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2. Causal effect identification — what are conditions for estimate causal 
effects using data? 

3. Causal effect estimation — how to estimate the causal effect  sample 
efficiently? 

4. My research themes
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Award 🏆

“Creation of mathematical framework for causal inference" 
—  Structural causal model and its graphical representation using Bayesian 
networks (https://amturing.acm.org/award_winners/pearl_2658896.cfm)

“radical mathematical solution on causality” 
— Nature

“elegant, powerful, controversial theory of causality” 
— American Mathematical Society

“wonderful book has illuminating answers” 
— Daniel Kahneman, winner of the Nobel 
Memorial Prize in Economic Sciences

https://amturing.acm.org/award_winners/pearl_2658896.cfm
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Many disagreements!

“Is it a new science on Causality?” 😡



7

Do we understand causality?



7

Do we understand causality?

Studied an 
association 



7

Do we understand causality?

Studied an 
association 

Interpreted 
as causation



7

Do we understand causality?

Studied an 
association 

Interpreted 
as causation

What the public 
understood:
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So, what is causality? (1) — Correlation

David Hume

“We may define a cause to be an object, followed by 
another, and where all the objects similar to the first are 
followed by objects similar to the second” (1752)

Roughly, if  happens and then  happens, then  is a 
cause of . 

X Y X
Y

Correlation implies causation?
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So, what is causality? (1) — Correlation

↑Exercise  ⇒ ↓Cholesterol per age!
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What is causality? (2) — Counterfactual 

 is a cause of an outcome  meansX Y
• If  had occurred, then  would have occurred; and X Y

• If  had not occurred, then  would not have occurred; X Y

Counterfactual (Lewis, 1973) or 

PO-based causality (PO, Rubin, 1974)

Potential outcome: Let  denote  if  had been set to .Yx Y X x

•  is a cause of  if . X Y YX=1 = 1 & YX=0 = 0

David Lewis 

Donald Rubin
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What is causality? (2) — Counterfactual  (Example)

 is a cause of an outcome  meansX Y
• If  had occurred, then  would have occurred; and X Y

• If  had not occurred, then  would not have occurred; X Y

X = 1 YX=1 = 1 X = 0 YX=0 = 0

Sounds reasonable… Is indeed the PO-
based definition capturing causation? 🤨
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Peculiarity in Potential Outcome - 1

• Suzy and Billy throw the ball to the bottle 
on the tower

• They threw accurately to the bottle.

• The bottle will fall off once got hit.

🙋
Suzy

S

🙋
Billy

B

This example is from Lewis (2000)
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• Suppose Suzy’s ball hits the bottle first. 

• Then, Billy’s ball doesn’t hit the bottle. 💥

Q. Is Suzy throwing a ball a cause of the 
bottle falling off?

A. Yes. Because Suzy threw a ball, it hits the 
bottle, and the bottle fell off. 

🙋

🙋

Suzy

Billy

S

B

🥱 Too obvious!
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Peculiarity in Potential Outcome - 3 

What would the PO-based causality say? 

• If Suzy hadn’t thrown the ball ( ), the 
bottle would fall off ( ).

ST = F
BFO = T

Billy

💥🙋

🙋

Suzy

S

B

❌ • If Suzy had thrown the ball ( ), the 
bottle would fall off ( ). 

ST = T
BFO = T

•  and 
 

ST = T → BFO = T
ST = F → BFO = T

By the PO-based causality definition, 
Suzy’s ball throwing is not a cause, 
because  or  doesn’t 
make any change. 

ST = 1 ST = 0🤷
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Toward a modern causality
The counterfactual only holds under the situation where Billy’s ball didn’t hit the bottle. 

💥🙋

🙋

Suzy

Billy

S

B❌

ST = T ⇒ BFO = T

🙋

🙋

Suzy

Billy

B

S❌

❌

ST = F ⇒ BFO = F

PO-based definition doesn’t take account 
situations (structure of the world) in which 
the counterfactual logics hold!
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Causal Model  ℳ = ⟨V, U, F⟩

• : A set of endogenous (observable) variables. V

• : A set of exogenous (latent) variables. U

• : A set of structural equations  determining the value of , 
where  for some  and . 
F {fVi

}Vi∈V Vi ∈ V
Vi ← fvi

(PAVi
, UVi

) PAVi
⊆ V UVi

⊆ U

A modern causality taking account of situations is developed by Pearl and his 
colleagues [Pearl, 2000].

 describes ‘context’ — By fixing , values  are completely determined. U U = u V = v💡
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Causal Model — Example - 1
ST: Suzy Throws ∈ {T, F}
BT: Billy Throws ∈ {T, F}
SH: Suzy’s ball hit the bottle

BH: Billy’s ball hit the bottle

BFO: Bottle Fall Off 

SH ← fSH(ST) = ST

BH ← fBH(BT) = BT ∧ (¬SH)

BFO ← fBFO(SH, BH) = SH ∨ BH

ST

BT

SH

BH

BFO

ST

BT

SH

BH

BFO
do(T)

T

T

F

T

ST

BT

SH

BH

BFOdo(F)

T

F

T

T

Suzy’s throwing is not a 
cause, according to PO-
based definition.  
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ST

BT

SH
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do(T) T

T

do(F)T
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Structural Causal Model (SCM)

Structural Causal Model ℳ = ⟨V, U, F, P(u)⟩

• : A set of endogenous (observable) variables. V

• : A set of exogenous (latent) variables. U

• : A set of structural equations  determining the value of , 
where  for some  and . 
F {fVi

}Vi∈V Vi ∈ V
Vi ← fvi

(PAVi
, UVi

) PAVi
⊆ V UVi

⊆ U

• : A probability measure for . P(u) U

Structural Causal Model (SCM) permits probabilistic uncertainties in the context . U = u
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SCM as a unified language

SCM subsumes Potential outcome  (“  if  had been ”)Yx Y X x

So far, we see that SCM can fill the lacuna missed by PO-based causality. 

Indeed, SCM subsumes the PO-based causality, because the potential outcome can be 
equivalently defined using the SCM. 

• Let  be induced from the SCM .Y ℳ

• Given the SCM , let  denote the SCM inducing by fixing  in . ℳ ℳdo(x) X = x ℳ

• Then  is induced from .Yx ℳdo(x) (Roughly, )Yx = Y |do(x)
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(Frederick Eberhardt)

Why axiomatization? Consider Euclidean Geometry. Any theories (or logic system) of 
geometry agreeing with these axioms are equivalent to Euclidian Geometry!
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Axioms for counterfactual [Galles, Pearl & Halpern]

For a given context , suppose we take acyclicity (no cycle loop) as truth. U = u

Composition: In the hypothetical population where  is fixed to  for all units, any  equals to .X x W Wx

Yx(u) = Yx,Wx(u)(u)

Effectiveness: In the hypothetical population where  is fixed to , for any context, . X x X = x
Xx(u) = x

(cause → effect) & (effect ↛ cause)

If we had treated all patients a drug ( ), then patients’ blood pressure (BP, ) would be .X = 1 W Wx

SCM is a sound and complete framework 
satisfying these axioms!

This is why Pearl’s causality is acknowledged as a ‘revolution’ or ‘new 
science’ on causality. 💁

SCM can subsume any causal theories agreeing with these 
axioms.

👏 
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Three hierarchy in human cognition

L1 (Association)

Human 
cognition

L2 (Intervention)

L3 (Counterfactual)

Task

See

Do

Retrospect

Quantity

P(y |x)

P(y |do(x))

P(yx |x′￼, y′￼)

Question

What does the symptom 
tells about my headache? 

What if I took the aspirin, 
will my headache be 
cured?

Given that I didn’t take 
the aspirin and didn’t get 
cured, what if I did?

Classification 
Regression

Observational study 

Reinforcement 
Learning

Randomized trial

Structural Causal 
Model

🤖 SCM as a suitable language to 
teach human cognition to AI
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Pearl’s Causal Hierarchy (PCH)
Pearl’s Causal Hierarchy [Bareinboim et al., 2020]

• Structural Causal Model can represent all three 
layers (e.g.,  is for L1,  is for L2)ℳ ℳdo(x)

• With knowledge from lower layers, we cannot say anything about the higher 
layers.

• Solely with the observational data (L1), we cannot answer ‘what-if’ question in L2. 

• Solely with the interventional data (L2), we cannot answer retrospective/
counterfactual question in L3. 

L1 L2 L3
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Causal inference through SCM

X ← fX(UX)

Y ← fY(X, UY)
P(UX, UY)

SCM

Graph 

X Y

Data 

𝒟 = {Xi, Yi}N
i=1 ∼ P(x, y)

Query 

L2 : P(y |do(x))

L3 : P(yx |y′￼, x′￼)

• How do we leverage graph & 
L1 information to answer L2, 
L3 questions?

• Without any info (i.e., no graphs), 
we cannot answer due to PCH)

Qualitative 
description of SCM
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Practical example

• I have drawn a causal diagram with helps of clinicians, 
to understand the mechanism of the treatment effect in 
“Acute Respiratory Distress Syndrome (ARDS)”

• One can encode the domain knowledge (clinician’s 
knowledge) through graphs. 
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Key points (So far)

• SCM is a comprehensive framework for studying causality. 

• Unified framework: SCM subsumes PO-based causality. 

• Axiomatization: SCM is the sound and complete language obeying 
axioms.

• SCM is a suitable tool to represent human cognition and teach 
them to AI.

We answered Why Pearl’s Causality is 
revolutionary.💁
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Causal effect identification
Graph 

X Y

Data 

𝒟 = {Xi, Yi}N
i=1 ∼ P(x, y)

Query 

L2 : P(y |do(x))

• In general, we cannot answer L2 query using the graph and data from L1 (PCH).

• Causal effect identification (ID) — Representing L2 distribution as something computable 
from L1 information (data drawn from the joint distribution) and graphical information.

 𝔼[Y |do(X)] = ∑z
𝔼[Y |x, z]P(z)

• By leveraging the graphical information, we may be able to answer! 
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Ignorability — Identification in PO

In PO, the only thing we know about  is this:Yx

Potential outcome :  if  had been set to  in the hypothetical population. Yx Y X x

X Y Y_{X=1} Y_{X=0} Z (age)
1 1 1 NA 1
0 0 NA 0 1
1 1 1 NA 0
0 1 NA 1 0

How can we estimate  — An expectation of  if all population takes ? 𝔼[YX=1] Y X = 1

Nontrivial, because of missing data (NA)! 😱

•  is observed when . Yx X = x

•  is missing when Yx X = x′￼
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Yx ⊥⊥ X |Z

We can see  as a missingness indicator (  means  missing). X X = 0 YX=1

Missingness at random (MAR) assumption [Rudin, 1974]: Missingness (  is 
independent of missing variables  given some variables .  (i.e., missingness can 
be explained by ). This is a widely used assumption for imputing the missing data.

X)
(YX=1) Z

Z

Covariate adjustment - Identification w/ Ignoriability assumption

𝔼[Yx] = ∑z
𝔼[Yx |z]P(z) = ∑z

𝔼[Yx |x, z]P(z) = ∑z
𝔼[Y |x, z]P(z)

• If the ignorability assumption holds, then  

X Y Y_{X=1} Y_{X=0} Z (age)
1 1 1 NA 1
0 0 NA 0 1
1 1 1 NA 0
0 1 NA 1 0

Ignorability assumption. 

Yx ⊥⊥ X |Z

An ignobility assumption states that  and  are conditionally independent given . Yx X Z

L2 quantity L1 quantity 
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Practical implication of ignorability?

What  means (“missingness of  can be explained by ”) is unclear in 
practice. 

Yx ⊥⊥ X |Z Yx Z

What about ? Can missingness of  be 
explained by such ? 

Z = { variables correlated with {X,Y}} Yx
Z

“M-bias” [Pearl]:

Counterexample that for 
such , still . Z Yx ⊥⊥ X |Z

X Y

Z
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Recall that No formal data generating process on  in the PO-based causality. Yx

• Only information:  can be viewed as missing data  ignorability assumption ( )Yx ⇒ Yx ⊥⊥ X |Z

If , in the PO-framework, we can do nothing b/c no further information 
can be used. 

Yx ⊥⊥ X |Z

Does this mean that the causal effect is NOT identifiable if ?Yx ⊥⊥ X |Z

No!🙅
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Front-door

X YZ

U : Genetic factor (latent)U

: SmokeX

: Tar in the smokeZ

: Lung disease Y

In Front-door graph [Pearl, 1995], the ignorability doesn’t hold:  Yx ⊥⊥ X |Z

However,  is identifiable and given as 𝔼[Yx] ≡ 𝔼[Y |do(x)]

. 𝔼[Y |do(x)] = ∑z
P(z |x)∑x′￼

𝔼[Y |x′￼, z]P(x′￼)

Front-door is the 1st example showing 
the insufficiency of the ignorability
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Pearl’s do-calculus
Motivated by Front-door example, Pearl [1995] developed three rules that can be 
used for identifying causal effect from a graph w/ . Yx ⊥⊥ X |Z

Rule 1 (conditional independence):

Rule 2 (Doing/seeing interchange):

Rule 3 (conditional independence for interventions) 

  (Y ⊥⊥ Z |X, W)GX
⇒ P(y |do(x), z, w) = P(y |do(x), w)

  (Y ⊥⊥ Z |X, W)GXZ
⇒ P(y |do(x), do(z), w) = P(y |do(x), z, w)

  (Y ⊥⊥ Z |X, W)GX,Z \An(W)GX
⇒ P(y |do(x), do(z), w) = P(y |do(z), w)
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Front-door —Identification through do-calculus

X YZ

U P(y |do(x)) = ∑z
P(y |do(x), z)P(z |do(x)) Marginalization

 = ∑z
P(y |do(x), z)P(z |x) R2 

 = ∑z
P(y |do(x), do(z))P(z |x) R2 

= ∑z
P(y |do(z))P(z |x) R3

. = ∑z (∑x′￼

P(y |do(z), x′￼)P(x′￼|do(z))) P(z |x) Marginalization

. = ∑z (∑x′￼

P(y |z, x′￼)P(x′￼|do(z))) P(z |x) R2

. = ∑z (∑x′￼

P(y |z, x′￼)P(x′￼)) P(z |x) R3

L2 quantity is represented as 
an L1 quantity given the graph  
through do-calculus rules.
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: Treatment at time X1, X2 1,2
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: SurvivalY
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U2

: Patients’ history U1

: Genetic factorU2
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YZ

W

X

R

Nature’s data generating process 
can be arbitrary. 

Causal graphs can be arbitrary.⇒
Q1. Can we determine identifiability using do-calculus for 
arbitrary graphs? 

Q2. If so, how do we find a correct procedure for applying do-
calculus? 
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Complete identification solution
Q1. Can we determine identifiability using do-calculus for 
arbitrary graphs? 

Q2. How do we find a correct procedure for applying do-
calculus? 

A1. Yes. Do-calculus is complete (i.e., the causal effect is identifiable if and only if it 
can be derived through do-calculus) [Tian, 2002], [Valtorta and Huang, 2006] ,[Shpitser and Pearl, 2006]

A2. There is an algorithm! (https://www.causalfusion.net/login)

https://www.causalfusion.net/login
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Key points (So far)
• Under SCM frameworks, a sound and complete algorithm (i.e., 

identifiable if and only the algorithm works) for determining 
identifiability (CausalFusion) exists.

• In the PO-based causality, no formal data generating process (DGP) on  Yx

• SCM frameworks allow to encode knowledge on DGPs.

• Since Nature’s DGP is arbitrary, causal graphs can be arbitrary. 

• That’s why SCM frameworks engenders causal effect identification problems.

ID via ignorability assumption ( )Yx ⊥⊥ X |Z

https://www.causalfusion.net/app
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Task of Identification

ID (G, P, Q) solution
yes / no

With the current scientific knowledge 
(encoded as a graph) about the problem (2) 
and the available distribution (3), can we 
answer the research question (1)? 

query1

Q = Px(y) ≡ P(y |do(x))

probability3

P(V)

Causal Functional 
Px(y) = f(P)

graph2

X Y

ZG



3. Causal effect 
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X YZ

U

: Genetic factor (latent)U

: SmokeX

: Tar in the smokeZ

: Lung disease Y

. 𝔼[Y |do(x)] = ∑z
P(z |x)∑x′￼

𝔼[Y |x′￼, z]P(x′￼)

Instead of the L1 distribution , we are only 
given finite samples  from P. 

P(x, y, z)
D = {Xi, Yi, Zi}N

i=1

We must estimate the ID quantity (“Causal 
functional”) from the dataset D.
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ID (G, P, Px(y))

Causal Functional 
P(y ∣ do(x)) = f(P)

EST( f(P), D)
Estimation Engine 

1

Data 
D = {V(i)}N

i=1 ∼ P Estimator 
TN = ̂g(P)

With (1) a causal functional  such that  
 and (2) a dataset , can we have a 

reliable estimate  for ?

f(P)
Px(y) = f(P) D
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Estimand  
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Z
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P(y |x, z)P(z) = ∑z

P(y |x, z)P(x |z)P(z)
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P(x |z)

= ∑z
P(z, x, y)

1
P(x |z)

= ∑z,x′￼,y′￼

P(z, x′￼, y′￼)
Ix(x′￼)

P(x |z)
Iy(y′￼)

= 𝔼P [ Ix(X)
P(X |Z)

⋅ Iy(Y)] = g(P)

 if ; 
otherwise 0.

Ix(x′￼) = 1 x = x′￼
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Classic BD estimator: 

1. Inverse probability weighting (IPW)

X Y

Z

Px(y) = fbd(P) = ∑
z

P(y |x, z)P(z)

Estimand ( )  g(P) 𝔼P [ Ix(X)
P(X |Z)

⋅ Iy(Y )]

Estimator ( )  TN 𝔼D [ Ix(X)
̂P(X |Z)

⋅ Iy(Y )]

, an empirical 

expectation of  using samples.

𝔼D[ f(W)] ≡
1
N

N

∑
i=1

f(W(i))

f(W)
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😁 “Doubly robustness” — Double chance of being correct!
Double/debiased machine learning (DML) estimator for BD enjoys 
doubly robustness and  debiasedness without restrictions on the 
function class! 

Key result:
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My research theme

BD adjustment Estimation Engine  
on BD Data D

Under the BD setting, 
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estimator TN

BD

General ID

Under the general identifiable setting (i.e., general ),f(P) = Px(y)

Functional f(P) Estimation Engine 
on general ID Data D ? Desirable 

estimator TN
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Key points (So far)
• There have been many estimators for Back-door settings 

(ignorability). 

• No estimators have been developed for the general ID setting. 

• My research theme is filling this lacuna — developing an 
estimator for general ID functional. 

• IPW, OR, AIPW, Double machine learning, etc. 
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Conclusion

• Structural Causal Model (SCM) is a complete framework for 
causal inference. 

• In SCM, causal effect identification is important. There is a 
complete solution for ID problems. 

• Since causal effect estimation problems have remained open, I 
have solved the estimation problems for general ID settings. 


