px(y) = Q[Y] =
Q[X, Y]

Q[X]
=

M[x, y |r; w]
M[x |r; w]

•Q[S1] ≡ Pr(w, x, y) = M[s1 |r; ∅]

•  is an ancestral set in ,{W} G(S1)

Q[X, Y] = ∑
w

M[s1 |r; ∅] = M[(x, y) |r; w]
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Expressing a Causal Effect as a 
Function of mSBDs

Any identifiable causal effect can be represented as a function 
of mSBDs: 

,


where  is the mSBD adjustment, and  is a multiplication/
division/marginalization of . 

Px(y) = A({Ma})

Ma A
Ma
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DML-ID Estimator for Any 
Identifiable Causal Effects 

, where  denotes the DML estimator for the 

mSBD adjustment . 

T := A ({M̂a}) M̂a

Ma

.Px(y) = A({Ma})
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Robustness Property of the DML 
Estimator

error
:= 𝔼[T] − A({Ma})

= OP (∑
a

n

∑
i=1

∥ Ĥi,a − Hi,a
0 ∥∥ ̂πi,a − πi,a

0 ∥)
where  denotes the nuisance of the mSBD adjustment . Hi,a, πi,a Ma
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Properties of DML Estimators

error = OP (∑
a

n

∑
i=1

∥ Ĥi,a − Hi,a
0 ∥∥ ̂πi,a − πi,a

0 ∥)
Doubly Robustness: The error is  (i.e.,  is unbiased) if, for all ,  ; or 

 for
0 T a Ĥi,a = Hi,a

0
̂πi = πi

0 i = 1,2,⋯,

Debiasedness: The error converges at  rate if  and  converges to  
and  at slower   rate. 

N−1/2 Ĥi,a ̂πi,a Hi,a
0

πi,a
0 N−1/4
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Example of DML-ID: Napkin

X Y

W

R

P(y |do(x)) =
M[x, y |r; w]
M[x |r; w]

=
Ma

Mb

 where  denote the DML estimator. T :=
M̂a

M̂b
M̂i

M̂a:= 𝔼D [ Ir(R)
̂π(R |W)

{Ix,y(X, Y) − Ĥa(R)} + Ĥa(r)]
M̂b:= 𝔼D [ Ir(R)

̂π(R |W)
{Ix(X) − Ĥb(R)} + Ĥb(r)]
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Example of DML-ID: Napkin

T − P(y |do(x)) = OP(∥ Ma − M̂a ∥ + ∥ Mb − M̂b ∥)
= OP(∥ Ha − Ĥa ∥∥ π − ̂π ∥ + ∥ Hb − Ĥb ∥∥∥ π − ̂π ∥)

 achieves doubly robustness and debiased w.r.t its parameter. T
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DML Estimator for Any 
Identifiable Causal Effects in 
Markov Equivalence Class
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Data-Driven Causal Inference:

Motivation

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z)

Data 
D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]

In practice, the graph may 
be unavailable. 
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Causal Effect Discovery 

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z) Data 

D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]
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Data-Driven Causal Inference:

Causal Effect Identification 

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z)

Data 
D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]
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Data-Driven Causal Inference:

Causal Effect Identification 

Approximated 
Graph 

Distribution (P) 
(e.g., )P(Z, X, Y)

Query (Q) 
(e.g., ) 𝔼[Y(x)]

Causal Effect 
Identification (IDP)

Solution
YES: A function  
s.t. . 

g(P)
g(P) = Q

No: If no such 
functions exist.

Data

[Jaber et al., 2018]
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Data-Driven Causal Inference:

Causal Effect Identification 

↳An algorithm for the causal effect identification exists. The algorithm states “YES” 
if-and-only-if the causal effect is identifiable. 

The complete solution for the causal effect identification exists.

↳Jaber et al., (2018, 2019)
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Data-Driven Causal Inference:

Big Picture

SCM 





Z ← fZ(UZ)
X ← fX(Z, UX)
Y ← fY(X, Z, UY)

Graph
Z

X Y

Distribution 
P(X, Y, Z) Data 

D ∼ P(X, Y, Z)

Query 
𝔼[Y(X = 1)]

Approximated graph that 
obeys conditional 
independences in the data. 
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Data-Driven Causal Inference:

Our Task

Approximated 
Graph 

ID expression 
g(P)

Causal Effect 
Estimator

Data

Estimators

[Jung et al., 2021]
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Data-Driven Causal Inference:

Our Task

In [ICML-21], we developed the DML estimator for generally 
identifiable causal effects in the approximated graph from causal 
discovery algorithms. 
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Px(y) = A({Ma}m
a=1)

DML Estimator for any Identifiable Causal 
Effects in Markov Equivalence Class

Like the DML-ID, any ID expression derived by the IDP algorithm 
is also composed of mSBD adjustments.  
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DML Estimator for any Identifiable Causal 
Effects in Markov Equivalence Class

Let  denote the DML estimator for the mSBD adjustment. Then, M̂

T:= A({M̂a}m
a=1)

The same error analysis with the previous can be applied. 
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Application to 

Interpretability of ML
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What is Interpretability?

Interpretability is the degree to which a human can

2. understand the cause of a prediction [Miller, 2019]

1. consistently predict the model's result [Kim et al., 2016]

This leads “Feature attribution task” 
taking account of Causality! 💁

https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://proceedings.neurips.cc/paper/2016/file/5680522b8e2bb01943234bce7bf84534-Paper.pdf
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Task of Interpretable Machine 
Learning

Feature attribution given (v, f(v))
• Input: A pair of , where  is a black-box machine learning model 

prediction for some input  (where  means the th feature).
(v, f(v)) f(v)

v = {v1, v2, ⋯, vn} vi i

• Output: A vector  where  is an importance of . attr( f, v) ≡ {ϕv1
, ⋯, ϕvn

} ϕi vi



Preliminary

64
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Task of the Shapley Value 

Let  denote the value made by the coalition of 
 players. 

ν([n])
[n] := {1,2,⋯, n}

Let  denote the value made by the coalition of . ν(S) S ⊆ [n]

The task of the Shapley value is to attribute an individual player 
 to the target value .i ν([n])
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Shapley value

The Shapley value is a weighted average of the marginal 
contribution of the player  (i.e.,  ) under all 
possible coalition . 

i ν(S ∪ i) − ν(S)
S

ϕi(ν) :=
1
n ∑

S⊆[n]\i
(n − 1

|S | )
−1

{ν(S ∪ i) − ν(S)}
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Characterization of the 

Shapley value

•  Its sum equals to the total value  (“Perfect Assignment”)ν([n])

•  , if  for all   (“Dummy player”)ϕi = 0 ν(S ∪ i) = ν(S) S ⊆ [n]\i

•   if  for all  (“Symmetry”)ϕi = ϕj ν(S ∪ i) = ν(S ∪ j) S ⊆ [n]\{i, j}

•   is a linear function of  (“Linearity”)ϕi {ν(S)}S⊆[n]

The Shapley value is the unique attribution satisfying these four 
properties! 
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Existing Shapley Value-based 
Attribution Method 

[Lundberg & Lee, 2017] propose  “SHAP” or “Conditional 
Shapley”, which is defined as follow

ϕi :=
1
n ∑

S⊆[n]\i
(n − 1

|S | )
−1

{𝔼[Y |vi, vS] − 𝔼[Y |vS]}

https://arxiv.org/abs/1705.07874
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Failure of Conditional Shapley - (1)

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

Scenario: Predict customers’ retention rate. 

The data-generating process is here:

We measure the feature importance 
of “Discount” to explain Retention.

𝔼[Rentention |Discount, vS]
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Failure on practical examples - 2 

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

The results state that providing more discount leads to less retention. 🤷
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Lundberg, who developed SHAP, diagnosed this model fails due to the lack of 
considering causality. 

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

“interpreting a normal predictive model as causal are often unrealistic.”

Failure on practical examples - 3 
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Lundberg, who developed SHAP, diagnosed this model fails due to the lack of 
considering causality. 

https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6

“interpreting a normal predictive model as causal are often unrealistic.”

Failure on practical examples - 3 

Feature attribution method must 
take account of causality! 



do (Causal) - Shapley
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Task: Feature Attribution based on 
Causality

Causal Graph 

G = G(V)

Samples  
where  is 

compatible w/ 

D ∼ P(V)
P

G

Target 

Q := 𝔼[Y |do(v)]

Feature 
Attribution 

Contribution of 
 to  based 

on causality
vi ∈ v Q

Our task is to measure the contribution of 
 to the target effect  based 

on causality. 
vi ∈ v 𝔼[Y |do(v)]
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Task: Application to ML Interpretation 

Causal Graph 

G = G(V)

Samples 

 D ∼ P(V)

Output of the ML 
model  
f( ⋅ )
Q := f(v)

Feature 
Attribution 

Contribution of 
inputs  to 

the ML output 
vi ∈ v

f(v)

When the outcome is a ML model output 
, the target is reduced to 

, and the problem 
reduces to measuring the importance of 
inputs. 

Y := f(V)
Q := f(v) = 𝔼[Y |do(v)]
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do (causal) -Shapley value

The do-Shapley value is a weighted average of the marginal contribution of the 
variable  (i.e.,  ) among all possible coalition . vi 𝔼[Y |do(vS∪i)] − 𝔼[Y |do(vS)] S

ϕvi
:=

1
n ∑

S⊆[n]
(n − 1

|S | )
−1

{𝔼[Y |do(vS, vi)] − 𝔼[Y |do(vS)]}
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Characterizing Properties of do-
Shapley value 

 “Assignment”: Its sum equals to . f(x) = ∑xi∈x
ϕxi

 “Causal Irrelevance”: , if  for all .ϕvi
= 0 𝔼[Y |do(xi, xS)] = 𝔼[Y |do(x′￼i, xS)] XS ⊆ X

 “Causal Symmetry”:  if  for 

all 

ϕvi
= ϕvj

𝔼[Y |do(vi), do(w)] = 𝔼[Y |do(vj), do(w)]
W ⊆ V

 “Linearity”:  is a linear function of  . ϕvi
𝔼[Y |do(xS)] ∀XS ⊆ V

The do-Shapley value is a unique measure satisfying these 
four causality properties! 



do-Shapley Identifiability
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do-Shapley Identifiability  - 
Challenge

• We have to determine the identifiably of  for all . 𝔼[Y |do(vS)] VS ⊆ V

• This might take exponential computational time. 

ϕvi
:=

1
n ∑

S⊆[n]
(n − 1

|S | )
−1

{𝔼[Y |do(vS, vi)] − 𝔼[Y |do(vS)]}
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do-Shapley Identifiability  - 
Challenge

Identification of do-Shapley
Assume  is not connected by bidirected paths. If any variables are not connected to 
its children by bidirected paths (i.e.,  and  are not in the same C-component), 
then the -Shapley is identifiable (i.e.,  for all  is identifiable). 

Y
Vi Ch(Vi)

do 𝔼[Y |do(vS)] VS ⊆ V

Specifically, 





where  is some partition of . 

𝔼[Y |do(vS)] = ∑vS
𝔼[Y |v]

P(v)
∏Va∈C(VS) P(va |pre(va))

c

∏
k=1

∑
sk

∏
Vb∈C(Sk)

P(vb |pre(vb))

Sk VS
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do-Shapley Identifiability: Examples

V1 V2

Y

V3

V1

V3

V2

YV4

V1

V3

V2

YV4

V1 V2

Y

V3
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do-Shapley Identifiability: Examples

V1 V2

Y

V3 V1 V2

Y

V3

V1

V3

V2

YV4

V1

V3

V2

YV4
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do-Shapley Identifiability: Examples

V1 V3

V2

V1



do-Shapley Estimation
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Monte-Carlo approximation for do-
Shapley (1)

.ϕi ≡
1
n ∑S⊆[n]\{i} (n − 1

|S | )
−1

{v(S ∪ {i}) − v(S)}

=
1
n! ∑π(V)∈perm(V)

{ν(vi, preπ(vi)) − ν(preπ(vi))}

all possible permutation of V = {Vi}n
i=1

Predecessor of  given the fixed 
permutation . 

Vi
π(V)

= 𝔼π(V) [ν(vi, preπ(vi)) − ν(preπ(vi))]
The expectation is over the probability for each 

permutation order , where . π(V) P(π) =
1
n!

Let , where ν(S) := 𝔼[Y |do(vS)] VS ⊆ V
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Monte-Carlo approximation for do-
Shapley (2)

.ϕi = 𝔼π(V) [ν(vi, preπ(vi)) − ν(preπ(vi))]

ϕ̃i =
1
M

M

∑
m=1

{ν(vi, preπ(m)
(vi)) − ν(preπ(m)

(vi))}
• For  number of randomly generated permutations of  (where each permutations 

are denoted ), 
M V

π(m)
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Monte-Carlo approximation for do-
Shapley (2)

ϕ̃i =
1
M

M

∑
m=1

{ ̂ν(vi, preπ(m)
(vi)) − ̂ν(preπ(m)

(vi))}

• where  is a DML estimator for ̂ν(S) ν(S) := 𝔼[Y |do(vS)]



Simulation 
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Empirical Study: DML Property 
We compared the DML-based do-Shapley estimator with other existing estimators 
when the  is given as mSBD adjustment: 𝔼[Y |do(vS)]

The DML estimator converges faster than competing estimators. 
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Empirical Study: DML Property 

When nuisances corresponding to the IPW, REG estimators are misspecified, 
the DML estimator converges fast. 
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A simulation result

We designed the DGP s.t. the importances 
are ordered as . V1 > V3 > V2

Y = 3V1 + 0.4V2 + V3 + UY

V1 V3

V2

V1

We compared the DML-based do-Shapley 
based method with the conditional-Shapley. 

The DML-based do-Shapley ranks  
, while the conditional Shapley 

ranks  as the most important one, in our 
scenario. 

V1 > V3 > V2
V2



Conclusion 
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Conclusion

1. [Estimating Identifiable Causal Effects through Double Machine Learning] Y.Jung, 
J. Tian, E. Bareinboim. AAAI-21.


2. [Estimating Identifiable Causal Effects on Markov Equivalence Class through 
Double Machine Learning] Y.Jung, J. Tian, E. Bareinboim. ICML-21.


3. [On Measuring Causal Contribution via do-intervention] Y. Jung, S. 
Kasiviswanathan, J. Tian, D. Janzing, P. Blöbaum, E. Bareinboim. ICML-22

We overviewed 


