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Studied an
associlation

Interpreted
as causation
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understood:
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So, what is causality? (1) — Correlation

“We may define a cause to be an object, followed by
another, and where all the objects similar to the first are

followed by objects similar to the second” (1752)

Roughly, if X happens and then Y happens, then X is a
cause of Y.

Correlation implies causation?

David Hume
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Exercise (hours per week )

TExercise = |Cholesterol per age!
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What is causality? (2) — Counterfactual

Counterfactual (Lewis, 1973) or

PO-based causality (PO, Rubin, 1974)

X is a cause of an outcome Y means

David | ewis » If X had occurred, then Y would have occurred; and

« |f X had not occurred, then Y would not have occurred:

Potential outcome: Let Y, denote Y if X had been set to x.

» Xisacauseof YifYy_  =1& Yy o=

Donald Rubin
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X is a cause of an outcome Y means

e |f X had occurred, then Y would have occurred; and

« |f X had not occurred, then Y would not have occurred:
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What is causality? (2) — Counterfactual (Example)

Sounds reasonable... Is indeed the PO-

based definition capturing causation?

;jll
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Peculiarity in Potential Outcome - 1

e e Suzy and Billy throw the ball to the bottle
\, on the tower

* They threw accurately to the bottle.

* The bottle will fall off once got hit.

This example is from Lewis (2000)
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* Suppose Suzy’s ball hits the bottle first.
* Then, Billy’s ball doesn’t hit the bottle.

Q. Is Suzy throwing a ball a cause of the
bottle falling off?

A. Yes. Because Suzy threw a ball, it hits the
bottle, and the bottle fell off.

\ZZ;/ Too obvious!
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Peculiarity in Potential Outcome - 3

What would the PO-based causality say?

o If Suzy had thrown the ball (ST = 1), the
bottle would fall off (BFO = 1).

o If Suzy hadn’t thrown the ball (ST = F), the
bottle would fall off (BFO = 1).

e ST=T - BFO =T and
ST=F — BFO=T

14



Peculiarity in Potential Outcome - 3

What would the PO-based causality say?

By the PO-based causality definition,
Suzy’s ball throwing is not a cause,

because ST =1 or ST = 0 doesn’t
make any change.

ST=F —> BFO=T

14
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Toward a modern causality

The counterfactual only holds under the situation where Billy’s ball didn’t hit the bottle.

PO-based definition doesn’t take account
situations (structure of the world) in which

the counterfactual logics hold!

ST=T=BFO=T A\~  ST=F=BFO=F

15
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A modern causality taking account of situations is developed by Pearl and his
colleagues [Pearl, 2000].

Causal Model ./Z = (V, U, F)

» V: A set of endogenous (observable) variables.
» U: A set of exogenous (latent) variables.

. F: A set of structural equations {fV,-}V,EV determining the value of V. € V,
where V; < f, (PAy, Uy) for some PA, € V and Uy, C U.

. U describes ‘context’ — By fixing U = u, values V = v are completely determined.

16
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BFO < f,.,(SH,BH) = SHv BH
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Causal Model — Example - 1

SH < fo;(ST) = ST ST: Suzy Throws € {7, F'}
BT: Billy Throws € {7, F}

BH < fpy(BT) = BT A (~SH) SH: Suzy’s ball hit the bottle

BFO < fprn(SH,BH) = SHYV BH BH: Billy’s ball hit the bottle
BFO: Bottle Fall Off
- T <W}\OI (1) @\\
0,
R0 >
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Causal Model — Example - 1

SH (_‘sz(ST) — ST ST: Suzy Throws & {T, F}
BT: Billy Throws € {7, F)

BH < fpy(BT) = BT A (~SH) SH: Suzy’s ball hit the bottle

BFO « fu.,(SH,BH) = SHV BH

BH: Billy Suzy’s throwing is not a
cause, according to PO-
based definition.

do(T)

17
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SH « fuST) = ST ST: Suzy Throws € (T, F}
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BH <« F
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Causal Model — Example - 2

SH < f.,(ST) = ST ST: Suzy Throws € {T, F'}

BT: Billy Throws € {7, F)
BH < F SH: Suzy’s ball hit the bottle
BFO « fu.0(SH,F) = SHV BH BH:

Under the situation where Billy’s ball
:]ge didn’t hit the bottle, Suzy’s throwing is
a cause.

@ SH @\ @
B0 do(T) do(F)
X

18



Causal Model — Example - 2

SH  f.(ST) = ST s € {1, F}
. e {1, F}
Actual Gausalit
BH « F o - y 1t the bottle

OOO O% Q o
Oéoo ¢
o T =
(o]
0O ooO
[-)
- \

BFO « fn.(SH,F) = SHV

situation where Billy’s ball
he bottle, Suzy’s throwing is

C 50 >
v\ Joseph Y. Halpern
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Structural Causal Model (SCM)

Structural Causal Model (SCM) permits probabilistic uncertainties in the context U = u.

Structural Causal Model .Z = (V,U, F, P(u))

« V: A set of endogenous (observable) variables.

» U: A set of exogenous (latent) variables.

. F: A set of structural equations {fV,-}V,-eV determining the value of V. € V,
where V. <—fVi(PAVi, UVi) for some PAV,- C V and Uy C U.

» P(u): A probability measure for U.

19
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SCM as a unified language

So far, we see that SCM can fill the lacuna missed by PO-based causality.

Indeed, SCM subsumes the PO-based causality, because the potential outcome can be
equivalently defined using the SCM.

SCM subsumes Potential outcome Y, (“Y if X had been x”)

» Given the SCM ./, let M ;,,, denote the SCM inducing by fixing X = x in /. .

e Let Y be induced from the SCM /.

+ Then Y is induced from ./ ,,,,. (Roughly, Y, = Y| do(x))
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SCM as an axiomatic characterization

Axiomatic logic — Logic systems (or theories) starting from very simple (even trivial)
properties.

Why axiomatization? Consider Euclidean Geometry. Any theories (or logic system) of
geometry agreeing with these axioms are equivalent to Euclidian Geometry!

Axiomatization: Euclidean Geometry

®
. - A straight line to join any

- . e e —— Any straight line can be
AXIOm 2 ﬁ> > extended indefinitely
Given any straight line
: . segment, a circle can be
Axiom 3: ~ D drawn with the segment as
radius
Axiom 4: \/ ( D “ Al right angles are congruent

‘ B> Two lines intersecting a
Axiom 5: third with sum of interior
/a) S angles <180° will intersect
et : T

(Frederick Eberhardt)
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SCM as an axiomatic characterization

Axioms for counterfactual [Galles, Pearl & Halpern]

For a given context U = u, suppose we take acyclicity (no cycle loop) as truth.

(cause — effect) & (effect - cause)

CompOSition: In the hypothetical population where X is fixed to x for all units, any W equals to W..

Y(w) =Y, www

If we had treated all patients a drug (X = 1), then patients’ blood pressure (BP, W) would be W,.

Effectiveness: In the hypothetical population where X is fixed to x, for any context, X = x.
X, (u) =x
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SCM as an axiomatic characterization

SCM is a sound and complete framework
satistfying these axioms!

& SCM can subsume any causal theories agreeing with these
~ axioms.

-y O

This i1s why Pearl’s causality is acknowledged as a ‘revolution’ or ‘new
science’ on causality.
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cognition as uantity uesto
Classification

| 1 (Association Reqgression What does the symptom

( ) . | I ()’ ‘x) tells about my headache?

Observational study
| Re'[‘fom.eme”t What if | took the aspirin,

L2 (Intervention) carning P(y|do(x)) | will my headache be

Randomized trial

cured?

L3 (Counterfactual)

P(y,|x,y)

Given that | didn’t take
the aspirin and didn’t get
cured, what if | did?
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Three hierarchy in human cognition

rluman Task Quantit Questi
‘s uantl uestion
cognition as y
Classification
L1 (A lation Regression What does the symptom
( SS0ciatio ) g. I ()’ ‘X) tells about my headache?
Observational study
| Jeinoreement What if | took the aspirin,
L2 (Intervention) carning P(y|do(x)) | will my headache be

Randomized trial

cured?

L3 (Counterfactual)

Structural Causal
Model

P(y,|x,y)

Given that | didn’t take
the aspirin and didn’t get
cured, what if | did?
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Human

cognition Task

Quantity

Three hierarchy in human cognition

Question

- SCM as a suitable language to
— teach human cognition to Al

L3 (Counterfactual) Structural Causal
Model

P(y,.|x,y")

lven that | didn’t take
the aspirin and didn’t get
cured, what if | did?
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layers (e.q., A is for L1, A do(x) 18 for L2) @ L2

 With knowledge from lower layers, we cannot say anything about the higher
layers.
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Pearl’s Causal Hierarchy (PCH)

Pearl’s Causal Hierarchy [Bareinboim et al., 2020}

o Structural Causal Model can represent all three

layers (e.q., A is for L1, A do(x) 18 for L2) @ L2

 With knowledge from lower layers, we cannot say anything about the higher
layers.

* Solely with the observational data (L1), we cannot answer ‘what-if’ question in L2.

* Solely with the interventional data (L2), we cannot answer retrospective/
counterfactual question in L3.

24
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SCM

D = {Xi9 Yl}i\il

Qualitative

description of SCM  How do we leverage graph &

[ 1 information to answer L2,
2 L3 questions?
L, : P(y|do(x))
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Causal inference through SCM

SCM

D = {X,Y,}iL, ~ P(x,y)

12 71

Qualitative
description of SCM

* How do we leverage graph &

[ 1 information to answer L2,

L3 questions?
L, : P(y|do(x))
2 - FY » Without any info (i.e., no graphs),

Lsy: P(y, |y, x) we cannot answer due to PCH)

25
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example

1Cd

Pract

* | have drawn a causal diagram with helps of clinicians

to understand the mechanism of the treatment effect in
“Acute Respiratory Distress Syndrome (ARDS)”
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Practical example

* | have drawn a causal diagram with helps of clinicians,
to understand the mechanism of the treatment effect in
“Acute Respiratory Distress Syndrome (ARDS)”

* One can encode the domain knowledge (clinician’s
knowledge) through graphs.

26
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Key points (So far)

» SCM is a comprehensive framework for studying causality.

* Unified framework: SCM subsumes PO-based causality.

* Axiomatization: SCM is the sound and complete language obeying
axioms.

« SCM is a suitable tool to represent human cognition and teach
them to Al.

We answered Why Pearl’s Causality is
M revolutionary.
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Causal effect identification

D = {Xia Yl}ﬁ\il ~ P(xay)

L, : P(y|do(x))

* |In general, we cannot answer L2 query using the graph and data from L1 (PCH).

* By leveraging the graphical information, we may be able to answer!

 Causal effect identification (ID) — Representing L2 distribution as something computable
from L1 information (data drawn from the joint distribution) and graphical information.

[Y|do(X)] = ) E[Y]x,2]P(2)

<
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Ignorability — Identification in PO

Potential outcome Y.: Y if X had been set to x in the hypothetical population.

In PO, the only thing we know about Y is this: « Y, is observed when X = x.

e Y, is missing when X = X’

X Y Y_{X=1} Y_{X=0} Z (age)
1 1 1 NA 1
0 0 NA 0 1
1 1 1 NA 0
0 1 NA 1 0

How can we estimate

~| Yy_;] — An expectation of Y if all population takes X = 17

Nontrivial, because of missing data (NA)!

30
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Y. 1l X|Z

Missingness at random (MAR) assumption [Rudin, 1974]: Missingness (X) is
independent of missing variables (Yy_,) given some variables Z. (i.e., missingness can
be explained by 7). This is a widely used assumption for imputing the missing data.

Y. 1l X|Z
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lgnorability — How PO treats causality

X Y

Y {X=1} Y_{X=0}

Z (age)

Ignorability assumption.

An ignobility assumption states that ¥ and X are conditionally independent given Z.

Y. 1l X|Z

Covariate adjustment - Identification w/ Ignoriability assumption

 |f the ignorability assumption holds, then

(Y ]= ),

(Y, [21PR) = )

4

(Y, | x,2]P(2) = )

<

-[Y| x, 2] P(z)
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X Y

Ignorability assumption.

Y {X=1} Y_{X=0}

Z (age)

An ignobility assumption states that ¥ and X are conditionally independent given Z.

Y. 1l X|Z

Covariate adjustment - Identification w/ Ignoriability assumption

 |f the ignorability assumption holds, then

(Y ]= ),

L2 quantity

(Y, [21PR) = )

4

(Y, | x,2]P(2) = )

<

-[Y| x, 2] P(z)

L1 quantity
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Practical implication of ignorability?

What Y, 1L X|Z means (“missingness of Y, can be explained by Z”) is unclear in
practice.

What about Z = { variables correlated with {X,Y}}? Can missingness of Y, be
explained by such Z?

“M-bias” [Pearl]:
Counterexample that for
such Z, still Y_ "X | Z.

32
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Back-door criterion

Pearl| provides “Back-door criterion”, a graphical criterion corresponding to the
ignorability criterion.

33



Back-door criterion

Pearl provides “Back-do i Z: Age

ignorabillity criterion. X: Exercise

sponding to the

®—0 Y: Cholesterol
X Y

Back-door criterion

Given G, if all the non-causal path (or spurious path, indirect path) from X and Y is
blocked by Z, then E[Y ] (= E[Y|do(x)] in terms of SCM) is

“[Y|do(0)] = ), E[Y|x,2]P().
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Back-door criterion

/ /: Age

Pearl provides “Back-do ® sponding to the

ignorabillity criterion. X: Exercise

®—0 Y: Cholesterol
X Y

Back-door criterion

Given G, if all the non-causal path (or spurious path, indirect path) from X and Y is
blocked by Z, then E[Y ] (= E[Y|do(x)] in terms of SCM) is

“[Y|do()] = ) E[Y|x,2]P(z).
, Z .
L2 quantity L1 quantity
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» Only information: Y, can be viewed as missing data = ignorability assumption (¥, 1L X |Z)

f Y. H X |Z, in the PO-framework, we can do nothing b/c no further information
can be used.

Does this mean that the causal effect is NOT identifiable if Y. X | Z?

;C No!
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X: Smoke

Z: Tar in the smoke

Y: Lung disease
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In Front-door graph [Pearl, 1995], the ignorability doesn’t hold: Y M "X |Z

However,

[ Y] =

Front-door

U: Genetic factor (latent)

X: Smoke

Z: Tar in the smoke

Y: Lung disease

- Y| do(x)] is identifiable and given as

“[Y|do()] = ), Plx) ),

1Y | X, 2] P(X).
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Front-door

z U: Genetic factor (latent)

Front-door Is the 1st example showing

the Insufficiency of the ignorability

However, E[Y, | = E[Y | do(x)] is identifiable and given as

C[Y ] do(x)] = ZZP(Z\X) Zx, —[ Y| X', ] P(x).
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Motivated by Front-door example, Pearl [1995] developed three rules that can be
used for identifying causal effect from a graphw/ Y _H"X | Z.
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Pearl’s do-calculus

Motivated by Front-door example, Pearl [1995] developed three rules that can be

used for identifying causal effect frqm g graph v
G55: A graph cutting incoming edges to A,

Rule 1 (conditional independenc and outgoing edges from B.
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Pearl’s do-calculus

Motivated by Front-door example, Pearl [1995] developed three rules that can be
used for identifying causal effect from a graphw/ Y _H"X | Z.

Rule 1 (conditional independence):

(Y LL Z| X, W), = P(y|do(x),z, w) = P(y|do(x), w)

Rule 2 (Doing/seeing interchange):
(Y LL Z| X, W)g, = P(y|do(x),do(z),w) = P(y|do(x), z, w)

Rule 3 (conditional independence for interventions)
(Y L Z| X, W)6s i = PV 1do(x), do(z), w) = P(y|do(z), w)
’ X

36
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Front-door —Identification through do-calculus

P(y|do(x)) = ) P(y|do(x),2)P(z| do(x)) Marginalization
= ), P(yldo).9)P|x) R

— ZZ P(y|do(x),do(2))P(z]|x) R2

=Y POldo@)Pe|v) RS

— ZZ ( le P(y|do(z), x)P(x'| dO(Z))) P(z|x). Marginalization
L2 quantity Is represented as

-y (2 P(y|z.x)P(Y| dO(Z))) P(z|x). R an L1 quantity given the graph
AT through do-calculus rules.

- ZZ ( Zx, P(y|z, X’)P(X’)> P(z]x). R3
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X, X,: Treatment at time 1,2

/. Physiologic response.

Y: Survival
U,: Patients’ history

U,: Genetic factor
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What about other graphs?

Nature’'s data generating process
can be arbitrary.

— (Causal graphs can be arbitrary.

Q1. Can we determine identifiability using do-calculus for
arbitrary graphs?

Q2. If so, how do we find a correct procedure for applying do-
calculus?
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Q1. Can we determine identifiability using do-calculus for

arbitrary graphs??

A1. Yes. Do-calculus is complete (i.e., the causal effect is identifiable if and only if it
can be derived through do—calculus) [Tian, 2002], [Valtorta and Huang, 2006] ,[Shpitser and Pearl, 2006]
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Complete identification solution

Q1. Can we determine identifiability using do-calculus for

arbitrary graphs?

A1. Yes. Do-calculus is complete (i.e., the causal effect is identifiable if and only if it
can be derived through do—calculus) [Tian, 2002], [Valtorta and Huang, 2006] ,[Shpitser and Pearl, 2006]

Q2. How do we find a correct procedure for applying do-

calculus?

A2. There is an algorithm! (https://www.causalfusion.net/login)

39
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Key points (So far)

 Under SCM frameworks, a sound and complete algorithm (i.e.,
identifiable if and only the algorithm works) for determining
identifiability (CausalFusion) exists.

» In the PO-based causality, no formal data generating process (DGP) on Y

ID via ignorability assumption (¥, 1L X | Z)
« SCM frameworks allow to encode knowledge on DGPs.
* Since Nature’s DGP is arbitrary, causal graphs can be arbitrary.

 That’s why SCM frameworks engenders causal effect identification problems.
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and the available distribution (3), can we
answer the research question (1)?
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Task of Identification

© query
Q = P(y) = P(y|do(x))

& graph

€ probabillity
P(V)

With the current scientific knowledge

(encoded as a graph) about the problem (2)
and the available distribution (3), can we
answer the research question (1)?

solution

yes / no

/

Causal Functional

PX(Y) = f(P)



3. Causal effect
estimation




Front-door — How to estimate?
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Front-door — How to estimate?

[Y|do()] = ), Pzlx) ), EIY|x.z]P(x).

@
X

/

U: Genetic factor (latent)
X: Smoke

Z: Tar in the smoke

Y: Lung disease



Front-door — How to estimate?

[Y|do()] = ), Pzlx) ), EIY|x.z]P(x).

Instead of the L1 distribution P(x, y, 7), we are only
given finite samples D = {X., Y. Zi}fil from P.

> i
U: Genetic factor (latent)

X: Smoke

Z: Tar in the smoke

Y: Lung disease
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Front-door — How to estimate?

U: Genetic factor (latent)
X: Smoke

Z: Tar in the smoke

Y: Lung disease

E[Y|do()] = ), Pzlx) ), E[Y[x.z]P(x).

Instead of the L1 distribution P(x, y, 7), we are only
given finite samples D = { X, V. Zi}f.\; from P.

We must estimate the ID quantity (“Causal
functional”) from the dataset D.
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Task of Estimation

With (1) a causal functional f(P) such that

P X_(y) =/ (?D )and (2)a Alternative representation
reliable estimate /), for ¢ amenable estimation
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Task of Estimation

With (1) a causal functional f(P) such that
P_(y) = f(P) and (2) a dataset D, can we have a

reliable estimate T, for P, (y)?

- Causal Functional

P(y | do(x)) = A(P) Estimand
g(P) = f(P)
Data Estimator

v Vo P
I Iy= 8
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Classic BD estimator:

1. Inverse probability weighting (IPW)

/

X

2. POIx2PR) =

SN PO =, POIxRDPE

Y

2. POl DPEIIPR5

1 L(x)=1ifx=x

P (Z, otherwise 0.
Z z P(x|z) '

Y Pary) k)
oy 0 P(x|z) ’ Y

[ L&
g [P(X\Z)

'Iy(Y)] = g(P)
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1. Inverse probability weighting (IPW)

A’ P.(y) = fpg(P) = Z P(y|x,2)P(z)
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1. Inverse probability weighting (IPW)

A P(y) = fpd®) = ) P(|x.2)P()
X Y <
Estimand (g(P)) E, L EpLf(W)] E%i f(W,;), an empirical
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Estimator (7,) E, ﬁg(()f;) I(Y
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1. Inverse probability weighting (IPW)

Y4
_A’ P(y) = fpg(P) = Z P(y|x,2)P(z)
X Y <
i [ (X)
Estimand (g(P E =
Estimator (TN) * A function class s.t. complexities of functions are
’ restricted. (e.g., linear/logistic regression, smooth
parametric functions).
For consistent § * |t’s unclear modern flexible/complicated ML
estimation i methods (e.g., neural networks) are in this class.
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Classic BD estimator:
2. Outcome-regression (OR)

A’ P.(y) = fpg(P) = Z P(y|x,2)P(z)
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Classic BD estimator:
2. Outcome-regression (OR)

/
A P.(y) = fpg(P) = Z P(y|x,2)P(z)
<
X _____________________________ Y ____________________________________________________________ Expectation over Z.
=), POIx9PQ)
Estimand (g(P)) Ep[P(y|x,Z)]
Estimator (7,) E, [P(y | x Z)]
For correct P(y|x,z) converges to P(y|x, 2).
estimation
For fast (v~ rate) (1) P(y|x,z) - P(y|x,2) fast; and
convergence (2) {P(y|x,2),P(y|x,2)} in Donsker Function class.
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Comparison- Classic BD estimators

IPW OR
. [(X)
Estimand (s(P)) E, X2} () Ep |P(y|x,2)]
: [(X)
Estimator (7,) E, P12 I(Y Ep [P(ylx Z)]
For correct A ~
estimation P(x|z) = P(x]|z) P(y|x,z) = P(y|x,2)
1) P — P fast: H - .
For fast (v " rate) (1) (AXIZ) (x| z) fast; (1) P(y|x,z) — P(y|x,z) fast;
convergence (@) {P(x]2),P(x|2)} in Donsker : (2) {P(y|x,2),P(y|xz)} in Donsker
= class. class.
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Comparison- Classic BD estimators

For correct
estimation

For fast (v~ rate)
convergence

IPW OR
[(X)
Er | btz ) Ep [P(y|x,2))
1.(X) A
E X L(Y Ep | P(y|x,Z)
Pl px1z) D[ ]
(1) P(x|2) = P(x|2) fast; (1) P(y|x,2) — P(y|x,z) fast;

(2) {P(x|2).P(x|2)} in Donsker (2) {P(y|x,2),P(y|x,2z)} in Donsker

class. class.
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Comparison- Classic BD estimators

=1V, ol

-

o

§

| NEED SOMETHING ROBUST\

convergence - (2) {P(x]2), P(x]2)} in Donsker : (2) {A(y|x,z), P(y|x,2)} in Donsker
' class. i class.
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* Consider the following estimand:  g(P)=E P(y|X,Z)) HP(y| x, Z)|}

e This g(P) is a valid estimand (i.e., g = ZZP(y|x,z)P(z)) P(x|z) or P(y|x,z)
are misspecified.
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If P(X|Z) is misspecified to P(X|2):

I(X)
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Augmented IPW (IPW + OR)
A P(y) = ZZ‘,me, DP(2)

X r J—— 'PW

e Consider the following estimand: g(P)=E P(y|X,2)) +(y|x,

If P(X|Z) is misspecified to P(X|2):

(Law of total expectation):
Taking expectation to vy and
y IN sequence.

(X)
E I(Y)=PW|X.Z))+ P V4
P[P(X|Z)( (Y)=-P(|X,2))+ P(y|x, )]

-

IL(X
= Epxz) Y Errix.z) [P();(ﬂ;) (L(Y) - P(y|X,Z))+ P(y|x,Z)

h'd

X, Z]

L
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* Consider the following estimand:  g(P)=E P(y|X,Z)) HP(y| x, Z)|}

If P(X|Z) is misspecified to P(X|2):

(Law of total expectation):
Taking expectation to vy and
y IN sequence.

Ep [ ~IX(X) (L(Y)—P(y|X,2)) + P(ylx,Z)]
PX|2)

-

L(X)
= [EP(X,Z) y [EP(Y|X,Z) [ = (]y(Y) - P(y|X,2))+ P(y|x,Z)

h'd

~,, SiNCE

P(X|Z) .
; \-'[EP(Y|X,Z)[Iy(Y) |X9 Z] — P(y|X,Z)

X, Z]

L

= [EP(X’Z){P(X|Z)(W)+P(y|X Z)}
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e Consider the following estimand:  g(P) = P(y|X,Z)) HP(y|x,

If P(X|Z) is misspecified to P(X|2):

(Law of total expectation):

I(X) - — Taking expectation to vy and

Ep | = (L(Y) = P(y|X,Z)) + P(y|x,Z) e et e atees e :
"l Bx|z)™ T (X, Z) IN SEQUENCE.
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A PO) = Y P(y|x2)PR)

X Y

Crex _
e Consider the following estimand:  g(P) = E, P();((|;) (I(Y)-P(y|X,Z)) + P(y|x,Z)

If P(v|X,Z) is misspecified to P(yv| X, 2):

L(X)
"1 Px|2)

L(X)
P(X|Z)

L(Y)=P(y|X.2)) + P(y|x.Z)

X,Z}

(Iy(Y)—p(y 1X,Z)) + P(y|x,Z) = Epxz) | Eprix.z {
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. . . _ | LX) '
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Augmented IPW (IPW + OR)

/
A P(y) = Z P(y|x,2)P(z)
X Y <
. . . _ | L _
e Consider the following estimand:  g(P) = E, PX(2) (I(Y)-P(y|X,Z)) + P(y|x,Z)
If P(v|X,Z) is misspecified to P(yv| X, 2):
I(X) . " 1(X) i i _
Ep ’P(X|Z) (L (Y)-P(y|X,Z2)) + P(ylx,Z)] = Epxz) | Eperix.z) { P(X|2) (L(Y)-P(y|X,2))+ P(y|x,Z) X,Z}
I(X) . N 1(X) i i} _
= Epix ) [P(X|Z) (PY|X,Z)—P(y| X, Z)) +P(y|x,Z)] = Epz) [Epxiz) { P(X|Z) (P | X, Z)—P(y|X.Z)) + P(y|x,Z) Z}

P(x| ; :
= Epz) [%(P(y | X, Z)=P(y|x,2)) + P(ylx,Z)] = Ep[P(y|x,Z)] = ZZ P(y|x,2)P(z) = P(y)



Augmented IPW (IPW + OR)

7
A P.(y) = Z P(y|x,2)P(z)
X Y Z
. . . - 1(X) '
e Consider the following estimand:  g(P) = E, PX(2) (I(Y)-P(y|X,Z)) + P(y|x,Z)

Takeaways:

* ¢(P)=P/ (y) evenif P(y|X,Z)is misspecified to P(y, | X, Z)
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7
A P.(y) = Z P(y|x,2)P(z)
X Y Z
. . . - 1(X) '
e Consider the following estimand:  g(P) = E, PX(2) (I(Y)-P(y|X,Z)) + P(y|x,Z)

LELCENTEVED

* ¢(P)=P/ (y) evenif P(y|X,Z)is misspecified to P(y, | X, Z)

* o(P)=P[y) even if P(X|Zz)is misspecified to P(X|Z2)

51



Augmented IPW (IPW + OR)

/

A P.(y) = Z P(y|x,2)P(z)
X Y Z
. . . - 1(X) '
e Consider the following estimand:  g(P) = E, PX(2) (I(Y)-P(y|X,Z)) + P(y|x,Z)

~/

LELCENTEVED

* ¢(P)=P/ (y) evenif P(y|X,Z)is misspecified to P(y, | X, Z)

* o(P)=P[y) even if P(X|Zz)is misspecified to P(X|Z2)

— Doubly robustness: An estimand g(P) gives a double chance of
being correct!




Classic BD estimator:
AIPW

A’ Px(y) — ZZP(Y‘xa Z)P(Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Classic BD estimator:
AIPW

P = P(y|x,2)P

A{ x(}’) ZZ (y|x,2)P(z)
X Y

Estimand (2(P)) [ Pig;) (V) = P X, 2)) + P(y | x, Z)]

------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Classic BD estimator:
AIPW

7
A P(y) = ZZ P(y|x,2)P(z)
X Y
L(X)
Estimand (g(P)) [ px(z) B~ POIX2) + POy Z)]
Estimator (7,) E, LX) 1Y) - P(y|X,2)) + P(y|x,Z)
P(X|Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Classic BD estimator:
AIPW

Y4
A P(y) = ZZP(y\x, 2)P(z)
X Y
Est d (g(P £, |22 vy = PO IX.2)) + PO 2.2
stimand (g(P)) P[P(XlZ)( (Y) - P(y|X,Z)) + P(y|x, )]
Estimator (7,) E, _L&X) (I(Y) - P(y|X,2)) + P(y|x, Z)_
g | P(X|Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

P(x|z) — P(x|z2); Or P(y|x,z) — P(y|x,z).
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Classic BD estimator:
AIPW

VA
A P(y) = ZZ P(y|x, 2)P(z)
X Y
L(X)
Estimand (g(P)) [ px(z) B~ POIX2) + POy Z)]
Estimator (7,) E, P()((|;) 1Y) - P(y|X,2)) + P(y|x,Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Classic BD estimator:
AIPW

7
A’ P(y) = ZZP(y\x, 2)P(2)
X Y
Est d (o(P [EI(X)IYPXZP 7
stimand (g(P)) P[P(X|Z)( (Y) - P(y|X,Z)) + P(y|x, )]
Estimator (7 E LX)
(T,) b P(Xlz)a(Y) P(y|X,2)) + P(y|x,2)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v~ rate) &) “Debiasedness” (P(x|2), P(y|x,2)} — {P(x|2), P(y|x,2)} can converge
convergence  relatively slowly (N-""* rate).
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Classic BD estimator:
AIPW

7
Q P(y) = ZZP(y\x, 2)P(2)
X Y
Est d (o(P [EI(X)IYPXZP 7
stimand (g(P)) P[P(X|Z)( (Y) - P(y|X,Z)) + P(y|x, )]
Estimator (7 E LX)
(T,) b P(X|Z)(I(Y) P(y|X,2)) + P(y|x,2)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v~ rate) &) “Debiasedness” (P(x|2), P(y|x,2)} - [P(x|2), P(y|x,2)} can converge
convergence  relatively slowly (N-""* rate).

{P(x|2), P(x|2), P(y|x,z), P(y|x,z)} in Donsker class.
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Classic BD estimator:
AIPW

Z
A’ Px(y) — ZZP(y‘xa Z)P(Z)
X Y
L(X)
Estimand (g(P)) P [ rx1z)® (L(Y) = P(y|X,Z)) + P(y|x, Z>]
Estimator (7,) E, P()(ﬂ;)(l (Y) - POy|X,2)) + P(y|x,Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (N—1/2 rate) QE-;’) “Debiasedness” {}A)(x|z),}3(y|x, 2)} = {P(x|2), P(y|x,z)} can converge
convergence  relatively slowly (N-""* rate).

- @) Unclear'that modern ML 'methods are in Donsker.



Classic BD estimator:
AIPW

| NEED SOMETHING ROBUST
or 1ast (v rate) i T - v | v
convergence relatively slowly (N~ rate).



Double/Debiased Machine Learning

/
A’ P(y) =fpg(P) = Z P(y|x,z)P(z)
X Y <
Estimand (g(P)) [ P;ff;) I(Y) = P(y|X,Z)) + P(y|x Z)]

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence

..................................................................................................................................................................
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Double/Debiased Machine Learning

A’ P.(y) = fpg(P) = ZP(Y\x, z)P(2)
X Y <
1(X)
Estimand (g(P)) [ poci 2, B0 = POIX.2) + PO, Z)]
Estimator (7,) . D Ep |= X (L(Y) = P (01X, 2)) + P1_(y|x,Z)
a 2. con L Pi-X12)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence

..................................................................................................................................................................
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Double/Debiased Machine Learning

Sample-splitting (a.k.a. Cross-fitting, Cross-validation)

1. (Sample-splitting). Randomly split the sample
D = {D,,D,}.

dP) = ) P(y|x.2)PQ)

: ] - L(X ) ) '
Estimator (TN) by Z Ep, 3 -EX|)Z) L,(Y) =P _(y|X,Z2)) + P,_(y|x,Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence

..................................................................................................................................................................



Double/Debiased Machine Learning

Sample-splitting (a.k.a. Cross-fitting, Cross-validation)

1. (Sample-splitting). Randomly split the sample
D = {D,,D,}.

2. Using D, learn {Px|z), P.(y|x,2)}.

dP) = ) P(y|x.2)PQ)

: ] - L(X ) ) '
Estimator (TN) by Z Ep, 3 -EX|)Z) L,(Y) =P _(y|X,Z2)) + P,_(y|x,Z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence
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Double/Debiased Machine Learning

Sample-splitting (a.k.a. Cross-fitting, Cross-validation)

1. (Sample-splitting). Randomly split the sample
D = {D,,D,}.

2. Using D, learn {Px|z), P.(y|x,2)}.
3. Evaluate » using samples in D, with models

(P,_(x|2), P,_(v|x,z)}trained through D,_, (i.e.,
samples for evaluation / training are distinct) =~ 7T

dP) = ) P(y|x.2)PQ)

. A - IL(X . .
Estimator (TN) Y Z Ep, ) (L(Y)—=P,_(y|X.2))+ P,_(y|x,Z)

2 i€{0,1} | _pl—i(Xlz)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence

..................................................................................................................................................................



Double/Debiased Machine Learning

Sample-splitting (a.k.a. Cross-fitting, Cross-validation)

1. (Sample-splitting). Randomly split the sample
D = {D,,D,}.

2. Using D, learn {Px|z), P.(y|x,2)}.
,dP) = ) P(y|x.2)P()
Z

3. Evaluate » using samples in D, with models
(P,_(x|2), P,_(v|x,z)}trained through D,_, (i.e.,
samples for evaluation / training are distinct) = T

4. Take an empirical expectation of each  over D, (i.e., ) +PQ Ix,Z)]
Ep, ) and divide it half.

=h
Estimator (7,) - Llyg L0 A(Y) - P (y|X.2)) + P,_(y|x. Z)
N 2ie{0,1} o _pl—i(Xlz) ’ - , =As
For correct  P]2) = P(x]2); Or B(y|x,2) — P(y|x,2).

estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence



Double/Debiased Machine Learning

A’ P.(y) = fpg(P) = ZP(Y\x, z)P(2)
X Y <
1(X)
Estimand (g(P)) [ poci 2, B0 = POIX.2) + PO, Z)]
Estimator (7,) . D Ep |= X (L(Y) = P (01X, 2)) + P1_(y|x,Z)
a 2. con L Pi-X12)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For correct
estimation

------------------------------------------------------------------------------------------------------------------------------------------------------------------

For fast (v rate)
convergence

..................................................................................................................................................................

53



Double/Debiased Machine Learning

For correct
estimation

For fast (v rate)
convergence

_A’ P(y) = fpd®) = ) P(y|x.2)P()

------------------------------------------------------------------------------------------------------------------------------------------------------------------

2 i€{0,1} i _pl—i(Xlz)

------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------

& “Debiasedness” {P(x|z), P(y|x,2)} — {P(x|2),P(y|x,z)} can converge
: relatively slowly (v~ rate).

..............................................................................................................................
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Double/Debiased Machine Learning

--------------------------------------

For correct
estimation

For fast (v rate)
convergence

A P.(y) = fpg(P) = Z P(y|x,2)P(z)

------------------------------------------------------------------------------------------------------------------------------------------------------------------

1 1.(X) . .
= ) Ep|= I(Y) =P (31X, 2) + P\_(y|x,Z)
2 i€{0,1} _Pl—i(Xlz)

& “Debiasedness” {P(x|z),P(y|x,2)} — {P(x|2), P(y|x,7)} can converge
: relatively slowly (v~ rate).

..................................................................................................................................................................
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Double/Debiased Machine Learning

4
A P(y) =fpg(P) = Z P(y|x,2)P(z)
X Y Z
. 1,(X)
Estimand (s(P) | Ep [ pox1 2y B0~ POIX.2) + PO Z)]
: i 1 1.(X) A )
Estimator (7,) - S 2B o1z b0 = PO IX )+ P16 2)
X ={() ] —;

Key result:

Double/debiased machine learning (DML) estimator for BD enjoys
doubly robustness and debiasedness without restrictions on the
function class!
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4. My research theme



My research theme




My research theme

Under the BD setting,

BD adjustment - { Estimation Engine | Desirable
L on BD ‘,{ ~estimator T,

Data D -
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My research theme

Under the setting (i.e., general f(P) = P.(y)),

Functional f(P) - | Estimation Engine | - ?
Data D -  On
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Estimators beyond the BD case

Statistical properties Causal properties

Graphical properties

1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1

Jung, Tian, :
Bareinboim (2020a)

1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1

Fulcher et al., (2019)

Bhattacharya et al (2020)
Jung, Tian, 5
Bareinboim (2020Db)

1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
1
1

Jung, Tian, :
Bareinboim (2021a))

Jung, Tian, :
Bareinboim (2021b)) :
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Key points (So far)

* There have been many estimators for Back-door settings
(ignorability).

* |IPW, OR, AIPW, Double machine learning, etc.

* No estimators have been developed for the general ID setting.

* My research theme is filling this lacuna — developing an
estimator for general ID functional.
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Conclusion

o Structural Causal Model (SCM) is a complete framework for
causal inference.

* |In SCM, causal effect identification is important. There is a
complete solution for ID problems.

e Since causal effect estimation problems have remained open, |
have solved the estimation problems for general |ID settings.
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